| 1 | /* |
| 2 | * Copyright (c) 2008-2015, NVIDIA CORPORATION. All rights reserved. |
| 3 | * |
| 4 | * NVIDIA CORPORATION and its licensors retain all intellectual property |
| 5 | * and proprietary rights in and to this software, related documentation |
| 6 | * and any modifications thereto. Any use, reproduction, disclosure or |
| 7 | * distribution of this software and related documentation without an express |
| 8 | * license agreement from NVIDIA CORPORATION is strictly prohibited. |
| 9 | */ |
| 10 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 11 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 12 | |
| 13 | |
| 14 | #ifndef PX_FOUNDATION_PX_VEC3_H |
| 15 | #define PX_FOUNDATION_PX_VEC3_H |
| 16 | |
| 17 | /** \addtogroup foundation |
| 18 | @{ |
| 19 | */ |
| 20 | |
| 21 | #include "foundation/PxMath.h" |
| 22 | |
| 23 | #ifndef PX_DOXYGEN |
| 24 | namespace physx |
| 25 | { |
| 26 | #endif |
| 27 | |
| 28 | |
| 29 | /** |
| 30 | \brief 3 Element vector class. |
| 31 | |
| 32 | This is a 3-dimensional vector class with public data members. |
| 33 | */ |
| 34 | class PxVec3 |
| 35 | { |
| 36 | public: |
| 37 | |
| 38 | /** |
| 39 | \brief default constructor leaves data uninitialized. |
| 40 | */ |
| 41 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3() {} |
| 42 | |
| 43 | /** |
| 44 | \brief zero constructor. |
| 45 | */ |
| 46 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(PxZERO r): x(0.0f), y(0.0f), z(0.0f) |
| 47 | { |
| 48 | PX_UNUSED(r); |
| 49 | } |
| 50 | |
| 51 | |
| 52 | /** |
| 53 | \brief Assigns scalar parameter to all elements. |
| 54 | |
| 55 | Useful to initialize to zero or one. |
| 56 | |
| 57 | \param[in] a Value to assign to elements. |
| 58 | */ |
| 59 | explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(PxReal a): x(a), y(a), z(a) {} |
| 60 | |
| 61 | /** |
| 62 | \brief Initializes from 3 scalar parameters. |
| 63 | |
| 64 | \param[in] nx Value to initialize X component. |
| 65 | \param[in] ny Value to initialize Y component. |
| 66 | \param[in] nz Value to initialize Z component. |
| 67 | */ |
| 68 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(PxReal nx, PxReal ny, PxReal nz): x(nx), y(ny), z(nz) {} |
| 69 | |
| 70 | /** |
| 71 | \brief Copy ctor. |
| 72 | */ |
| 73 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(const PxVec3& v): x(v.x), y(v.y), z(v.z) {} |
| 74 | |
| 75 | //Operators |
| 76 | |
| 77 | /** |
| 78 | \brief Assignment operator |
| 79 | */ |
| 80 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator=(const PxVec3& p) { x = p.x; y = p.y; z = p.z; return *this; } |
| 81 | |
| 82 | /** |
| 83 | \brief element access |
| 84 | */ |
| 85 | PX_DEPRECATED PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal& operator[](int index) |
| 86 | { |
| 87 | PX_ASSERT(index>=0 && index<=2); |
| 88 | |
| 89 | return reinterpret_cast<PxReal*>(this)[index]; |
| 90 | } |
| 91 | |
| 92 | /** |
| 93 | \brief element access |
| 94 | */ |
| 95 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal& operator[](unsigned int index) |
| 96 | { |
| 97 | PX_ASSERT(index<=2); |
| 98 | |
| 99 | return reinterpret_cast<PxReal*>(this)[index]; |
| 100 | } |
| 101 | |
| 102 | /** |
| 103 | \brief element access |
| 104 | */ |
| 105 | PX_DEPRECATED PX_CUDA_CALLABLE PX_FORCE_INLINE const PxReal& operator[](int index) const |
| 106 | { |
| 107 | PX_ASSERT(index>=0 && index<=2); |
| 108 | |
| 109 | return reinterpret_cast<const PxReal*>(this)[index]; |
| 110 | } |
| 111 | |
| 112 | /** |
| 113 | \brief element access |
| 114 | */ |
| 115 | PX_CUDA_CALLABLE PX_FORCE_INLINE const PxReal& operator[](unsigned int index) const |
| 116 | { |
| 117 | PX_ASSERT(index<=2); |
| 118 | |
| 119 | return reinterpret_cast<const PxReal*>(this)[index]; |
| 120 | } |
| 121 | /** |
