| 1 | /* |
| 2 | * Copyright (c) 2008-2015, NVIDIA CORPORATION. All rights reserved. |
| 3 | * |
| 4 | * NVIDIA CORPORATION and its licensors retain all intellectual property |
| 5 | * and proprietary rights in and to this software, related documentation |
| 6 | * and any modifications thereto. Any use, reproduction, disclosure or |
| 7 | * distribution of this software and related documentation without an express |
| 8 | * license agreement from NVIDIA CORPORATION is strictly prohibited. |
| 9 | */ |
| 10 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 11 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 12 | |
| 13 | |
| 14 | #ifndef PX_FOUNDATION_PX_VEC2_H |
| 15 | #define PX_FOUNDATION_PX_VEC2_H |
| 16 | |
| 17 | /** \addtogroup foundation |
| 18 | @{ |
| 19 | */ |
| 20 | |
| 21 | #include "foundation/PxMath.h" |
| 22 | |
| 23 | #ifndef PX_DOXYGEN |
| 24 | namespace physx |
| 25 | { |
| 26 | #endif |
| 27 | |
| 28 | |
| 29 | /** |
| 30 | \brief 2 Element vector class. |
| 31 | |
| 32 | This is a 2-dimensional vector class with public data members. |
| 33 | */ |
| 34 | class PxVec2 |
| 35 | { |
| 36 | public: |
| 37 | |
| 38 | /** |
| 39 | \brief default constructor leaves data uninitialized. |
| 40 | */ |
| 41 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2() {} |
| 42 | |
| 43 | |
| 44 | /** |
| 45 | \brief zero constructor. |
| 46 | */ |
| 47 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(PxZERO r): x(0.0f), y(0.0f) |
| 48 | { |
| 49 | PX_UNUSED(r); |
| 50 | } |
| 51 | |
| 52 | /** |
| 53 | \brief Assigns scalar parameter to all elements. |
| 54 | |
| 55 | Useful to initialize to zero or one. |
| 56 | |
| 57 | \param[in] a Value to assign to elements. |
| 58 | */ |
| 59 | explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(PxReal a): x(a), y(a) {} |
| 60 | |
| 61 | /** |
| 62 | \brief Initializes from 2 scalar parameters. |
| 63 | |
| 64 | \param[in] nx Value to initialize X component. |
| 65 | \param[in] ny Value to initialize Y component. |
| 66 | */ |
| 67 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(PxReal nx, PxReal ny): x(nx), y(ny){} |
| 68 | |
| 69 | /** |
| 70 | \brief Copy ctor. |
| 71 | */ |
| 72 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(const PxVec2& v): x(v.x), y(v.y) {} |
| 73 | |
| 74 | //Operators |
| 75 | |
| 76 | /** |
| 77 | \brief Assignment operator |
| 78 | */ |
| 79 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator=(const PxVec2& p) { x = p.x; y = p.y; return *this; } |
| 80 | |
| 81 | /** |
| 82 | \brief element access |
| 83 | */ |
| 84 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal& operator[](int index) |
| 85 | { |
| 86 | PX_ASSERT(index>=0 && index<=1); |
| 87 | |
| 88 | return reinterpret_cast<PxReal*>(this)[index]; |
| 89 | } |
| 90 | |
| 91 | /** |
| 92 | \brief element access |
| 93 | */ |
| 94 | PX_CUDA_CALLABLE PX_FORCE_INLINE const PxReal& operator[](int index) const |
| 95 | { |
| 96 | PX_ASSERT(index>=0 && index<=1); |
| 97 | |
| 98 | return reinterpret_cast<const PxReal*>(this)[index]; |
| 99 | } |
| 100 | |
| 101 | /** |
| 102 | \brief returns true if the two vectors are exactly equal. |
| 103 | */ |
| 104 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec2&v) const { return x == v.x && y == v.y; } |
| 105 | |
| 106 | /** |
| 107 | \brief returns true if the two vectors are not exactly equal. |
| 108 | */ |
| 109 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec2&v) const { return x != v.x || y != v.y; } |
| 110 | |
| 111 | /** |
| 112 | \brief tests for exact zero vector |
| 113 | */ |
| 114 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const { return x==0.0f && y==0.0f; } |
| 115 | |
| 116 | /** |
| 117 | \brief returns true if all 2 elems of the vector are finite (not NAN or INF, etc.) |
| 118 | */ |
| 119 | PX_CUDA_CALLABLE PX_INLINE bool isFinite() const |
| 120 | { |
| 121 | return PxIsFinite(x) && PxIsFinite(y); |
| 122 | } |
| 123 | |
| 124 | /** |
| 125 | \brief is normalized - used by API parameter validation |
| 126 | */ |
| 127 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const |
| 128 | { |
| 129 | const float unitTolerance = 1e-4f; |
| 130 | return isFinite() && PxAbs(magnitude()-1)<unitTolerance; |
| 131 | } |
| 132 | |
| 133 | /** |
| 134 | \brief returns the squared magnitude |
| 135 | |
| 136 | Avoids calling PxSqrt()! |
| 137 | */ |
| 138 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal magnitudeSquared() const { return x * x + y * y; } |
| 139 | |
| 140 | /** |
| 141 | \brief returns the magnitude |
| 142 | */ |
