1 | /* |
2 | * jdphuff.c |
3 | * |
4 | * Copyright (C) 1995-1997, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains Huffman entropy decoding routines for progressive JPEG. |
9 | * |
10 | * Much of the complexity here has to do with supporting input suspension. |
11 | * If the data source module demands suspension, we want to be able to back |
12 | * up to the start of the current MCU. To do this, we copy state variables |
13 | * into local working storage, and update them back to the permanent |
14 | * storage only upon successful completion of an MCU. |
15 | */ |
16 | |
17 | #define JPEG_INTERNALS |
18 | #include "jinclude.h" |
19 | #include "jpeglib.h" |
20 | #include "jdhuff.h" /* Declarations shared with jdhuff.c */ |
21 | |
22 | |
23 | #ifdef D_PROGRESSIVE_SUPPORTED |
24 | |
25 | /* |
26 | * Expanded entropy decoder object for progressive Huffman decoding. |
27 | * |
28 | * The savable_state subrecord contains fields that change within an MCU, |
29 | * but must not be updated permanently until we complete the MCU. |
30 | */ |
31 | |
32 | typedef struct { |
33 | unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ |
34 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
35 | } savable_state; |
36 | |
37 | /* This macro is to work around compilers with missing or broken |
38 | * structure assignment. You'll need to fix this code if you have |
39 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
40 | */ |
41 | |
42 | #ifndef NO_STRUCT_ASSIGN |
43 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
44 | #else |
45 | #if MAX_COMPS_IN_SCAN == 4 |
46 | #define ASSIGN_STATE(dest,src) \ |
47 | ((dest).EOBRUN = (src).EOBRUN, \ |
48 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
49 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
50 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
51 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
52 | #endif |
53 | #endif |
54 | |
55 | |
56 | typedef struct { |
57 | struct jpeg_entropy_decoder pub; /* public fields */ |
58 | |
59 | /* These fields are loaded into local variables at start of each MCU. |
60 | * In case of suspension, we exit WITHOUT updating them. |
61 | */ |
62 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
63 | savable_state saved; /* Other state at start of MCU */ |
64 | |
65 | /* These fields are NOT loaded into local working state. */ |
66 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
67 | |
68 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
69 | d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
70 | |
71 | d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ |
72 | } phuff_entropy_decoder; |
73 | |
74 | typedef phuff_entropy_decoder * phuff_entropy_ptr; |
75 | |
76 | /* Forward declarations */ |
77 | METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo, |
78 | JBLOCKROW *MCU_data)); |
79 | METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo, |
80 | JBLOCKROW *MCU_data)); |
81 | METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, |
82 | JBLOCKROW *MCU_data)); |
83 | METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, |
84 | JBLOCKROW *MCU_data)); |
85 | |
86 | |
87 | /* |
88 | * Initialize for a Huffman-compressed scan. |
89 | */ |
90 | |
91 | METHODDEF(void) |
92 | start_pass_phuff_decoder (j_decompress_ptr cinfo) |
93 | { |
94 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
95 | boolean is_DC_band, bad; |
96 | int ci, coefi, tbl; |
97 | int *coef_bit_ptr; |
98 | jpeg_component_info * compptr; |
99 | |
100 | is_DC_band = (cinfo->Ss == 0); |
101 | |
102 | /* Validate scan parameters */ |
103 | bad = FALSE; |
104 | if (is_DC_band) { |
105 | if (cinfo->Se != 0) |
106 | bad = TRUE; |
107 | } else { |
108 | /* need not check Ss/Se < 0 since they came from unsigned bytes */ |
109 | if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) |
110 | bad = TRUE; |
111 | /* AC scans may have only one component */ |
