1 | /* |
2 | * jquant1.c |
3 | * |
4 | * Copyright (C) 1991-1996, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains 1-pass color quantization (color mapping) routines. |
9 | * These routines provide mapping to a fixed color map using equally spaced |
10 | * color values. Optional Floyd-Steinberg or ordered dithering is available. |
11 | */ |
12 | |
13 | #define JPEG_INTERNALS |
14 | #include "jinclude.h" |
15 | #include "jpeglib.h" |
16 | |
17 | #ifdef QUANT_1PASS_SUPPORTED |
18 | |
19 | |
20 | /* |
21 | * The main purpose of 1-pass quantization is to provide a fast, if not very |
22 | * high quality, colormapped output capability. A 2-pass quantizer usually |
23 | * gives better visual quality; however, for quantized grayscale output this |
24 | * quantizer is perfectly adequate. Dithering is highly recommended with this |
25 | * quantizer, though you can turn it off if you really want to. |
26 | * |
27 | * In 1-pass quantization the colormap must be chosen in advance of seeing the |
28 | * image. We use a map consisting of all combinations of Ncolors[i] color |
29 | * values for the i'th component. The Ncolors[] values are chosen so that |
30 | * their product, the total number of colors, is no more than that requested. |
31 | * (In most cases, the product will be somewhat less.) |
32 | * |
33 | * Since the colormap is orthogonal, the representative value for each color |
34 | * component can be determined without considering the other components; |
35 | * then these indexes can be combined into a colormap index by a standard |
36 | * N-dimensional-array-subscript calculation. Most of the arithmetic involved |
37 | * can be precalculated and stored in the lookup table colorindex[]. |
38 | * colorindex[i][j] maps pixel value j in component i to the nearest |
39 | * representative value (grid plane) for that component; this index is |
40 | * multiplied by the array stride for component i, so that the |
41 | * index of the colormap entry closest to a given pixel value is just |
42 | * sum( colorindex[component-number][pixel-component-value] ) |
43 | * Aside from being fast, this scheme allows for variable spacing between |
44 | * representative values with no additional lookup cost. |
45 | * |
46 | * If gamma correction has been applied in color conversion, it might be wise |
47 | * to adjust the color grid spacing so that the representative colors are |
48 | * equidistant in linear space. At this writing, gamma correction is not |
49 | * implemented by jdcolor, so nothing is done here. |
50 | */ |
51 | |
52 | |
53 | /* Declarations for ordered dithering. |
54 | * |
55 | * We use a standard 16x16 ordered dither array. The basic concept of ordered |
56 | * dithering is described in many references, for instance Dale Schumacher's |
57 | * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). |
58 | * In place of Schumacher's comparisons against a "threshold" value, we add a |
59 | * "dither" value to the input pixel and then round the result to the nearest |
60 | * output value. The dither value is equivalent to (0.5 - threshold) times |
61 | * the distance between output values. For ordered dithering, we assume that |
62 | * the output colors are equally spaced; if not, results will probably be |
63 | * worse, since the dither may be too much or too little at a given point. |
64 | * |
65 | * The normal calculation would be to form pixel value + dither, range-limit |
66 | * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. |
67 | * We can skip the separate range-limiting step by extending the colorindex |
68 | * table in both directions. |
69 | */ |
70 | |
71 | #define ODITHER_SIZE 16 /* dimension of dither matrix */ |
72 | /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ |
73 | #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ |
74 | #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ |
75 | |
76 | typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; |
77 | typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; |
78 | |
79 | static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { |
80 | /* Bayer's order-4 dither array. Generated by the code given in |
81 | * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. |
82 | * The values in this array must range from 0 to ODITHER_CELLS-1. |
83 | */ |
84 | { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, |
