1 | /* |
2 | * jmemmgr.c |
3 | * |
4 | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains the JPEG system-independent memory management |
9 | * routines. This code is usable across a wide variety of machines; most |
10 | * of the system dependencies have been isolated in a separate file. |
11 | * The major functions provided here are: |
12 | * * pool-based allocation and freeing of memory; |
13 | * * policy decisions about how to divide available memory among the |
14 | * virtual arrays; |
15 | * * control logic for swapping virtual arrays between main memory and |
16 | * backing storage. |
17 | * The separate system-dependent file provides the actual backing-storage |
18 | * access code, and it contains the policy decision about how much total |
19 | * main memory to use. |
20 | * This file is system-dependent in the sense that some of its functions |
21 | * are unnecessary in some systems. For example, if there is enough virtual |
22 | * memory so that backing storage will never be used, much of the virtual |
23 | * array control logic could be removed. (Of course, if you have that much |
24 | * memory then you shouldn't care about a little bit of unused code...) |
25 | */ |
26 | |
27 | #define JPEG_INTERNALS |
28 | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
29 | #include "jinclude.h" |
30 | #include "jpeglib.h" |
31 | #include "jmemsys.h" /* import the system-dependent declarations */ |
32 | |
33 | #ifndef NO_GETENV |
34 | #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
35 | extern char * getenv JPP((const char * name)); |
36 | #endif |
37 | #endif |
38 | |
39 | |
40 | /* |
41 | * Some important notes: |
42 | * The allocation routines provided here must never return NULL. |
43 | * They should exit to error_exit if unsuccessful. |
44 | * |
45 | * It's not a good idea to try to merge the sarray and barray routines, |
46 | * even though they are textually almost the same, because samples are |
47 | * usually stored as bytes while coefficients are shorts or ints. Thus, |
48 | * in machines where byte pointers have a different representation from |
49 | * word pointers, the resulting machine code could not be the same. |
50 | */ |
51 | |
52 | |
53 | /* |
54 | * Many machines require storage alignment: longs must start on 4-byte |
55 | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
56 | * always returns pointers that are multiples of the worst-case alignment |
57 | * requirement, and we had better do so too. |
58 | * There isn't any really portable way to determine the worst-case alignment |
59 | * requirement. This module assumes that the alignment requirement is |
60 | * multiples of sizeof(ALIGN_TYPE). |
61 | * By default, we define ALIGN_TYPE as double. This is necessary on some |
62 | * workstations (where doubles really do need 8-byte alignment) and will work |
63 | * fine on nearly everything. If your machine has lesser alignment needs, |
64 | * you can save a few bytes by making ALIGN_TYPE smaller. |
65 | * The only place I know of where this will NOT work is certain Macintosh |
66 | * 680x0 compilers that define double as a 10-byte IEEE extended float. |
67 | * Doing 10-byte alignment is counterproductive because longwords won't be |
68 | * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have |
69 | * such a compiler. |
70 | */ |
71 | |
72 | #ifndef ALIGN_TYPE /* so can override from jconfig.h */ |
73 | #define ALIGN_TYPE double |
74 | #endif |
75 | |
76 | |
77 | /* |
78 | * We allocate objects from "pools", where each pool is gotten with a single |
79 | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
80 | * overhead within a pool, except for alignment padding. Each pool has a |
81 | * header with a link to the next pool of the same class. |
82 | * Small and large pool headers are identical except that the latter's |
83 | * link pointer must be FAR on 80x86 machines. |
84 | * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE |
85 | * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple |
86 | * of the alignment requirement of ALIGN_TYPE. |
87 | */ |
88 | |
89 | typedef union small_pool_struct * small_pool_ptr; |
90 | |
91 | typedef union small_pool_struct { |
92 | struct { |
93 | small_pool_ptr next; /* next in list of pools */ |
94 | size_t bytes_used; /* how many bytes already used within pool */ |
95 | size_t bytes_left; /* bytes still available in this pool */ |
96 | } hdr; |
97 | ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
98 | } small_pool_hdr; |
99 | |
100 | typedef union large_pool_struct FAR * large_pool_ptr; |
101 | |
102 | typedef union large_pool_struct { |
103 | struct { |
104 | large_pool_ptr next; /* next in list of pools */ |
105 | size_t bytes_used; /* how many bytes already used within pool */ |
106 | size_t bytes_left; /* bytes still available in this pool */ |
107 | } hdr; |
108 | ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
109 | } large_pool_hdr; |
110 | |
111 | |
112 | /* |
113 | * Here is the full definition of a memory manager object. |
114 | */ |
115 | |
116 | typedef struct { |
117 | struct jpeg_memory_mgr pub; /* public fields */ |
118 | |
119 | /* Each pool identifier (lifetime class) names a linked list of pools. */ |
120 | small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
121 | large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
122 | |
123 | /* Since we only have one lifetime class of virtual arrays, only one |
124 | * linked list is necessary (for each datatype). Note that the virtual |
125 | * array control blocks being linked together are actually stored somewhere |
126 | * in the small-pool list. |
127 | */ |
128 | jvirt_sarray_ptr virt_sarray_list; |