| 122 | \brief returns true if the two vectors are exactly equal. |
| 123 | */ |
| 124 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec3&v) const { return x == v.x && y == v.y && z == v.z; } |
| 125 | |
| 126 | /** |
| 127 | \brief returns true if the two vectors are not exactly equal. |
| 128 | */ |
| 129 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec3&v) const { return x != v.x || y != v.y || z != v.z; } |
| 130 | |
| 131 | /** |
| 132 | \brief tests for exact zero vector |
| 133 | */ |
| 134 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const { return x==0.0f && y==0.0f && z == 0.0f; } |
| 135 | |
| 136 | /** |
| 137 | \brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.) |
| 138 | */ |
| 139 | PX_CUDA_CALLABLE PX_INLINE bool isFinite() const |
| 140 | { |
| 141 | return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z); |
| 142 | } |
| 143 | |
| 144 | /** |
| 145 | \brief is normalized - used by API parameter validation |
| 146 | */ |
| 147 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const |
| 148 | { |
| 149 | const float unitTolerance = 1e-4f; |
| 150 | return isFinite() && PxAbs(magnitude()-1)<unitTolerance; |
| 151 | } |
| 152 | |
| 153 | /** |
| 154 | \brief returns the squared magnitude |
| 155 | |
| 156 | Avoids calling PxSqrt()! |
| 157 | */ |
| 158 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal magnitudeSquared() const { return x * x + y * y + z * z; } |
| 159 | |
| 160 | /** |
| 161 | \brief returns the magnitude |
| 162 | */ |
| 163 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal magnitude() const { return PxSqrt(magnitudeSquared()); } |
| 164 | |
| 165 | /** |
| 166 | \brief negation |
| 167 | */ |
| 168 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator -() const |
| 169 | { |
| 170 | return PxVec3(-x, -y, -z); |
| 171 | } |
| 172 | |
| 173 | /** |
| 174 | \brief vector addition |
| 175 | */ |
| 176 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator +(const PxVec3& v) const { return PxVec3(x + v.x, y + v.y, z + v.z); } |
| 177 | |
| 178 | /** |
| 179 | \brief vector difference |
| 180 | */ |
| 181 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator -(const PxVec3& v) const { return PxVec3(x - v.x, y - v.y, z - v.z); } |
| 182 | |
| 183 | /** |
| 184 | \brief scalar post-multiplication |
| 185 | */ |
| 186 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator *(PxReal f) const { return PxVec3(x * f, y * f, z * f); } |
| 187 | |
| 188 | /** |
| 189 | \brief scalar division |
| 190 | */ |
| 191 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator /(PxReal f) const |
| 192 | { |
| 193 | f = 1.0f / f; |
| 194 | return PxVec3(x * f, y * f, z * f); |
| 195 | } |
| 196 | |
| 197 | /** |
| 198 | \brief vector addition |
| 199 | */ |
| 200 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator +=(const PxVec3& v) |
| 201 | { |
| 202 | x += v.x; |
| 203 | y += v.y; |
| 204 | z += v.z; |
| 205 | return *this; |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | \brief vector difference |
| 210 | */ |
| 211 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator -=(const PxVec3& v) |
| 212 | { |
| 213 | x -= v.x; |
| 214 | y -= v.y; |
| 215 | z -= v.z; |
| 216 | return *this; |
| 217 | } |
| 218 | |
| 219 | /** |
| 220 | \brief scalar multiplication |
| 221 | */ |
| 222 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator *=(PxReal f) |
| 223 | { |
| 224 | x *= f; |
| 225 | y *= f; |
| 226 | z *= f; |
| 227 | return *this; |
| 228 | } |
| 229 | /** |
| 230 | \brief scalar division |
| 231 | */ |
| 232 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator /=(PxReal f) |
| 233 | { |
| 234 | f = 1.0f/f; |
| 235 | x *= f; |
| 236 | y *= f; |
| 237 | z *= f; |
| 238 | return *this; |
| 239 | } |
| 240 | |
| 241 | /** |
| 242 | \brief returns the scalar product of this and other. |