85 | { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, |
86 | { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, |
87 | { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, |
88 | { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, |
89 | { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, |
90 | { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, |
91 | { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, |
92 | { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, |
93 | { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, |
94 | { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, |
95 | { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, |
96 | { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, |
97 | { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, |
98 | { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, |
99 | { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } |
100 | }; |
101 | |
102 | |
103 | /* Declarations for Floyd-Steinberg dithering. |
104 | * |
105 | * Errors are accumulated into the array fserrors[], at a resolution of |
106 | * 1/16th of a pixel count. The error at a given pixel is propagated |
107 | * to its not-yet-processed neighbors using the standard F-S fractions, |
108 | * ... (here) 7/16 |
109 | * 3/16 5/16 1/16 |
110 | * We work left-to-right on even rows, right-to-left on odd rows. |
111 | * |
112 | * We can get away with a single array (holding one row's worth of errors) |
113 | * by using it to store the current row's errors at pixel columns not yet |
114 | * processed, but the next row's errors at columns already processed. We |
115 | * need only a few extra variables to hold the errors immediately around the |
116 | * current column. (If we are lucky, those variables are in registers, but |
117 | * even if not, they're probably cheaper to access than array elements are.) |
118 | * |
119 | * The fserrors[] array is indexed [component#][position]. |
120 | * We provide (#columns + 2) entries per component; the extra entry at each |
121 | * end saves us from special-casing the first and last pixels. |
122 | * |
123 | * Note: on a wide image, we might not have enough room in a PC's near data |
124 | * segment to hold the error array; so it is allocated with alloc_large. |
125 | */ |
126 | |
127 | #if BITS_IN_JSAMPLE == 8 |
128 | typedef INT16 FSERROR; /* 16 bits should be enough */ |
129 | typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
130 | #else |
131 | typedef INT32 FSERROR; /* may need more than 16 bits */ |
132 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
133 | #endif |
134 | |
135 | typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
136 | |
137 | |
138 | /* Private subobject */ |
139 | |
140 | #define MAX_Q_COMPS 4 /* max components I can handle */ |
141 | |
142 | typedef struct { |
143 | struct jpeg_color_quantizer pub; /* public fields */ |
144 | |
145 | /* Initially allocated colormap is saved here */ |
146 | JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ |
147 | int sv_actual; /* number of entries in use */ |
148 | |
149 | JSAMPARRAY colorindex; /* Precomputed mapping for speed */ |
150 | /* colorindex[i][j] = index of color closest to pixel value j in component i, |
151 | * premultiplied as described above. Since colormap indexes must fit into |
152 | * JSAMPLEs, the entries of this array will too. |
153 | */ |
154 | boolean is_padded; /* is the colorindex padded for odither? */ |
155 | |
156 | int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ |
157 | |
158 | /* Variables for ordered dithering */ |
159 | int row_index; /* cur row's vertical index in dither matrix */ |
160 | ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ |
161 | |
162 | /* Variables for Floyd-Steinberg dithering */ |
163 | FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ |
164 | boolean on_odd_row; /* flag to remember which row we are on */ |
165 | } my_cquantizer; |
166 | |
167 | typedef my_cquantizer * my_cquantize_ptr; |
168 | |
169 | |
170 | /* |
171 | * Policy-making subroutines for create_colormap and create_colorindex. |
172 | * These routines determine the colormap to be used. The rest of the module |
173 | * only assumes that the colormap is orthogonal. |
174 | * |
175 | * * select_ncolors decides how to divvy up the available colors |
176 | * among the components. |