129 | jvirt_barray_ptr virt_barray_list; |
130 | |
131 | /* This counts total space obtained from jpeg_get_small/large */ |
132 | long total_space_allocated; |
133 | |
134 | /* alloc_sarray and alloc_barray set this value for use by virtual |
135 | * array routines. |
136 | */ |
137 | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
138 | } my_memory_mgr; |
139 | |
140 | typedef my_memory_mgr * my_mem_ptr; |
141 | |
142 | |
143 | /* |
144 | * The control blocks for virtual arrays. |
145 | * Note that these blocks are allocated in the "small" pool area. |
146 | * System-dependent info for the associated backing store (if any) is hidden |
147 | * inside the backing_store_info struct. |
148 | */ |
149 | |
150 | struct jvirt_sarray_control { |
151 | JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
152 | JDIMENSION rows_in_array; /* total virtual array height */ |
153 | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
154 | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
155 | JDIMENSION rows_in_mem; /* height of memory buffer */ |
156 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
157 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
158 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
159 | boolean pre_zero; /* pre-zero mode requested? */ |
160 | boolean dirty; /* do current buffer contents need written? */ |
161 | boolean b_s_open; /* is backing-store data valid? */ |
162 | jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
163 | backing_store_info b_s_info; /* System-dependent control info */ |
164 | }; |
165 | |
166 | struct jvirt_barray_control { |
167 | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
168 | JDIMENSION rows_in_array; /* total virtual array height */ |
169 | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
170 | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
171 | JDIMENSION rows_in_mem; /* height of memory buffer */ |
172 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
173 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
174 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
175 | boolean pre_zero; /* pre-zero mode requested? */ |
176 | boolean dirty; /* do current buffer contents need written? */ |
177 | boolean b_s_open; /* is backing-store data valid? */ |
178 | jvirt_barray_ptr next; /* link to next virtual barray control block */ |
179 | backing_store_info b_s_info; /* System-dependent control info */ |
180 | }; |
181 | |
182 | |
183 | #ifdef MEM_STATS /* optional extra stuff for statistics */ |
184 | |
185 | LOCAL(void) |
186 | print_mem_stats (j_common_ptr cinfo, int pool_id) |
187 | { |
188 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
189 | small_pool_ptr shdr_ptr; |
190 | large_pool_ptr lhdr_ptr; |
191 | |
192 | /* Since this is only a debugging stub, we can cheat a little by using |
193 | * fprintf directly rather than going through the trace message code. |
194 | * This is helpful because message parm array can't handle longs. |
195 | */ |
196 | fprintf(stderr, "Freeing pool %d, total space = %ld\n" , |
197 | pool_id, mem->total_space_allocated); |
198 | |
199 | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
200 | lhdr_ptr = lhdr_ptr->hdr.next) { |
201 | fprintf(stderr, " Large chunk used %ld\n" , |
202 | (long) lhdr_ptr->hdr.bytes_used); |
203 | } |
204 | |
205 | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
206 | shdr_ptr = shdr_ptr->hdr.next) { |
207 | fprintf(stderr, " Small chunk used %ld free %ld\n" , |
208 | (long) shdr_ptr->hdr.bytes_used, |
209 | (long) shdr_ptr->hdr.bytes_left); |
210 | } |
211 | } |
212 | |
213 | #endif /* MEM_STATS */ |
214 | |
215 | |
216 | LOCAL(void) |
217 | out_of_memory (j_common_ptr cinfo, int which) |
218 | /* Report an out-of-memory error and stop execution */ |
219 | /* If we compiled MEM_STATS support, report alloc requests before dying */ |
220 | { |
221 | #ifdef MEM_STATS |
222 | cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
223 | #endif |
224 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
225 | } |
226 | |
227 | |
228 | /* |
229 | * Allocation of "small" objects. |
230 | * |
231 | * For these, we use pooled storage. When a new pool must be created, |
232 | * we try to get enough space for the current request plus a "slop" factor, |
233 | * where the slop will be the amount of leftover space in the new pool. |
234 | * The speed vs. space tradeoff is largely determined by the slop values. |
235 | * A different slop value is provided for each pool class (lifetime), |
236 | * and we also distinguish the first pool of a class from later ones. |
237 | * NOTE: the values given work fairly well on both 16- and 32-bit-int |
238 | * machines, but may be too small if longs are 64 bits or more. |
239 | */ |
240 | |
241 | static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
242 | { |
243 | 1600, /* first PERMANENT pool */ |
244 | 16000 /* first IMAGE pool */ |
245 | }; |
246 | |
247 | static const size_t [JPOOL_NUMPOOLS] = |
248 | { |
249 | 0, /* additional PERMANENT pools */ |
250 | 5000 /* additional IMAGE pools */ |
251 | }; |
252 | |
253 | #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
254 | |
255 | |
256 | METHODDEF(void *) |
257 | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
258 | /* Allocate a "small" object */ |
259 | { |
260 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
261 | small_pool_ptr hdr_ptr, prev_hdr_ptr; |
262 | char * data_ptr; |
263 | size_t odd_bytes, min_request, slop; |
264 | |
265 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
266 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) |
267 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
268 | |
269 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