112 | if (cinfo->comps_in_scan != 1) |
113 | bad = TRUE; |
114 | } |
115 | if (cinfo->Ah != 0) { |
116 | /* Successive approximation refinement scan: must have Al = Ah-1. */ |
117 | if (cinfo->Al != cinfo->Ah-1) |
118 | bad = TRUE; |
119 | } |
120 | if (cinfo->Al > 13) /* need not check for < 0 */ |
121 | bad = TRUE; |
122 | /* Arguably the maximum Al value should be less than 13 for 8-bit precision, |
123 | * but the spec doesn't say so, and we try to be liberal about what we |
124 | * accept. Note: large Al values could result in out-of-range DC |
125 | * coefficients during early scans, leading to bizarre displays due to |
126 | * overflows in the IDCT math. But we won't crash. |
127 | */ |
128 | if (bad) |
129 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
130 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
131 | /* Update progression status, and verify that scan order is legal. |
132 | * Note that inter-scan inconsistencies are treated as warnings |
133 | * not fatal errors ... not clear if this is right way to behave. |
134 | */ |
135 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
136 | int cindex = cinfo->cur_comp_info[ci]->component_index; |
137 | coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
138 | if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
139 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
140 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
141 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
142 | if (cinfo->Ah != expected) |
143 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
144 | coef_bit_ptr[coefi] = cinfo->Al; |
145 | } |
146 | } |
147 | |
148 | /* Select MCU decoding routine */ |
149 | if (cinfo->Ah == 0) { |
150 | if (is_DC_band) |
151 | entropy->pub.decode_mcu = decode_mcu_DC_first; |
152 | else |
153 | entropy->pub.decode_mcu = decode_mcu_AC_first; |
154 | } else { |
155 | if (is_DC_band) |
156 | entropy->pub.decode_mcu = decode_mcu_DC_refine; |
157 | else |
158 | entropy->pub.decode_mcu = decode_mcu_AC_refine; |
159 | } |
160 | |
161 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
162 | compptr = cinfo->cur_comp_info[ci]; |
163 | /* Make sure requested tables are present, and compute derived tables. |
164 | * We may build same derived table more than once, but it's not expensive. |
165 | */ |
166 | if (is_DC_band) { |
167 | if (cinfo->Ah == 0) { /* DC refinement needs no table */ |
168 | tbl = compptr->dc_tbl_no; |
169 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, |
170 | & entropy->derived_tbls[tbl]); |
171 | } |
172 | } else { |
173 | tbl = compptr->ac_tbl_no; |
174 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, |
175 | & entropy->derived_tbls[tbl]); |
176 | /* remember the single active table */ |
177 | entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; |
178 | } |
179 | /* Initialize DC predictions to 0 */ |
180 | entropy->saved.last_dc_val[ci] = 0; |
181 | } |
182 | |
183 | /* Initialize bitread state variables */ |
184 | entropy->bitstate.bits_left = 0; |
185 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
186 | entropy->pub.insufficient_data = FALSE; |
187 | |
188 | /* Initialize private state variables */ |
189 | entropy->saved.EOBRUN = 0; |
190 | |
191 | /* Initialize restart counter */ |
192 | entropy->restarts_to_go = cinfo->restart_interval; |
193 | } |
194 | |
195 | |
196 | /* |
197 | * Figure F.12: extend sign bit. |
198 | * On some machines, a shift and add will be faster than a table lookup. |
199 | */ |
200 | |
201 | #ifdef AVOID_TABLES |
202 | |
203 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) |
204 | |
205 | #else |
206 | |
207 | #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
208 | |
209 | static const int extend_test[16] = /* entry n is 2**(n-1) */ |
210 | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
211 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