177 | * * output_value defines the set of representative values for a component. |
178 | * * largest_input_value defines the mapping from input values to |
179 | * representative values for a component. |
180 | * Note that the latter two routines may impose different policies for |
181 | * different components, though this is not currently done. |
182 | */ |
183 | |
184 | |
185 | LOCAL(int) |
186 | select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) |
187 | /* Determine allocation of desired colors to components, */ |
188 | /* and fill in Ncolors[] array to indicate choice. */ |
189 | /* Return value is total number of colors (product of Ncolors[] values). */ |
190 | { |
191 | int nc = cinfo->out_color_components; /* number of color components */ |
192 | int max_colors = cinfo->desired_number_of_colors; |
193 | int total_colors, iroot, i, j; |
194 | boolean changed; |
195 | long temp; |
196 | static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; |
197 | |
198 | /* We can allocate at least the nc'th root of max_colors per component. */ |
199 | /* Compute floor(nc'th root of max_colors). */ |
200 | iroot = 1; |
201 | do { |
202 | iroot++; |
203 | temp = iroot; /* set temp = iroot ** nc */ |
204 | for (i = 1; i < nc; i++) |
205 | temp *= iroot; |
206 | } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ |
207 | iroot--; /* now iroot = floor(root) */ |
208 | |
209 | /* Must have at least 2 color values per component */ |
210 | if (iroot < 2) |
211 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); |
212 | |
213 | /* Initialize to iroot color values for each component */ |
214 | total_colors = 1; |
215 | for (i = 0; i < nc; i++) { |
216 | Ncolors[i] = iroot; |
217 | total_colors *= iroot; |
218 | } |
219 | /* We may be able to increment the count for one or more components without |
220 | * exceeding max_colors, though we know not all can be incremented. |
221 | * Sometimes, the first component can be incremented more than once! |
222 | * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) |
223 | * In RGB colorspace, try to increment G first, then R, then B. |
224 | */ |
225 | do { |
226 | changed = FALSE; |
227 | for (i = 0; i < nc; i++) { |
228 | j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); |
229 | /* calculate new total_colors if Ncolors[j] is incremented */ |
230 | temp = total_colors / Ncolors[j]; |
231 | temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ |
232 | if (temp > (long) max_colors) |
233 | break; /* won't fit, done with this pass */ |
234 | Ncolors[j]++; /* OK, apply the increment */ |
235 | total_colors = (int) temp; |
236 | changed = TRUE; |
237 | } |
238 | } while (changed); |
239 | |
240 | return total_colors; |
241 | } |
242 | |
243 | |
244 | LOCAL(int) |
245 | output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
246 | /* Return j'th output value, where j will range from 0 to maxj */ |
247 | /* The output values must fall in 0..MAXJSAMPLE in increasing order */ |
248 | { |
249 | /* We always provide values 0 and MAXJSAMPLE for each component; |
250 | * any additional values are equally spaced between these limits. |
251 | * (Forcing the upper and lower values to the limits ensures that |
252 | * dithering can't produce a color outside the selected gamut.) |
253 | */ |
254 | return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); |
255 | } |
256 | |
257 | |
258 | LOCAL(int) |
259 | largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
260 | /* Return largest input value that should map to j'th output value */ |
261 | /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ |
262 | { |
263 | /* Breakpoints are halfway between values returned by output_value */ |
264 | return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); |
265 | } |
266 | |
267 | |
268 | /* |
269 | * Create the colormap. |
270 | */ |
271 | |
272 | LOCAL(void) |
273 | create_colormap (j_decompress_ptr cinfo) |
274 | { |
275 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
276 | JSAMPARRAY colormap; /* Created colormap */ |
277 | int total_colors; /* Number of distinct output colors */ |
278 | int i,j,k, nci, blksize, blkdist, ptr, val; |
279 | |
280 | /* Select number of colors for each component */ |
281 | total_colors = select_ncolors(cinfo, cquantize->Ncolors); |
282 | |
283 | /* Report selected color counts */ |