270 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
271 | if (odd_bytes > 0) |
272 | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
273 | |
274 | /* See if space is available in any existing pool */ |
275 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
276 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
277 | prev_hdr_ptr = NULL; |
278 | hdr_ptr = mem->small_list[pool_id]; |
279 | while (hdr_ptr != NULL) { |
280 | if (hdr_ptr->hdr.bytes_left >= sizeofobject) |
281 | break; /* found pool with enough space */ |
282 | prev_hdr_ptr = hdr_ptr; |
283 | hdr_ptr = hdr_ptr->hdr.next; |
284 | } |
285 | |
286 | /* Time to make a new pool? */ |
287 | if (hdr_ptr == NULL) { |
288 | /* min_request is what we need now, slop is what will be leftover */ |
289 | min_request = sizeofobject + SIZEOF(small_pool_hdr); |
290 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
291 | slop = first_pool_slop[pool_id]; |
292 | else |
293 | slop = extra_pool_slop[pool_id]; |
294 | /* Don't ask for more than MAX_ALLOC_CHUNK */ |
295 | if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) |
296 | slop = (size_t) (MAX_ALLOC_CHUNK-min_request); |
297 | /* Try to get space, if fail reduce slop and try again */ |
298 | for (;;) { |
299 | hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
300 | if (hdr_ptr != NULL) |
301 | break; |
302 | slop /= 2; |
303 | if (slop < MIN_SLOP) /* give up when it gets real small */ |
304 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
305 | } |
306 | mem->total_space_allocated += min_request + slop; |
307 | /* Success, initialize the new pool header and add to end of list */ |
308 | hdr_ptr->hdr.next = NULL; |
309 | hdr_ptr->hdr.bytes_used = 0; |
310 | hdr_ptr->hdr.bytes_left = sizeofobject + slop; |
311 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
312 | mem->small_list[pool_id] = hdr_ptr; |
313 | else |
314 | prev_hdr_ptr->hdr.next = hdr_ptr; |
315 | } |
316 | |
317 | /* OK, allocate the object from the current pool */ |
318 | data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ |
319 | data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ |
320 | hdr_ptr->hdr.bytes_used += sizeofobject; |
321 | hdr_ptr->hdr.bytes_left -= sizeofobject; |
322 | |
323 | return (void *) data_ptr; |
324 | } |
325 | |
326 | |
327 | /* |
328 | * Allocation of "large" objects. |
329 | * |
330 | * The external semantics of these are the same as "small" objects, |
331 | * except that FAR pointers are used on 80x86. However the pool |
332 | * management heuristics are quite different. We assume that each |
333 | * request is large enough that it may as well be passed directly to |
334 | * jpeg_get_large; the pool management just links everything together |
335 | * so that we can free it all on demand. |
336 | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
337 | * structures. The routines that create these structures (see below) |
338 | * deliberately bunch rows together to ensure a large request size. |
339 | */ |
340 | |
341 | METHODDEF(void FAR *) |
342 | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
343 | /* Allocate a "large" object */ |
344 | { |
345 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
346 | large_pool_ptr hdr_ptr; |
347 | size_t odd_bytes; |
348 | |
349 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
350 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) |
351 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
352 | |
353 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
354 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
355 | if (odd_bytes > 0) |
356 | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
357 | |
358 | /* Always make a new pool */ |
359 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
360 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
361 | |
362 | hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
363 | SIZEOF(large_pool_hdr)); |
364 | if (hdr_ptr == NULL) |
365 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
366 | mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); |
367 | |
368 | /* Success, initialize the new pool header and add to list */ |
369 | hdr_ptr->hdr.next = mem->large_list[pool_id]; |
370 | /* We maintain space counts in each pool header for statistical purposes, |
371 | * even though they are not needed for allocation. |
372 | */ |
373 | hdr_ptr->hdr.bytes_used = sizeofobject; |
374 | hdr_ptr->hdr.bytes_left = 0; |
375 | mem->large_list[pool_id] = hdr_ptr; |
376 | |
377 | return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ |
378 | } |
379 | |
380 | |
381 | /* |
382 | * Creation of 2-D sample arrays. |
383 | * The pointers are in near heap, the samples themselves in FAR heap. |
384 | * |
385 | * To minimize allocation overhead and to allow I/O of large contiguous |
386 | * blocks, we allocate the sample rows in groups of as many rows as possible |
387 | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
388 | * NB: the virtual array control routines, later in this file, know about |
389 | * this chunking of rows. The rowsperchunk value is left in the mem manager |
390 | * object so that it can be saved away if this sarray is the workspace for |
391 | * a virtual array. |
392 | */ |
393 | |
394 | METHODDEF(JSAMPARRAY) |
395 | alloc_sarray (j_common_ptr cinfo, int pool_id, |
396 | JDIMENSION samplesperrow, JDIMENSION numrows) |
397 | /* Allocate a 2-D sample array */ |
398 | { |
399 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
400 | JSAMPARRAY result; |
401 | JSAMPROW workspace; |
402 | JDIMENSION rowsperchunk, currow, i; |
403 | long ltemp; |
404 | |
405 | /* Calculate max # of rows allowed in one allocation chunk */ |