212 | |
213 | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
214 | { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
215 | ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
216 | ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
217 | ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
218 | |
219 | #endif /* AVOID_TABLES */ |
220 | |
221 | |
222 | /* |
223 | * Check for a restart marker & resynchronize decoder. |
224 | * Returns FALSE if must suspend. |
225 | */ |
226 | |
227 | LOCAL(boolean) |
228 | process_restart (j_decompress_ptr cinfo) |
229 | { |
230 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
231 | int ci; |
232 | |
233 | /* Throw away any unused bits remaining in bit buffer; */ |
234 | /* include any full bytes in next_marker's count of discarded bytes */ |
235 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
236 | entropy->bitstate.bits_left = 0; |
237 | |
238 | /* Advance past the RSTn marker */ |
239 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
240 | return FALSE; |
241 | |
242 | /* Re-initialize DC predictions to 0 */ |
243 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
244 | entropy->saved.last_dc_val[ci] = 0; |
245 | /* Re-init EOB run count, too */ |
246 | entropy->saved.EOBRUN = 0; |
247 | |
248 | /* Reset restart counter */ |
249 | entropy->restarts_to_go = cinfo->restart_interval; |
250 | |
251 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
252 | * against a marker. In that case we will end up treating the next data |
253 | * segment as empty, and we can avoid producing bogus output pixels by |
254 | * leaving the flag set. |
255 | */ |
256 | if (cinfo->unread_marker == 0) |
257 | entropy->pub.insufficient_data = FALSE; |
258 | |
259 | return TRUE; |
260 | } |
261 | |
262 | |
263 | /* |
264 | * Huffman MCU decoding. |
265 | * Each of these routines decodes and returns one MCU's worth of |
266 | * Huffman-compressed coefficients. |
267 | * The coefficients are reordered from zigzag order into natural array order, |
268 | * but are not dequantized. |
269 | * |
270 | * The i'th block of the MCU is stored into the block pointed to by |
271 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
272 | * |
273 | * We return FALSE if data source requested suspension. In that case no |
274 | * changes have been made to permanent state. (Exception: some output |
275 | * coefficients may already have been assigned. This is harmless for |
276 | * spectral selection, since we'll just re-assign them on the next call. |
277 | * Successive approximation AC refinement has to be more careful, however.) |
278 | */ |
279 | |
280 | /* |
281 | * MCU decoding for DC initial scan (either spectral selection, |
282 | * or first pass of successive approximation). |
283 | */ |
284 | |
285 | METHODDEF(boolean) |
286 | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
287 | { |
288 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
289 | int Al = cinfo->Al; |
290 | register int s, r; |
291 | int blkn, ci; |
292 | JBLOCKROW block; |
293 | BITREAD_STATE_VARS; |
294 | savable_state state; |
295 | d_derived_tbl * tbl; |
296 | jpeg_component_info * compptr; |
297 | |
298 | /* Process restart marker if needed; may have to suspend */ |
299 | if (cinfo->restart_interval) { |
300 | if (entropy->restarts_to_go == 0) |
301 | if (! process_restart(cinfo)) |
302 | return FALSE; |
303 | } |
304 | |
305 | /* If we've run out of data, just leave the MCU set to zeroes. |
306 | * This way, we return uniform gray for the remainder of the segment. |
307 | */ |
308 | if (! entropy->pub.insufficient_data) { |
309 | |
310 | /* Load up working state */ |
311 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
312 | ASSIGN_STATE(state, entropy->saved); |
313 | |
314 | /* Outer loop handles each block in the MCU */ |
315 | |
316 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