| 143 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal magnitude() const { return PxSqrt(magnitudeSquared()); } |
| 144 | |
| 145 | /** |
| 146 | \brief negation |
| 147 | */ |
| 148 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator -() const |
| 149 | { |
| 150 | return PxVec2(-x, -y); |
| 151 | } |
| 152 | |
| 153 | /** |
| 154 | \brief vector addition |
| 155 | */ |
| 156 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator +(const PxVec2& v) const { return PxVec2(x + v.x, y + v.y); } |
| 157 | |
| 158 | /** |
| 159 | \brief vector difference |
| 160 | */ |
| 161 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator -(const PxVec2& v) const { return PxVec2(x - v.x, y - v.y); } |
| 162 | |
| 163 | /** |
| 164 | \brief scalar post-multiplication |
| 165 | */ |
| 166 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator *(PxReal f) const { return PxVec2(x * f, y * f); } |
| 167 | |
| 168 | /** |
| 169 | \brief scalar division |
| 170 | */ |
| 171 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator /(PxReal f) const |
| 172 | { |
| 173 | f = 1.0f / f; // PT: inconsistent notation with operator /= |
| 174 | return PxVec2(x * f, y * f); |
| 175 | } |
| 176 | |
| 177 | /** |
| 178 | \brief vector addition |
| 179 | */ |
| 180 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator +=(const PxVec2& v) |
| 181 | { |
| 182 | x += v.x; |
| 183 | y += v.y; |
| 184 | return *this; |
| 185 | } |
| 186 | |
| 187 | /** |
| 188 | \brief vector difference |
| 189 | */ |
| 190 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator -=(const PxVec2& v) |
| 191 | { |
| 192 | x -= v.x; |
| 193 | y -= v.y; |
| 194 | return *this; |
| 195 | } |
| 196 | |
| 197 | /** |
| 198 | \brief scalar multiplication |
| 199 | */ |
| 200 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator *=(PxReal f) |
| 201 | { |
| 202 | x *= f; |
| 203 | y *= f; |
| 204 | return *this; |
| 205 | } |
| 206 | /** |
| 207 | \brief scalar division |
| 208 | */ |
| 209 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator /=(PxReal f) |
| 210 | { |
| 211 | f = 1.0f/f; // PT: inconsistent notation with operator / |
| 212 | x *= f; |
| 213 | y *= f; |
| 214 | return *this; |
| 215 | } |
| 216 | |
| 217 | /** |
| 218 | \brief returns the scalar product of this and other. |
| 219 | */ |
| 220 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal dot(const PxVec2& v) const |
| 221 | { |
| 222 | return x * v.x + y * v.y; |
| 223 | } |
| 224 | |
| 225 | /** return a unit vector */ |
| 226 | |
| 227 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 getNormalized() const |
| 228 | { |
| 229 | const PxReal m = magnitudeSquared(); |
| 230 | return m>0.0f ? *this * PxRecipSqrt(m) : PxVec2(0,0); |
| 231 | } |
| 232 | |
| 233 | /** |
| 234 | \brief normalizes the vector in place |
| 235 | */ |
| 236 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal normalize() |
| 237 | { |
| 238 | const PxReal m = magnitude(); |
| 239 | if (m>0.0f) |
| 240 | *this /= m; |
| 241 | return m; |
| 242 | } |
| 243 | |
| 244 | /** |
| 245 | \brief a[i] * b[i], for all i. |
| 246 | */ |
| 247 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 multiply(const PxVec2& a) const |
| 248 | { |
| 249 | return PxVec2(x*a.x, y*a.y); |
| 250 | } |
| 251 | |
| 252 | /** |
| 253 | \brief element-wise minimum |
| 254 | */ |
| 255 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 minimum(const PxVec2& v) const |
| 256 | { |
| 257 | return PxVec2(PxMin(x, v.x), PxMin(y,v.y)); |
| 258 | } |
| 259 | |
| 260 | /** |
| 261 | \brief returns MIN(x, y); |
| 262 | */ |
| 263 | PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const |
| 264 | { |
| 265 | return PxMin(x, y); |
| 266 | } |
| 267 | |
| 268 | /** |
| 269 | \brief element-wise maximum |
| 270 | */ |
| 271 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 maximum(const PxVec2& v) const |
| 272 | { |
| 273 | return PxVec2(PxMax(x, v.x), PxMax(y,v.y)); |
| 274 | } |
| 275 | |
| 276 | /** |
| 277 | \brief returns MAX(x, y); |
| 278 | */ |
| 279 | PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const |
| 280 | { |
| 281 | return PxMax(x, y); |
| 282 | } |
| 283 | |
| 284 | PxReal x,y; |
| 285 | }; |
| 286 | |
| 287 | PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec2 operator *(PxReal f, const PxVec2& v) |
| 288 | { |
| 289 | return PxVec2(f * v.x, f * v.y); |
| 290 | } |
| 291 | |
| 292 | #ifndef PX_DOXYGEN |
| 293 | } // namespace physx |
| 294 | #endif |
| 295 | |
| 296 | /** @} */ |
| 297 | #endif // PX_FOUNDATION_PX_VEC2_H |
| 298 | |