406 | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
407 | ((long) samplesperrow * SIZEOF(JSAMPLE)); |
408 | if (ltemp <= 0) |
409 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
410 | if (ltemp < (long) numrows) |
411 | rowsperchunk = (JDIMENSION) ltemp; |
412 | else |
413 | rowsperchunk = numrows; |
414 | mem->last_rowsperchunk = rowsperchunk; |
415 | |
416 | /* Get space for row pointers (small object) */ |
417 | result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
418 | (size_t) (numrows * SIZEOF(JSAMPROW))); |
419 | |
420 | /* Get the rows themselves (large objects) */ |
421 | currow = 0; |
422 | while (currow < numrows) { |
423 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
424 | workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
425 | (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow |
426 | * SIZEOF(JSAMPLE))); |
427 | for (i = rowsperchunk; i > 0; i--) { |
428 | result[currow++] = workspace; |
429 | workspace += samplesperrow; |
430 | } |
431 | } |
432 | |
433 | return result; |
434 | } |
435 | |
436 | |
437 | /* |
438 | * Creation of 2-D coefficient-block arrays. |
439 | * This is essentially the same as the code for sample arrays, above. |
440 | */ |
441 | |
442 | METHODDEF(JBLOCKARRAY) |
443 | alloc_barray (j_common_ptr cinfo, int pool_id, |
444 | JDIMENSION blocksperrow, JDIMENSION numrows) |
445 | /* Allocate a 2-D coefficient-block array */ |
446 | { |
447 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
448 | JBLOCKARRAY result; |
449 | JBLOCKROW workspace; |
450 | JDIMENSION rowsperchunk, currow, i; |
451 | long ltemp; |
452 | |
453 | /* Calculate max # of rows allowed in one allocation chunk */ |
454 | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
455 | ((long) blocksperrow * SIZEOF(JBLOCK)); |
456 | if (ltemp <= 0) |
457 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
458 | if (ltemp < (long) numrows) |
459 | rowsperchunk = (JDIMENSION) ltemp; |
460 | else |
461 | rowsperchunk = numrows; |
462 | mem->last_rowsperchunk = rowsperchunk; |
463 | |
464 | /* Get space for row pointers (small object) */ |
465 | result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
466 | (size_t) (numrows * SIZEOF(JBLOCKROW))); |
467 | |
468 | /* Get the rows themselves (large objects) */ |
469 | currow = 0; |
470 | while (currow < numrows) { |
471 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
472 | workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
473 | (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow |
474 | * SIZEOF(JBLOCK))); |
475 | for (i = rowsperchunk; i > 0; i--) { |
476 | result[currow++] = workspace; |
477 | workspace += blocksperrow; |
478 | } |
479 | } |
480 | |
481 | return result; |
482 | } |
483 | |
484 | |
485 | /* |
486 | * About virtual array management: |
487 | * |
488 | * The above "normal" array routines are only used to allocate strip buffers |
489 | * (as wide as the image, but just a few rows high). Full-image-sized buffers |
490 | * are handled as "virtual" arrays. The array is still accessed a strip at a |
491 | * time, but the memory manager must save the whole array for repeated |
492 | * accesses. The intended implementation is that there is a strip buffer in |
493 | * memory (as high as is possible given the desired memory limit), plus a |
494 | * backing file that holds the rest of the array. |
495 | * |
496 | * The request_virt_array routines are told the total size of the image and |
497 | * the maximum number of rows that will be accessed at once. The in-memory |
498 | * buffer must be at least as large as the maxaccess value. |
499 | * |
500 | * The request routines create control blocks but not the in-memory buffers. |
501 | * That is postponed until realize_virt_arrays is called. At that time the |
502 | * total amount of space needed is known (approximately, anyway), so free |
503 | * memory can be divided up fairly. |
504 | * |
505 | * The access_virt_array routines are responsible for making a specific strip |
506 | * area accessible (after reading or writing the backing file, if necessary). |
507 | * Note that the access routines are told whether the caller intends to modify |
508 | * the accessed strip; during a read-only pass this saves having to rewrite |
509 | * data to disk. The access routines are also responsible for pre-zeroing |
510 | * any newly accessed rows, if pre-zeroing was requested. |
511 | * |
512 | * In current usage, the access requests are usually for nonoverlapping |
513 | * strips; that is, successive access start_row numbers differ by exactly |
514 | * num_rows = maxaccess. This means we can get good performance with simple |
515 | * buffer dump/reload logic, by making the in-memory buffer be a multiple |
516 | * of the access height; then there will never be accesses across bufferload |
517 | * boundaries. The code will still work with overlapping access requests, |
518 | * but it doesn't handle bufferload overlaps very efficiently. |
519 | */ |
520 | |
521 | |
522 | METHODDEF(jvirt_sarray_ptr) |
523 | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
524 | JDIMENSION samplesperrow, JDIMENSION numrows, |
525 | JDIMENSION maxaccess) |
526 | /* Request a virtual 2-D sample array */ |
527 | { |
528 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
529 | jvirt_sarray_ptr result; |
530 | |
531 | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
532 | if (pool_id != JPOOL_IMAGE) |
533 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
534 | |
535 | /* get control block */ |
536 | result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
537 | SIZEOF(struct jvirt_sarray_control)); |
538 | |
539 | result->mem_buffer = NULL; /* marks array not yet realized */ |