317 | block = MCU_data[blkn]; |
318 | ci = cinfo->MCU_membership[blkn]; |
319 | compptr = cinfo->cur_comp_info[ci]; |
320 | tbl = entropy->derived_tbls[compptr->dc_tbl_no]; |
321 | |
322 | /* Decode a single block's worth of coefficients */ |
323 | |
324 | /* Section F.2.2.1: decode the DC coefficient difference */ |
325 | HUFF_DECODE(s, br_state, tbl, return FALSE, label1); |
326 | if (s) { |
327 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
328 | r = GET_BITS(s); |
329 | s = HUFF_EXTEND(r, s); |
330 | } |
331 | |
332 | /* Convert DC difference to actual value, update last_dc_val */ |
333 | s += state.last_dc_val[ci]; |
334 | state.last_dc_val[ci] = s; |
335 | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ |
336 | (*block)[0] = (JCOEF) (s << Al); |
337 | } |
338 | |
339 | /* Completed MCU, so update state */ |
340 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
341 | ASSIGN_STATE(entropy->saved, state); |
342 | } |
343 | |
344 | /* Account for restart interval (no-op if not using restarts) */ |
345 | entropy->restarts_to_go--; |
346 | |
347 | return TRUE; |
348 | } |
349 | |
350 | |
351 | /* |
352 | * MCU decoding for AC initial scan (either spectral selection, |
353 | * or first pass of successive approximation). |
354 | */ |
355 | |
356 | METHODDEF(boolean) |
357 | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
358 | { |
359 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
360 | int Se = cinfo->Se; |
361 | int Al = cinfo->Al; |
362 | register int s, k, r; |
363 | unsigned int EOBRUN; |
364 | JBLOCKROW block; |
365 | BITREAD_STATE_VARS; |
366 | d_derived_tbl * tbl; |
367 | |
368 | /* Process restart marker if needed; may have to suspend */ |
369 | if (cinfo->restart_interval) { |
370 | if (entropy->restarts_to_go == 0) |
371 | if (! process_restart(cinfo)) |
372 | return FALSE; |
373 | } |
374 | |
375 | /* If we've run out of data, just leave the MCU set to zeroes. |
376 | * This way, we return uniform gray for the remainder of the segment. |
377 | */ |
378 | if (! entropy->pub.insufficient_data) { |
379 | |
380 | /* Load up working state. |
381 | * We can avoid loading/saving bitread state if in an EOB run. |
382 | */ |
383 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
384 | |
385 | /* There is always only one block per MCU */ |
386 | |
387 | if (EOBRUN > 0) /* if it's a band of zeroes... */ |
388 | EOBRUN--; /* ...process it now (we do nothing) */ |
389 | else { |
390 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
391 | block = MCU_data[0]; |
392 | tbl = entropy->ac_derived_tbl; |
393 | |
394 | for (k = cinfo->Ss; k <= Se; k++) { |
395 | HUFF_DECODE(s, br_state, tbl, return FALSE, label2); |
396 | r = s >> 4; |
397 | s &= 15; |
398 | if (s) { |
399 | k += r; |
400 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
401 | r = GET_BITS(s); |
402 | s = HUFF_EXTEND(r, s); |
403 | /* Scale and output coefficient in natural (dezigzagged) order */ |
404 | (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); |
405 | } else { |
406 | if (r == 15) { /* ZRL */ |
407 | k += 15; /* skip 15 zeroes in band */ |
408 | } else { /* EOBr, run length is 2^r + appended bits */ |
409 | EOBRUN = 1 << r; |
410 | if (r) { /* EOBr, r > 0 */ |
411 | CHECK_BIT_BUFFER(br_state, r, return FALSE); |
412 | r = GET_BITS(r); |
413 | EOBRUN += r; |
414 | } |
415 | EOBRUN--; /* this band is processed at this moment */ |
416 | break; /* force end-of-band */ |
417 | } |
418 | } |
419 | } |
420 | |
421 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
422 | } |
423 | |
424 | /* Completed MCU, so update state */ |
425 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
426 | } |
427 | |
428 | /* Account for restart interval (no-op if not using restarts) */ |
429 | entropy->restarts_to_go--; |
430 | |
431 | return TRUE; |
432 | } |
433 | |
434 | |
435 | /* |
436 | * MCU decoding for DC successive approximation refinement scan. |