284 | if (cinfo->out_color_components == 3) |
285 | TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, |
286 | total_colors, cquantize->Ncolors[0], |
287 | cquantize->Ncolors[1], cquantize->Ncolors[2]); |
288 | else |
289 | TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); |
290 | |
291 | /* Allocate and fill in the colormap. */ |
292 | /* The colors are ordered in the map in standard row-major order, */ |
293 | /* i.e. rightmost (highest-indexed) color changes most rapidly. */ |
294 | |
295 | colormap = (*cinfo->mem->alloc_sarray) |
296 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
297 | (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); |
298 | |
299 | /* blksize is number of adjacent repeated entries for a component */ |
300 | /* blkdist is distance between groups of identical entries for a component */ |
301 | blkdist = total_colors; |
302 | |
303 | for (i = 0; i < cinfo->out_color_components; i++) { |
304 | /* fill in colormap entries for i'th color component */ |
305 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
306 | blksize = blkdist / nci; |
307 | for (j = 0; j < nci; j++) { |
308 | /* Compute j'th output value (out of nci) for component */ |
309 | val = output_value(cinfo, i, j, nci-1); |
310 | /* Fill in all colormap entries that have this value of this component */ |
311 | for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { |
312 | /* fill in blksize entries beginning at ptr */ |
313 | for (k = 0; k < blksize; k++) |
314 | colormap[i][ptr+k] = (JSAMPLE) val; |
315 | } |
316 | } |
317 | blkdist = blksize; /* blksize of this color is blkdist of next */ |
318 | } |
319 | |
320 | /* Save the colormap in private storage, |
321 | * where it will survive color quantization mode changes. |
322 | */ |
323 | cquantize->sv_colormap = colormap; |
324 | cquantize->sv_actual = total_colors; |
325 | } |
326 | |
327 | |
328 | /* |
329 | * Create the color index table. |
330 | */ |
331 | |
332 | LOCAL(void) |
333 | create_colorindex (j_decompress_ptr cinfo) |
334 | { |
335 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
336 | JSAMPROW indexptr; |
337 | int i,j,k, nci, blksize, val, pad; |
338 | |
339 | /* For ordered dither, we pad the color index tables by MAXJSAMPLE in |
340 | * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). |
341 | * This is not necessary in the other dithering modes. However, we |
342 | * flag whether it was done in case user changes dithering mode. |
343 | */ |
344 | if (cinfo->dither_mode == JDITHER_ORDERED) { |
345 | pad = MAXJSAMPLE*2; |
346 | cquantize->is_padded = TRUE; |
347 | } else { |
348 | pad = 0; |
349 | cquantize->is_padded = FALSE; |
350 | } |
351 | |
352 | cquantize->colorindex = (*cinfo->mem->alloc_sarray) |
353 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
354 | (JDIMENSION) (MAXJSAMPLE+1 + pad), |
355 | (JDIMENSION) cinfo->out_color_components); |
356 | |
357 | /* blksize is number of adjacent repeated entries for a component */ |
358 | blksize = cquantize->sv_actual; |
359 | |
360 | for (i = 0; i < cinfo->out_color_components; i++) { |
361 | /* fill in colorindex entries for i'th color component */ |
362 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
363 | blksize = blksize / nci; |
364 | |
365 | /* adjust colorindex pointers to provide padding at negative indexes. */ |
366 | if (pad) |
367 | cquantize->colorindex[i] += MAXJSAMPLE; |
368 | |
369 | /* in loop, val = index of current output value, */ |
370 | /* and k = largest j that maps to current val */ |
371 | indexptr = cquantize->colorindex[i]; |
372 | val = 0; |
373 | k = largest_input_value(cinfo, i, 0, nci-1); |
374 | for (j = 0; j <= MAXJSAMPLE; j++) { |
375 | while (j > k) /* advance val if past boundary */ |
376 | k = largest_input_value(cinfo, i, ++val, nci-1); |
377 | /* premultiply so that no multiplication needed in main processing */ |
378 | indexptr[j] = (JSAMPLE) (val * blksize); |
379 | } |
380 | /* Pad at both ends if necessary */ |
381 | if (pad) |
382 | for (j = 1; j <= MAXJSAMPLE; j++) { |
383 | indexptr[-j] = indexptr[0]; |
384 | indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; |
385 | } |
386 | } |
387 | } |
388 | |
389 | |
390 | /* |
391 | * Create an ordered-dither array for a component having ncolors |
392 | * distinct output values. |
393 | */ |
394 | |
395 | LOCAL(ODITHER_MATRIX_PTR) |
396 | make_odither_array (j_decompress_ptr cinfo, int ncolors) |