540 | result->rows_in_array = numrows; |
541 | result->samplesperrow = samplesperrow; |
542 | result->maxaccess = maxaccess; |
543 | result->pre_zero = pre_zero; |
544 | result->b_s_open = FALSE; /* no associated backing-store object */ |
545 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
546 | mem->virt_sarray_list = result; |
547 | |
548 | return result; |
549 | } |
550 | |
551 | |
552 | METHODDEF(jvirt_barray_ptr) |
553 | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
554 | JDIMENSION blocksperrow, JDIMENSION numrows, |
555 | JDIMENSION maxaccess) |
556 | /* Request a virtual 2-D coefficient-block array */ |
557 | { |
558 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
559 | jvirt_barray_ptr result; |
560 | |
561 | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
562 | if (pool_id != JPOOL_IMAGE) |
563 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
564 | |
565 | /* get control block */ |
566 | result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
567 | SIZEOF(struct jvirt_barray_control)); |
568 | |
569 | result->mem_buffer = NULL; /* marks array not yet realized */ |
570 | result->rows_in_array = numrows; |
571 | result->blocksperrow = blocksperrow; |
572 | result->maxaccess = maxaccess; |
573 | result->pre_zero = pre_zero; |
574 | result->b_s_open = FALSE; /* no associated backing-store object */ |
575 | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
576 | mem->virt_barray_list = result; |
577 | |
578 | return result; |
579 | } |
580 | |
581 | |
582 | METHODDEF(void) |
583 | realize_virt_arrays (j_common_ptr cinfo) |
584 | /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
585 | { |
586 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
587 | long space_per_minheight, maximum_space, avail_mem; |
588 | long minheights, max_minheights; |
589 | jvirt_sarray_ptr sptr; |
590 | jvirt_barray_ptr bptr; |
591 | |
592 | /* Compute the minimum space needed (maxaccess rows in each buffer) |
593 | * and the maximum space needed (full image height in each buffer). |
594 | * These may be of use to the system-dependent jpeg_mem_available routine. |
595 | */ |
596 | space_per_minheight = 0; |
597 | maximum_space = 0; |
598 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
599 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
600 | space_per_minheight += (long) sptr->maxaccess * |
601 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
602 | maximum_space += (long) sptr->rows_in_array * |
603 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
604 | } |
605 | } |
606 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
607 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
608 | space_per_minheight += (long) bptr->maxaccess * |
609 | (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
610 | maximum_space += (long) bptr->rows_in_array * |
611 | (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
612 | } |
613 | } |
614 | |
615 | if (space_per_minheight <= 0) |
616 | return; /* no unrealized arrays, no work */ |
617 | |
618 | /* Determine amount of memory to actually use; this is system-dependent. */ |
619 | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
620 | mem->total_space_allocated); |
621 | |
622 | /* If the maximum space needed is available, make all the buffers full |
623 | * height; otherwise parcel it out with the same number of minheights |
624 | * in each buffer. |
625 | */ |
626 | if (avail_mem >= maximum_space) |
627 | max_minheights = 1000000000L; |
628 | else { |
629 | max_minheights = avail_mem / space_per_minheight; |
630 | /* If there doesn't seem to be enough space, try to get the minimum |
631 | * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
632 | */ |
633 | if (max_minheights <= 0) |
634 | max_minheights = 1; |
635 | } |
636 | |
637 | /* Allocate the in-memory buffers and initialize backing store as needed. */ |
638 | |
639 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
640 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
641 | minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
642 | if (minheights <= max_minheights) { |
643 | /* This buffer fits in memory */ |
644 | sptr->rows_in_mem = sptr->rows_in_array; |
645 | } else { |
646 | /* It doesn't fit in memory, create backing store. */ |
647 | sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
648 | jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
649 | (long) sptr->rows_in_array * |
650 | (long) sptr->samplesperrow * |
651 | (long) SIZEOF(JSAMPLE)); |
652 | sptr->b_s_open = TRUE; |
653 | } |
654 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
655 | sptr->samplesperrow, sptr->rows_in_mem); |
656 | sptr->rowsperchunk = mem->last_rowsperchunk; |
657 | sptr->cur_start_row = 0; |
658 | sptr->first_undef_row = 0; |
659 | sptr->dirty = FALSE; |
660 | } |
661 | } |
662 | |
663 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
664 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
665 | minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
666 | if (minheights <= max_minheights) { |
667 | /* This buffer fits in memory */ |
668 | bptr->rows_in_mem = bptr->rows_in_array; |
669 | } else { |
670 | /* It doesn't fit in memory, create backing store. */ |
671 | bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
672 | jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
673 | (long) bptr->rows_in_array * |
674 | (long) bptr->blocksperrow * |
675 | (long) SIZEOF(JBLOCK)); |
676 | bptr->b_s_open = TRUE; |
677 | } |
678 | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
679 | bptr->blocksperrow, bptr->rows_in_mem); |
680 | bptr->rowsperchunk = mem->last_rowsperchunk; |
681 | bptr->cur_start_row = 0; |