437 | * Note: we assume such scans can be multi-component, although the spec |
438 | * is not very clear on the point. |
439 | */ |
440 | |
441 | METHODDEF(boolean) |
442 | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
443 | { |
444 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
445 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
446 | int blkn; |
447 | JBLOCKROW block; |
448 | BITREAD_STATE_VARS; |
449 | |
450 | /* Process restart marker if needed; may have to suspend */ |
451 | if (cinfo->restart_interval) { |
452 | if (entropy->restarts_to_go == 0) |
453 | if (! process_restart(cinfo)) |
454 | return FALSE; |
455 | } |
456 | |
457 | /* Not worth the cycles to check insufficient_data here, |
458 | * since we will not change the data anyway if we read zeroes. |
459 | */ |
460 | |
461 | /* Load up working state */ |
462 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
463 | |
464 | /* Outer loop handles each block in the MCU */ |
465 | |
466 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
467 | block = MCU_data[blkn]; |
468 | |
469 | /* Encoded data is simply the next bit of the two's-complement DC value */ |
470 | CHECK_BIT_BUFFER(br_state, 1, return FALSE); |
471 | if (GET_BITS(1)) |
472 | (*block)[0] |= p1; |
473 | /* Note: since we use |=, repeating the assignment later is safe */ |
474 | } |
475 | |
476 | /* Completed MCU, so update state */ |
477 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
478 | |
479 | /* Account for restart interval (no-op if not using restarts) */ |
480 | entropy->restarts_to_go--; |
481 | |
482 | return TRUE; |
483 | } |
484 | |
485 | |
486 | /* |
487 | * MCU decoding for AC successive approximation refinement scan. |
488 | */ |
489 | |
490 | METHODDEF(boolean) |
491 | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
492 | { |
493 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
494 | int Se = cinfo->Se; |
495 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
496 | int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ |
497 | register int s, k, r; |
498 | unsigned int EOBRUN; |
499 | JBLOCKROW block; |
500 | JCOEFPTR thiscoef; |
501 | BITREAD_STATE_VARS; |
502 | d_derived_tbl * tbl; |
503 | int num_newnz; |
504 | int newnz_pos[DCTSIZE2]; |
505 | |
506 | /* Process restart marker if needed; may have to suspend */ |
507 | if (cinfo->restart_interval) { |
508 | if (entropy->restarts_to_go == 0) |
509 | if (! process_restart(cinfo)) |
510 | return FALSE; |
511 | } |
512 | |
513 | /* If we've run out of data, don't modify the MCU. |
514 | */ |
515 | if (! entropy->pub.insufficient_data) { |
516 | |
517 | /* Load up working state */ |
518 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
519 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
520 | |
521 | /* There is always only one block per MCU */ |
522 | block = MCU_data[0]; |
523 | tbl = entropy->ac_derived_tbl; |
524 | |
525 | /* If we are forced to suspend, we must undo the assignments to any newly |
526 | * nonzero coefficients in the block, because otherwise we'd get confused |
527 | * next time about which coefficients were already nonzero. |
528 | * But we need not undo addition of bits to already-nonzero coefficients; |
529 | * instead, we can test the current bit to see if we already did it. |
530 | */ |
531 | num_newnz = 0; |
532 | |
533 | /* initialize coefficient loop counter to start of band */ |
534 | k = cinfo->Ss; |
535 | |
536 | if (EOBRUN == 0) { |
537 | for (; k <= Se; k++) { |
538 | HUFF_DECODE(s, br_state, tbl, goto undoit, label3); |
539 | r = s >> 4; |
540 | s &= 15; |
541 | if (s) { |
542 | if (s != 1) /* size of new coef should always be 1 */ |
543 | WARNMS(cinfo, JWRN_HUFF_BAD_CODE); |
544 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
545 | if (GET_BITS(1)) |
546 | s = p1; /* newly nonzero coef is positive */ |
547 | else |