397 | { |
398 | ODITHER_MATRIX_PTR odither; |
399 | int j,k; |
400 | INT32 num,den; |
401 | |
402 | odither = (ODITHER_MATRIX_PTR) |
403 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
404 | SIZEOF(ODITHER_MATRIX)); |
405 | /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). |
406 | * Hence the dither value for the matrix cell with fill order f |
407 | * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). |
408 | * On 16-bit-int machine, be careful to avoid overflow. |
409 | */ |
410 | den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); |
411 | for (j = 0; j < ODITHER_SIZE; j++) { |
412 | for (k = 0; k < ODITHER_SIZE; k++) { |
413 | num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) |
414 | * MAXJSAMPLE; |
415 | /* Ensure round towards zero despite C's lack of consistency |
416 | * about rounding negative values in integer division... |
417 | */ |
418 | odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); |
419 | } |
420 | } |
421 | return odither; |
422 | } |
423 | |
424 | |
425 | /* |
426 | * Create the ordered-dither tables. |
427 | * Components having the same number of representative colors may |
428 | * share a dither table. |
429 | */ |
430 | |
431 | LOCAL(void) |
432 | create_odither_tables (j_decompress_ptr cinfo) |
433 | { |
434 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
435 | ODITHER_MATRIX_PTR odither; |
436 | int i, j, nci; |
437 | |
438 | for (i = 0; i < cinfo->out_color_components; i++) { |
439 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
440 | odither = NULL; /* search for matching prior component */ |
441 | for (j = 0; j < i; j++) { |
442 | if (nci == cquantize->Ncolors[j]) { |
443 | odither = cquantize->odither[j]; |
444 | break; |
445 | } |
446 | } |
447 | if (odither == NULL) /* need a new table? */ |
448 | odither = make_odither_array(cinfo, nci); |
449 | cquantize->odither[i] = odither; |
450 | } |
451 | } |
452 | |
453 | |
454 | /* |
455 | * Map some rows of pixels to the output colormapped representation. |
456 | */ |
457 | |
458 | METHODDEF(void) |
459 | color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
460 | JSAMPARRAY output_buf, int num_rows) |
461 | /* General case, no dithering */ |
462 | { |
463 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
464 | JSAMPARRAY colorindex = cquantize->colorindex; |
465 | register int pixcode, ci; |
466 | register JSAMPROW ptrin, ptrout; |
467 | int row; |
468 | JDIMENSION col; |
469 | JDIMENSION width = cinfo->output_width; |
470 | register int nc = cinfo->out_color_components; |
471 | |
472 | for (row = 0; row < num_rows; row++) { |
473 | ptrin = input_buf[row]; |
474 | ptrout = output_buf[row]; |
475 | for (col = width; col > 0; col--) { |
476 | pixcode = 0; |
477 | for (ci = 0; ci < nc; ci++) { |
478 | pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); |
479 | } |
480 | *ptrout++ = (JSAMPLE) pixcode; |
481 | } |
482 | } |
483 | } |
484 | |
485 | |
486 | METHODDEF(void) |
487 | color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
488 | JSAMPARRAY output_buf, int num_rows) |
489 | /* Fast path for out_color_components==3, no dithering */ |
490 | { |
491 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
492 | register int pixcode; |
493 | register JSAMPROW ptrin, ptrout; |
494 | JSAMPROW colorindex0 = cquantize->colorindex[0]; |
495 | JSAMPROW colorindex1 = cquantize->colorindex[1]; |
496 | JSAMPROW colorindex2 = cquantize->colorindex[2]; |
497 | int row; |
498 | JDIMENSION col; |
499 | JDIMENSION width = cinfo->output_width; |
500 | |
501 | for (row = 0; row < num_rows; row++) { |
502 | ptrin = input_buf[row]; |
503 | ptrout = output_buf[row]; |
504 | for (col = width; col > 0; col--) { |
505 | pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); |
506 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); |
507 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); |
508 | *ptrout++ = (JSAMPLE) pixcode; |
509 | } |
510 | } |
511 | } |
512 | |
513 | |
514 | METHODDEF(void) |
515 | quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
516 | JSAMPARRAY output_buf, int num_rows) |
517 | /* General case, with ordered dithering */ |
518 | { |
519 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
520 | register JSAMPROW input_ptr; |
521 | register JSAMPROW output_ptr; |
522 | JSAMPROW colorindex_ci; |