682 | bptr->first_undef_row = 0; |
683 | bptr->dirty = FALSE; |
684 | } |
685 | } |
686 | } |
687 | |
688 | |
689 | LOCAL(void) |
690 | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
691 | /* Do backing store read or write of a virtual sample array */ |
692 | { |
693 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
694 | |
695 | bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); |
696 | file_offset = ptr->cur_start_row * bytesperrow; |
697 | /* Loop to read or write each allocation chunk in mem_buffer */ |
698 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
699 | /* One chunk, but check for short chunk at end of buffer */ |
700 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
701 | /* Transfer no more than is currently defined */ |
702 | thisrow = (long) ptr->cur_start_row + i; |
703 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
704 | /* Transfer no more than fits in file */ |
705 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
706 | if (rows <= 0) /* this chunk might be past end of file! */ |
707 | break; |
708 | byte_count = rows * bytesperrow; |
709 | if (writing) |
710 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
711 | (void FAR *) ptr->mem_buffer[i], |
712 | file_offset, byte_count); |
713 | else |
714 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
715 | (void FAR *) ptr->mem_buffer[i], |
716 | file_offset, byte_count); |
717 | file_offset += byte_count; |
718 | } |
719 | } |
720 | |
721 | |
722 | LOCAL(void) |
723 | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
724 | /* Do backing store read or write of a virtual coefficient-block array */ |
725 | { |
726 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
727 | |
728 | bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); |
729 | file_offset = ptr->cur_start_row * bytesperrow; |
730 | /* Loop to read or write each allocation chunk in mem_buffer */ |
731 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
732 | /* One chunk, but check for short chunk at end of buffer */ |
733 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
734 | /* Transfer no more than is currently defined */ |
735 | thisrow = (long) ptr->cur_start_row + i; |
736 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
737 | /* Transfer no more than fits in file */ |
738 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
739 | if (rows <= 0) /* this chunk might be past end of file! */ |
740 | break; |
741 | byte_count = rows * bytesperrow; |
742 | if (writing) |
743 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
744 | (void FAR *) ptr->mem_buffer[i], |
745 | file_offset, byte_count); |
746 | else |
747 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
748 | (void FAR *) ptr->mem_buffer[i], |
749 | file_offset, byte_count); |
750 | file_offset += byte_count; |
751 | } |
752 | } |
753 | |
754 | |
755 | METHODDEF(JSAMPARRAY) |
756 | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
757 | JDIMENSION start_row, JDIMENSION num_rows, |
758 | boolean writable) |
759 | /* Access the part of a virtual sample array starting at start_row */ |
760 | /* and extending for num_rows rows. writable is true if */ |
761 | /* caller intends to modify the accessed area. */ |
762 | { |
763 | JDIMENSION end_row = start_row + num_rows; |
764 | JDIMENSION undef_row; |
765 | |
766 | /* debugging check */ |
767 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
768 | ptr->mem_buffer == NULL) |
769 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
770 | |
771 | /* Make the desired part of the virtual array accessible */ |
772 | if (start_row < ptr->cur_start_row || |
773 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
774 | if (! ptr->b_s_open) |
775 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
776 | /* Flush old buffer contents if necessary */ |
777 | if (ptr->dirty) { |
778 | do_sarray_io(cinfo, ptr, TRUE); |
779 | ptr->dirty = FALSE; |
780 | } |
781 | /* Decide what part of virtual array to access. |
782 | * Algorithm: if target address > current window, assume forward scan, |
783 | * load starting at target address. If target address < current window, |
784 | * assume backward scan, load so that target area is top of window. |
785 | * Note that when switching from forward write to forward read, will have |
786 | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
787 | */ |
788 | if (start_row > ptr->cur_start_row) { |
789 | ptr->cur_start_row = start_row; |
790 | } else { |
791 | /* use long arithmetic here to avoid overflow & unsigned problems */ |
792 | long ltemp; |
793 | |
794 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
795 | if (ltemp < 0) |
796 | ltemp = 0; /* don't fall off front end of file */ |
797 | ptr->cur_start_row = (JDIMENSION) ltemp; |
798 | } |
799 | /* Read in the selected part of the array. |
800 | * During the initial write pass, we will do no actual read |
801 | * because the selected part is all undefined. |
802 | */ |
803 | do_sarray_io(cinfo, ptr, FALSE); |
804 | } |
805 | /* Ensure the accessed part of the array is defined; prezero if needed. |
806 | * To improve locality of access, we only prezero the part of the array |
807 | * that the caller is about to access, not the entire in-memory array. |
808 | */ |
809 | if (ptr->first_undef_row < end_row) { |
810 | if (ptr->first_undef_row < start_row) { |
811 | if (writable) /* writer skipped over a section of array */ |
812 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
813 | undef_row = start_row; /* but reader is allowed to read ahead */ |
814 | } else { |
815 | undef_row = ptr->first_undef_row; |
816 | } |
817 | if (writable) |
818 | ptr->first_undef_row = end_row; |