548 | s = m1; /* newly nonzero coef is negative */ |
549 | } else { |
550 | if (r != 15) { |
551 | EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ |
552 | if (r) { |
553 | CHECK_BIT_BUFFER(br_state, r, goto undoit); |
554 | r = GET_BITS(r); |
555 | EOBRUN += r; |
556 | } |
557 | break; /* rest of block is handled by EOB logic */ |
558 | } |
559 | /* note s = 0 for processing ZRL */ |
560 | } |
561 | /* Advance over already-nonzero coefs and r still-zero coefs, |
562 | * appending correction bits to the nonzeroes. A correction bit is 1 |
563 | * if the absolute value of the coefficient must be increased. |
564 | */ |
565 | do { |
566 | thiscoef = *block + jpeg_natural_order[k]; |
567 | if (*thiscoef != 0) { |
568 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
569 | if (GET_BITS(1)) { |
570 | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ |
571 | if (*thiscoef >= 0) |
572 | *thiscoef += p1; |
573 | else |
574 | *thiscoef += m1; |
575 | } |
576 | } |
577 | } else { |
578 | if (--r < 0) |
579 | break; /* reached target zero coefficient */ |
580 | } |
581 | k++; |
582 | } while (k <= Se); |
583 | if (s) { |
584 | int pos = jpeg_natural_order[k]; |
585 | /* Output newly nonzero coefficient */ |
586 | (*block)[pos] = (JCOEF) s; |
587 | /* Remember its position in case we have to suspend */ |
588 | newnz_pos[num_newnz++] = pos; |
589 | } |
590 | } |
591 | } |
592 | |
593 | if (EOBRUN > 0) { |
594 | /* Scan any remaining coefficient positions after the end-of-band |
595 | * (the last newly nonzero coefficient, if any). Append a correction |
596 | * bit to each already-nonzero coefficient. A correction bit is 1 |
597 | * if the absolute value of the coefficient must be increased. |
598 | */ |
599 | for (; k <= Se; k++) { |
600 | thiscoef = *block + jpeg_natural_order[k]; |
601 | if (*thiscoef != 0) { |
602 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
603 | if (GET_BITS(1)) { |
604 | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ |
605 | if (*thiscoef >= 0) |
606 | *thiscoef += p1; |
607 | else |
608 | *thiscoef += m1; |
609 | } |
610 | } |
611 | } |
612 | } |
613 | /* Count one block completed in EOB run */ |
614 | EOBRUN--; |
615 | } |
616 | |
617 | /* Completed MCU, so update state */ |
618 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
619 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
620 | } |
621 | |
622 | /* Account for restart interval (no-op if not using restarts) */ |
623 | entropy->restarts_to_go--; |
624 | |
625 | return TRUE; |
626 | |
627 | undoit: |
628 | /* Re-zero any output coefficients that we made newly nonzero */ |
629 | while (num_newnz > 0) |
630 | (*block)[newnz_pos[--num_newnz]] = 0; |
631 | |
632 | return FALSE; |
633 | } |
634 | |
635 | |
636 | /* |
637 | * Module initialization routine for progressive Huffman entropy decoding. |
638 | */ |
639 | |
640 | GLOBAL(void) |
641 | jinit_phuff_decoder (j_decompress_ptr cinfo) |
642 | { |
643 | phuff_entropy_ptr entropy; |
644 | int *coef_bit_ptr; |
645 | int ci, i; |
646 | |
647 | entropy = (phuff_entropy_ptr) |
648 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
649 | SIZEOF(phuff_entropy_decoder)); |
650 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
651 | entropy->pub.start_pass = start_pass_phuff_decoder; |
652 | |
653 | /* Mark derived tables unallocated */ |
654 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
655 | entropy->derived_tbls[i] = NULL; |
656 | } |
657 | |
658 | /* Create progression status table */ |
659 | cinfo->coef_bits = (int (*)[DCTSIZE2]) |
660 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
661 | cinfo->num_components*DCTSIZE2*SIZEOF(int)); |
662 | coef_bit_ptr = & cinfo->coef_bits[0][0]; |
663 | for (ci = 0; ci < cinfo->num_components; ci++) |
664 | for (i = 0; i < DCTSIZE2; i++) |
665 | *coef_bit_ptr++ = -1; |
666 | } |
667 | |
668 | #endif /* D_PROGRESSIVE_SUPPORTED */ |
669 | |