523 | int * dither; /* points to active row of dither matrix */ |
524 | int row_index, col_index; /* current indexes into dither matrix */ |
525 | int nc = cinfo->out_color_components; |
526 | int ci; |
527 | int row; |
528 | JDIMENSION col; |
529 | JDIMENSION width = cinfo->output_width; |
530 | |
531 | for (row = 0; row < num_rows; row++) { |
532 | /* Initialize output values to 0 so can process components separately */ |
533 | jzero_far((void FAR *) output_buf[row], |
534 | (size_t) (width * SIZEOF(JSAMPLE))); |
535 | row_index = cquantize->row_index; |
536 | for (ci = 0; ci < nc; ci++) { |
537 | input_ptr = input_buf[row] + ci; |
538 | output_ptr = output_buf[row]; |
539 | colorindex_ci = cquantize->colorindex[ci]; |
540 | dither = cquantize->odither[ci][row_index]; |
541 | col_index = 0; |
542 | |
543 | for (col = width; col > 0; col--) { |
544 | /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, |
545 | * select output value, accumulate into output code for this pixel. |
546 | * Range-limiting need not be done explicitly, as we have extended |
547 | * the colorindex table to produce the right answers for out-of-range |
548 | * inputs. The maximum dither is +- MAXJSAMPLE; this sets the |
549 | * required amount of padding. |
550 | */ |
551 | *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; |
552 | input_ptr += nc; |
553 | output_ptr++; |
554 | col_index = (col_index + 1) & ODITHER_MASK; |
555 | } |
556 | } |
557 | /* Advance row index for next row */ |
558 | row_index = (row_index + 1) & ODITHER_MASK; |
559 | cquantize->row_index = row_index; |
560 | } |
561 | } |
562 | |
563 | |
564 | METHODDEF(void) |
565 | quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
566 | JSAMPARRAY output_buf, int num_rows) |
567 | /* Fast path for out_color_components==3, with ordered dithering */ |
568 | { |
569 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
570 | register int pixcode; |
571 | register JSAMPROW input_ptr; |
572 | register JSAMPROW output_ptr; |
573 | JSAMPROW colorindex0 = cquantize->colorindex[0]; |
574 | JSAMPROW colorindex1 = cquantize->colorindex[1]; |
575 | JSAMPROW colorindex2 = cquantize->colorindex[2]; |
576 | int * dither0; /* points to active row of dither matrix */ |
577 | int * dither1; |
578 | int * dither2; |
579 | int row_index, col_index; /* current indexes into dither matrix */ |
580 | int row; |
581 | JDIMENSION col; |
582 | JDIMENSION width = cinfo->output_width; |
583 | |
584 | for (row = 0; row < num_rows; row++) { |
585 | row_index = cquantize->row_index; |
586 | input_ptr = input_buf[row]; |
587 | output_ptr = output_buf[row]; |
588 | dither0 = cquantize->odither[0][row_index]; |
589 | dither1 = cquantize->odither[1][row_index]; |
590 | dither2 = cquantize->odither[2][row_index]; |
591 | col_index = 0; |
592 | |
593 | for (col = width; col > 0; col--) { |
594 | pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + |
595 | dither0[col_index]]); |
596 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + |
597 | dither1[col_index]]); |
598 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + |
599 | dither2[col_index]]); |
600 | *output_ptr++ = (JSAMPLE) pixcode; |
601 | col_index = (col_index + 1) & ODITHER_MASK; |
602 | } |
603 | row_index = (row_index + 1) & ODITHER_MASK; |
604 | cquantize->row_index = row_index; |
605 | } |
606 | } |
607 | |
608 | |
609 | METHODDEF(void) |
610 | quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
611 | JSAMPARRAY output_buf, int num_rows) |
612 | /* General case, with Floyd-Steinberg dithering */ |
613 | { |
614 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
615 | register LOCFSERROR cur; /* current error or pixel value */ |
616 | LOCFSERROR belowerr; /* error for pixel below cur */ |
617 | LOCFSERROR bpreverr; /* error for below/prev col */ |
618 | LOCFSERROR bnexterr; /* error for below/next col */ |
619 | LOCFSERROR delta; |
620 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
621 | register JSAMPROW input_ptr; |
622 | register JSAMPROW output_ptr; |
623 | JSAMPROW colorindex_ci; |
624 | JSAMPROW colormap_ci; |
625 | int pixcode; |
626 | int nc = cinfo->out_color_components; |
627 | int dir; /* 1 for left-to-right, -1 for right-to-left */ |
628 | int dirnc; /* dir * nc */ |
629 | int ci; |
630 | int row; |
631 | JDIMENSION col; |
632 | JDIMENSION width = cinfo->output_width; |