819 | if (ptr->pre_zero) { |
820 | size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); |
821 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
822 | end_row -= ptr->cur_start_row; |
823 | while (undef_row < end_row) { |
824 | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
825 | undef_row++; |
826 | } |
827 | } else { |
828 | if (! writable) /* reader looking at undefined data */ |
829 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
830 | } |
831 | } |
832 | /* Flag the buffer dirty if caller will write in it */ |
833 | if (writable) |
834 | ptr->dirty = TRUE; |
835 | /* Return address of proper part of the buffer */ |
836 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
837 | } |
838 | |
839 | |
840 | METHODDEF(JBLOCKARRAY) |
841 | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
842 | JDIMENSION start_row, JDIMENSION num_rows, |
843 | boolean writable) |
844 | /* Access the part of a virtual block array starting at start_row */ |
845 | /* and extending for num_rows rows. writable is true if */ |
846 | /* caller intends to modify the accessed area. */ |
847 | { |
848 | JDIMENSION end_row = start_row + num_rows; |
849 | JDIMENSION undef_row; |
850 | |
851 | /* debugging check */ |
852 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
853 | ptr->mem_buffer == NULL) |
854 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
855 | |
856 | /* Make the desired part of the virtual array accessible */ |
857 | if (start_row < ptr->cur_start_row || |
858 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
859 | if (! ptr->b_s_open) |
860 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
861 | /* Flush old buffer contents if necessary */ |
862 | if (ptr->dirty) { |
863 | do_barray_io(cinfo, ptr, TRUE); |
864 | ptr->dirty = FALSE; |
865 | } |
866 | /* Decide what part of virtual array to access. |
867 | * Algorithm: if target address > current window, assume forward scan, |
868 | * load starting at target address. If target address < current window, |
869 | * assume backward scan, load so that target area is top of window. |
870 | * Note that when switching from forward write to forward read, will have |
871 | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
872 | */ |
873 | if (start_row > ptr->cur_start_row) { |
874 | ptr->cur_start_row = start_row; |
875 | } else { |
876 | /* use long arithmetic here to avoid overflow & unsigned problems */ |
877 | long ltemp; |
878 | |
879 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
880 | if (ltemp < 0) |
881 | ltemp = 0; /* don't fall off front end of file */ |
882 | ptr->cur_start_row = (JDIMENSION) ltemp; |
883 | } |
884 | /* Read in the selected part of the array. |
885 | * During the initial write pass, we will do no actual read |
886 | * because the selected part is all undefined. |
887 | */ |
888 | do_barray_io(cinfo, ptr, FALSE); |
889 | } |
890 | /* Ensure the accessed part of the array is defined; prezero if needed. |
891 | * To improve locality of access, we only prezero the part of the array |
892 | * that the caller is about to access, not the entire in-memory array. |
893 | */ |
894 | if (ptr->first_undef_row < end_row) { |
895 | if (ptr->first_undef_row < start_row) { |
896 | if (writable) /* writer skipped over a section of array */ |
897 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
898 | undef_row = start_row; /* but reader is allowed to read ahead */ |
899 | } else { |
900 | undef_row = ptr->first_undef_row; |
901 | } |
902 | if (writable) |
903 | ptr->first_undef_row = end_row; |
904 | if (ptr->pre_zero) { |
905 | size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); |
906 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
907 | end_row -= ptr->cur_start_row; |
908 | while (undef_row < end_row) { |
909 | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
910 | undef_row++; |
911 | } |
912 | } else { |
913 | if (! writable) /* reader looking at undefined data */ |
914 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
915 | } |
916 | } |
917 | /* Flag the buffer dirty if caller will write in it */ |
918 | if (writable) |
919 | ptr->dirty = TRUE; |
920 | /* Return address of proper part of the buffer */ |
921 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
922 | } |
923 | |
924 | |
925 | /* |
926 | * Release all objects belonging to a specified pool. |
927 | */ |
928 | |
929 | METHODDEF(void) |
930 | free_pool (j_common_ptr cinfo, int pool_id) |
931 | { |
932 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
933 | small_pool_ptr shdr_ptr; |
934 | large_pool_ptr lhdr_ptr; |
935 | size_t space_freed; |
936 | |
937 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
938 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
939 | |
940 | #ifdef MEM_STATS |
941 | if (cinfo->err->trace_level > 1) |
942 | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
943 | #endif |
944 | |
945 | /* If freeing IMAGE pool, close any virtual arrays first */ |
946 | if (pool_id == JPOOL_IMAGE) { |
947 | jvirt_sarray_ptr sptr; |
948 | jvirt_barray_ptr bptr; |
949 | |
950 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
951 | if (sptr->b_s_open) { /* there may be no backing store */ |
952 | sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
953 | (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
954 | } |
955 | } |
956 | mem->virt_sarray_list = NULL; |
957 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
958 | if (bptr->b_s_open) { /* there may be no backing store */ |
959 | bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
960 | (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
961 | } |
962 | } |
963 | mem->virt_barray_list = NULL; |
964 | } |
965 | |