| 243 | */ |
| 244 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal dot(const PxVec3& v) const |
| 245 | { |
| 246 | return x * v.x + y * v.y + z * v.z; |
| 247 | } |
| 248 | |
| 249 | /** |
| 250 | \brief cross product |
| 251 | */ |
| 252 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 cross(const PxVec3& v) const |
| 253 | { |
| 254 | return PxVec3(y * v.z - z * v.y, |
| 255 | z * v.x - x * v.z, |
| 256 | x * v.y - y * v.x); |
| 257 | } |
| 258 | |
| 259 | /** return a unit vector */ |
| 260 | |
| 261 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getNormalized() const |
| 262 | { |
| 263 | const PxReal m = magnitudeSquared(); |
| 264 | return m>0.0f ? *this * PxRecipSqrt(m) : PxVec3(0,0,0); |
| 265 | } |
| 266 | |
| 267 | /** |
| 268 | \brief normalizes the vector in place |
| 269 | */ |
| 270 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal normalize() |
| 271 | { |
| 272 | const PxReal m = magnitude(); |
| 273 | if (m>0.0f) |
| 274 | *this /= m; |
| 275 | return m; |
| 276 | } |
| 277 | |
| 278 | /** |
| 279 | \brief normalizes the vector in place. Does nothing if vector magnitude is under PX_NORMALIZATION_EPSILON. |
| 280 | Returns vector magnitude if >= PX_NORMALIZATION_EPSILON and 0.0f otherwise. |
| 281 | */ |
| 282 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal normalizeSafe() |
| 283 | { |
| 284 | const PxReal mag = magnitude(); |
| 285 | if (mag < PX_NORMALIZATION_EPSILON) |
| 286 | return 0.0f; |
| 287 | *this *= 1.0f / mag; |
| 288 | return mag; |
| 289 | } |
| 290 | |
| 291 | /** |
| 292 | \brief normalizes the vector in place. Asserts if vector magnitude is under PX_NORMALIZATION_EPSILON. |
| 293 | returns vector magnitude. |
| 294 | */ |
| 295 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal normalizeFast() |
| 296 | { |
| 297 | const PxReal mag = magnitude(); |
| 298 | PX_ASSERT(mag >= PX_NORMALIZATION_EPSILON); |
| 299 | *this *= 1.0f / mag; |
| 300 | return mag; |
| 301 | } |
| 302 | |
| 303 | /** |
| 304 | \brief a[i] * b[i], for all i. |
| 305 | */ |
| 306 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 multiply(const PxVec3& a) const |
| 307 | { |
| 308 | return PxVec3(x*a.x, y*a.y, z*a.z); |
| 309 | } |
| 310 | |
| 311 | /** |
| 312 | \brief element-wise minimum |
| 313 | */ |
| 314 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 minimum(const PxVec3& v) const |
| 315 | { |
| 316 | return PxVec3(PxMin(x, v.x), PxMin(y,v.y), PxMin(z,v.z)); |
| 317 | } |
| 318 | |
| 319 | /** |
| 320 | \brief returns MIN(x, y, z); |
| 321 | */ |
| 322 | PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const |
| 323 | { |
| 324 | return PxMin(x, PxMin(y, z)); |
| 325 | } |
| 326 | |
| 327 | /** |
| 328 | \brief element-wise maximum |
| 329 | */ |
| 330 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 maximum(const PxVec3& v) const |
| 331 | { |
| 332 | return PxVec3(PxMax(x, v.x), PxMax(y,v.y), PxMax(z,v.z)); |
| 333 | } |
| 334 | |
| 335 | /** |
| 336 | \brief returns MAX(x, y, z); |
| 337 | */ |
| 338 | PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const |
| 339 | { |
| 340 | return PxMax(x, PxMax(y, z)); |
| 341 | } |
| 342 | |
| 343 | /** |
| 344 | \brief returns absolute values of components; |
| 345 | */ |
| 346 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 abs() const |
| 347 | { |
| 348 | return PxVec3(PxAbs(x), PxAbs(y), PxAbs(z)); |
| 349 | } |
| 350 | |
| 351 | |
| 352 | PxReal x,y,z; |
| 353 | }; |
| 354 | |
| 355 | PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec3 operator *(PxReal f, const PxVec3& v) |
| 356 | { |
| 357 | return PxVec3(f * v.x, f * v.y, f * v.z); |
| 358 | } |
| 359 | |
| 360 | #ifndef PX_DOXYGEN |
| 361 | } // namespace physx |
| 362 | #endif |
| 363 | |
| 364 | /** @} */ |
| 365 | #endif // PX_FOUNDATION_PX_VEC3_H |
| 366 | |