633 | JSAMPLE *range_limit = cinfo->sample_range_limit; |
634 | SHIFT_TEMPS |
635 | |
636 | for (row = 0; row < num_rows; row++) { |
637 | /* Initialize output values to 0 so can process components separately */ |
638 | jzero_far((void FAR *) output_buf[row], |
639 | (size_t) (width * SIZEOF(JSAMPLE))); |
640 | for (ci = 0; ci < nc; ci++) { |
641 | input_ptr = input_buf[row] + ci; |
642 | output_ptr = output_buf[row]; |
643 | if (cquantize->on_odd_row) { |
644 | /* work right to left in this row */ |
645 | input_ptr += (width-1) * nc; /* so point to rightmost pixel */ |
646 | output_ptr += width-1; |
647 | dir = -1; |
648 | dirnc = -nc; |
649 | errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ |
650 | } else { |
651 | /* work left to right in this row */ |
652 | dir = 1; |
653 | dirnc = nc; |
654 | errorptr = cquantize->fserrors[ci]; /* => entry before first column */ |
655 | } |
656 | colorindex_ci = cquantize->colorindex[ci]; |
657 | colormap_ci = cquantize->sv_colormap[ci]; |
658 | /* Preset error values: no error propagated to first pixel from left */ |
659 | cur = 0; |
660 | /* and no error propagated to row below yet */ |
661 | belowerr = bpreverr = 0; |
662 | |
663 | for (col = width; col > 0; col--) { |
664 | /* cur holds the error propagated from the previous pixel on the |
665 | * current line. Add the error propagated from the previous line |
666 | * to form the complete error correction term for this pixel, and |
667 | * round the error term (which is expressed * 16) to an integer. |
668 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
669 | * for either sign of the error value. |
670 | * Note: errorptr points to *previous* column's array entry. |
671 | */ |
672 | cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); |
673 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
674 | * The maximum error is +- MAXJSAMPLE; this sets the required size |
675 | * of the range_limit array. |
676 | */ |
677 | cur += GETJSAMPLE(*input_ptr); |
678 | cur = GETJSAMPLE(range_limit[cur]); |
679 | /* Select output value, accumulate into output code for this pixel */ |
680 | pixcode = GETJSAMPLE(colorindex_ci[cur]); |
681 | *output_ptr += (JSAMPLE) pixcode; |
682 | /* Compute actual representation error at this pixel */ |
683 | /* Note: we can do this even though we don't have the final */ |
684 | /* pixel code, because the colormap is orthogonal. */ |
685 | cur -= GETJSAMPLE(colormap_ci[pixcode]); |
686 | /* Compute error fractions to be propagated to adjacent pixels. |
687 | * Add these into the running sums, and simultaneously shift the |
688 | * next-line error sums left by 1 column. |
689 | */ |
690 | bnexterr = cur; |
691 | delta = cur * 2; |
692 | cur += delta; /* form error * 3 */ |
693 | errorptr[0] = (FSERROR) (bpreverr + cur); |
694 | cur += delta; /* form error * 5 */ |
695 | bpreverr = belowerr + cur; |
696 | belowerr = bnexterr; |
697 | cur += delta; /* form error * 7 */ |
698 | /* At this point cur contains the 7/16 error value to be propagated |
699 | * to the next pixel on the current line, and all the errors for the |
700 | * next line have been shifted over. We are therefore ready to move on. |
701 | */ |
702 | input_ptr += dirnc; /* advance input ptr to next column */ |
703 | output_ptr += dir; /* advance output ptr to next column */ |
704 | errorptr += dir; /* advance errorptr to current column */ |
705 | } |
706 | /* Post-loop cleanup: we must unload the final error value into the |
707 | * final fserrors[] entry. Note we need not unload belowerr because |
708 | * it is for the dummy column before or after the actual array. |
709 | */ |
710 | errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ |
711 | } |
712 | cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); |
713 | } |
714 | } |
715 | |
716 | |
717 | /* |
718 | * Allocate workspace for Floyd-Steinberg errors. |
719 | */ |
720 | |
721 | LOCAL(void) |
722 | alloc_fs_workspace (j_decompress_ptr cinfo) |
723 | { |
724 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
725 | size_t arraysize; |
726 | int i; |
727 | |
728 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
729 | for (i = 0; i < cinfo->out_color_components; i++) { |
730 | cquantize->fserrors[i] = (FSERRPTR) |
731 | (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
732 | } |
733 | } |
734 | |
735 | |
736 | /* |
737 | * Initialize for one-pass color quantization. |