966 | /* Release large objects */ |
967 | lhdr_ptr = mem->large_list[pool_id]; |
968 | mem->large_list[pool_id] = NULL; |
969 | |
970 | while (lhdr_ptr != NULL) { |
971 | large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; |
972 | space_freed = lhdr_ptr->hdr.bytes_used + |
973 | lhdr_ptr->hdr.bytes_left + |
974 | SIZEOF(large_pool_hdr); |
975 | jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); |
976 | mem->total_space_allocated -= space_freed; |
977 | lhdr_ptr = next_lhdr_ptr; |
978 | } |
979 | |
980 | /* Release small objects */ |
981 | shdr_ptr = mem->small_list[pool_id]; |
982 | mem->small_list[pool_id] = NULL; |
983 | |
984 | while (shdr_ptr != NULL) { |
985 | small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; |
986 | space_freed = shdr_ptr->hdr.bytes_used + |
987 | shdr_ptr->hdr.bytes_left + |
988 | SIZEOF(small_pool_hdr); |
989 | jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
990 | mem->total_space_allocated -= space_freed; |
991 | shdr_ptr = next_shdr_ptr; |
992 | } |
993 | } |
994 | |
995 | |
996 | /* |
997 | * Close up shop entirely. |
998 | * Note that this cannot be called unless cinfo->mem is non-NULL. |
999 | */ |
1000 | |
1001 | METHODDEF(void) |
1002 | self_destruct (j_common_ptr cinfo) |
1003 | { |
1004 | int pool; |
1005 | |
1006 | /* Close all backing store, release all memory. |
1007 | * Releasing pools in reverse order might help avoid fragmentation |
1008 | * with some (brain-damaged) malloc libraries. |
1009 | */ |
1010 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1011 | free_pool(cinfo, pool); |
1012 | } |
1013 | |
1014 | /* Release the memory manager control block too. */ |
1015 | jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); |
1016 | cinfo->mem = NULL; /* ensures I will be called only once */ |
1017 | |
1018 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1019 | } |
1020 | |
1021 | |
1022 | /* |
1023 | * Memory manager initialization. |
1024 | * When this is called, only the error manager pointer is valid in cinfo! |
1025 | */ |
1026 | |
1027 | GLOBAL(void) |
1028 | jinit_memory_mgr (j_common_ptr cinfo) |
1029 | { |
1030 | my_mem_ptr mem; |
1031 | long max_to_use; |
1032 | int pool; |
1033 | size_t test_mac; |
1034 | |
1035 | cinfo->mem = NULL; /* for safety if init fails */ |
1036 | |
1037 | /* Check for configuration errors. |
1038 | * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
1039 | * doesn't reflect any real hardware alignment requirement. |
1040 | * The test is a little tricky: for X>0, X and X-1 have no one-bits |
1041 | * in common if and only if X is a power of 2, ie has only one one-bit. |
1042 | * Some compilers may give an "unreachable code" warning here; ignore it. |
1043 | */ |
1044 | if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) |
1045 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
1046 | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
1047 | * a multiple of SIZEOF(ALIGN_TYPE). |
1048 | * Again, an "unreachable code" warning may be ignored here. |
1049 | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
1050 | */ |
1051 | test_mac = (size_t) MAX_ALLOC_CHUNK; |
1052 | if ((long) test_mac != MAX_ALLOC_CHUNK || |
1053 | (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) |
1054 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
1055 | |
1056 | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
1057 | |
1058 | /* Attempt to allocate memory manager's control block */ |
1059 | mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); |
1060 | |
1061 | if (mem == NULL) { |
1062 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1063 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
1064 | } |
1065 | |
1066 | /* OK, fill in the method pointers */ |
1067 | mem->pub.alloc_small = alloc_small; |
1068 | mem->pub.alloc_large = alloc_large; |
1069 | mem->pub.alloc_sarray = alloc_sarray; |
1070 | mem->pub.alloc_barray = alloc_barray; |
1071 | mem->pub.request_virt_sarray = request_virt_sarray; |
1072 | mem->pub.request_virt_barray = request_virt_barray; |
1073 | mem->pub.realize_virt_arrays = realize_virt_arrays; |
1074 | mem->pub.access_virt_sarray = access_virt_sarray; |
1075 | mem->pub.access_virt_barray = access_virt_barray; |
1076 | mem->pub.free_pool = free_pool; |
1077 | mem->pub.self_destruct = self_destruct; |
1078 | |
1079 | /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
1080 | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
1081 | |
1082 | /* Initialize working state */ |
1083 | mem->pub.max_memory_to_use = max_to_use; |
1084 | |
1085 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1086 | mem->small_list[pool] = NULL; |
1087 | mem->large_list[pool] = NULL; |
1088 | } |
1089 | mem->virt_sarray_list = NULL; |
1090 | mem->virt_barray_list = NULL; |
1091 | |
1092 | mem->total_space_allocated = SIZEOF(my_memory_mgr); |
1093 | |
1094 | /* Declare ourselves open for business */ |
1095 | cinfo->mem = & mem->pub; |
1096 | |
1097 | /* Check for an environment variable JPEGMEM; if found, override the |
1098 | * default max_memory setting from jpeg_mem_init. Note that the |
1099 | * surrounding application may again override this value. |
1100 | * If your system doesn't support getenv(), define NO_GETENV to disable |
1101 | * this feature. |
1102 | */ |
1103 | #ifndef NO_GETENV |
1104 | { char * memenv; |
1105 | |
1106 | if ((memenv = getenv("JPEGMEM" )) != NULL) { |
1107 | char ch = 'x'; |
1108 | |
1109 | if (sscanf(memenv, "%ld%c" , &max_to_use, &ch) > 0) { |
1110 | if (ch == 'm' || ch == 'M') |
1111 | max_to_use *= 1000L; |
1112 | mem->pub.max_memory_to_use = max_to_use * 1000L; |
1113 | } |
1114 | } |
1115 | } |
1116 | #endif |
1117 | |
1118 | } |
1119 | |