738 | */ |
739 | |
740 | METHODDEF(void) |
741 | start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
742 | { |
743 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
744 | size_t arraysize; |
745 | int i; |
746 | |
747 | /* Install my colormap. */ |
748 | cinfo->colormap = cquantize->sv_colormap; |
749 | cinfo->actual_number_of_colors = cquantize->sv_actual; |
750 | |
751 | /* Initialize for desired dithering mode. */ |
752 | switch (cinfo->dither_mode) { |
753 | case JDITHER_NONE: |
754 | if (cinfo->out_color_components == 3) |
755 | cquantize->pub.color_quantize = color_quantize3; |
756 | else |
757 | cquantize->pub.color_quantize = color_quantize; |
758 | break; |
759 | case JDITHER_ORDERED: |
760 | if (cinfo->out_color_components == 3) |
761 | cquantize->pub.color_quantize = quantize3_ord_dither; |
762 | else |
763 | cquantize->pub.color_quantize = quantize_ord_dither; |
764 | cquantize->row_index = 0; /* initialize state for ordered dither */ |
765 | /* If user changed to ordered dither from another mode, |
766 | * we must recreate the color index table with padding. |
767 | * This will cost extra space, but probably isn't very likely. |
768 | */ |
769 | if (! cquantize->is_padded) |
770 | create_colorindex(cinfo); |
771 | /* Create ordered-dither tables if we didn't already. */ |
772 | if (cquantize->odither[0] == NULL) |
773 | create_odither_tables(cinfo); |
774 | break; |
775 | case JDITHER_FS: |
776 | cquantize->pub.color_quantize = quantize_fs_dither; |
777 | cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ |
778 | /* Allocate Floyd-Steinberg workspace if didn't already. */ |
779 | if (cquantize->fserrors[0] == NULL) |
780 | alloc_fs_workspace(cinfo); |
781 | /* Initialize the propagated errors to zero. */ |
782 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
783 | for (i = 0; i < cinfo->out_color_components; i++) |
784 | jzero_far((void FAR *) cquantize->fserrors[i], arraysize); |
785 | break; |
786 | default: |
787 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
788 | break; |
789 | } |
790 | } |
791 | |
792 | |
793 | /* |
794 | * Finish up at the end of the pass. |
795 | */ |
796 | |
797 | METHODDEF(void) |
798 | finish_pass_1_quant (j_decompress_ptr cinfo) |
799 | { |
800 | /* no work in 1-pass case */ |
801 | } |
802 | |
803 | |
804 | /* |
805 | * Switch to a new external colormap between output passes. |
806 | * Shouldn't get to this module! |
807 | */ |
808 | |
809 | METHODDEF(void) |
810 | new_color_map_1_quant (j_decompress_ptr cinfo) |
811 | { |
812 | ERREXIT(cinfo, JERR_MODE_CHANGE); |
813 | } |
814 | |
815 | |
816 | /* |
817 | * Module initialization routine for 1-pass color quantization. |
818 | */ |
819 | |
820 | GLOBAL(void) |
821 | jinit_1pass_quantizer (j_decompress_ptr cinfo) |
822 | { |
823 | my_cquantize_ptr cquantize; |
824 | |
825 | cquantize = (my_cquantize_ptr) |
826 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
827 | SIZEOF(my_cquantizer)); |
828 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
829 | cquantize->pub.start_pass = start_pass_1_quant; |
830 | cquantize->pub.finish_pass = finish_pass_1_quant; |
831 | cquantize->pub.new_color_map = new_color_map_1_quant; |
832 | cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ |
833 | cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ |
834 | |
835 | /* Make sure my internal arrays won't overflow */ |
836 | if (cinfo->out_color_components > MAX_Q_COMPS) |
837 | ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); |
838 | /* Make sure colormap indexes can be represented by JSAMPLEs */ |
839 | if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) |
840 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); |
841 | |
842 | /* Create the colormap and color index table. */ |
843 | create_colormap(cinfo); |
844 | create_colorindex(cinfo); |
845 | |
846 | /* Allocate Floyd-Steinberg workspace now if requested. |
847 | * We do this now since it is FAR storage and may affect the memory |
848 | * manager's space calculations. If the user changes to FS dither |
849 | * mode in a later pass, we will allocate the space then, and will |
850 | * possibly overrun the max_memory_to_use setting. |
851 | */ |
852 | if (cinfo->dither_mode == JDITHER_FS) |
853 | alloc_fs_workspace(cinfo); |
854 | } |
855 | |
856 | #endif /* QUANT_1PASS_SUPPORTED */ |
857 | |