| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// | 
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// | 
| 3 | #include "CoreThread/BsCoreObject.h" | 
| 4 | #include "CoreThread/BsCoreObjectCore.h" | 
| 5 | #include "CoreThread/BsCoreThread.h" | 
| 6 | #include "CoreThread/BsCoreObjectManager.h" | 
| 7 |  | 
| 8 | using namespace std::placeholders; | 
| 9 |  | 
| 10 | namespace bs | 
| 11 | { | 
| 12 | 	CoreObject::CoreObject(bool initializeOnCoreThread) | 
| 13 | 		: mFlags(initializeOnCoreThread ? CGO_INIT_ON_CORE_THREAD : 0) | 
| 14 | 		, mCoreDirtyFlags(0) | 
| 15 | 		, mInternalID(CoreObjectManager::instance().generateId()) | 
| 16 | 	{ | 
| 17 | 	} | 
| 18 |  | 
| 19 | 	CoreObject::~CoreObject()  | 
| 20 | 	{ | 
| 21 | 		if(!isDestroyed()) | 
| 22 | 		{ | 
| 23 | 			// Object must be released with destroy() otherwise engine can still try to use it, even if it was destructed | 
| 24 | 			// (e.g. if an object has one of its methods queued in a command queue, and is destructed, you will be accessing invalid memory) | 
| 25 | 			BS_EXCEPT(InternalErrorException, "Destructor called but object is not destroyed. This will result in nasty issues." ); | 
| 26 | 		} | 
| 27 |  | 
| 28 | #if BS_DEBUG_MODE | 
| 29 | 		if(!mThis.expired()) | 
| 30 | 		{ | 
| 31 | 			BS_EXCEPT(InternalErrorException, "Shared pointer to this object still has active references but "  \ | 
| 32 | 				"the object is being deleted? You shouldn't delete CoreObjects manually." ); | 
| 33 | 		} | 
| 34 | #endif | 
| 35 | 	} | 
| 36 |  | 
| 37 | 	void CoreObject::destroy() | 
| 38 | 	{ | 
| 39 | 		CoreObjectManager::instance().unregisterObject(this); | 
| 40 | 		setIsDestroyed(true); | 
| 41 |  | 
| 42 | 		if(requiresInitOnCoreThread()) | 
| 43 | 		{ | 
| 44 | 			assert(BS_THREAD_CURRENT_ID != CoreThread::instance().getCoreThreadId() && "Cannot destroy sim thead object from core thread." ); | 
| 45 |  | 
| 46 | 			// This will only destroy the ct::CoreObject if this was the last reference | 
| 47 | 			queueDestroyGpuCommand(mCoreSpecific); | 
| 48 | 		} | 
| 49 |  | 
| 50 | 		mCoreSpecific = nullptr; | 
| 51 | 	} | 
| 52 |  | 
| 53 | 	void CoreObject::initialize() | 
| 54 | 	{ | 
| 55 | 		CoreObjectManager::instance().registerObject(this); | 
| 56 | 		mCoreSpecific = createCore(); | 
| 57 |  | 
| 58 | 		if (mCoreSpecific != nullptr) | 
| 59 | 		{ | 
| 60 | 			if (requiresInitOnCoreThread()) | 
| 61 | 			{ | 
| 62 | 				mCoreSpecific->setScheduledToBeInitialized(true); | 
| 63 |  | 
| 64 | 				assert(BS_THREAD_CURRENT_ID != CoreThread::instance().getCoreThreadId() && "Cannot initialize sim thread object from core thread." ); | 
| 65 |  | 
| 66 | 				queueInitializeGpuCommand(mCoreSpecific); | 
| 67 | 			} | 
| 68 | 			else | 
| 69 | 			{ | 
| 70 | 				mCoreSpecific->initialize(); | 
| 71 |  | 
| 72 | 				// Even though this object might not require initialization on the core thread, it will be used on it, therefore | 
| 73 | 				// do a memory barrier to ensure any stores are finished before continuing (When it requires init on core thread | 
| 74 | 				// we use the core queue which uses a mutex, and therefore executes all stores as well, so we dont need to  | 
| 75 | 				// do this explicitly) | 
| 76 | 				std::atomic_thread_fence(std::memory_order_release); // TODO - Need atomic variable, currently this does nothing | 
| 77 | 			} | 
| 78 | 		} | 
| 79 |  | 
| 80 | 		mFlags |= CGO_INITIALIZED; | 
| 81 | 		markDependenciesDirty(); | 
| 82 | 	} | 
| 83 |  | 
| 84 | 	void CoreObject::blockUntilCoreInitialized() const | 
| 85 | 	{ | 
| 86 | 		if (mCoreSpecific != nullptr) | 
| 87 | 			mCoreSpecific->synchronize(); | 
| 88 | 	} | 
| 89 |  | 
| 90 | 	void CoreObject::syncToCore() | 
| 91 | 	{ | 
| 92 | 		CoreObjectManager::instance().syncToCore(this); | 
| 93 | 	} | 
| 94 |  | 
| 95 | 	void CoreObject::markCoreDirty(UINT32 flags) | 
| 96 | 	{ | 
| 97 | 		bool wasDirty = isCoreDirty(); | 
| 98 |  | 
| 99 | 		mCoreDirtyFlags |= flags; | 
| 100 |  | 
| 101 | 		if (!wasDirty && isCoreDirty()) | 
| 102 | 			CoreObjectManager::instance().notifyCoreDirty(this); | 
| 103 | 	} | 
| 104 |  | 
| 105 | 	void CoreObject::markDependenciesDirty() | 
| 106 | 	{ | 
| 107 | 		CoreObjectManager::instance().notifyDependenciesDirty(this); | 
| 108 | 	} | 
| 109 |  | 
| 110 | 	void CoreObject::_setThisPtr(SPtr<CoreObject> ptrThis) | 
| 111 | 	{ | 
| 112 | 		mThis = ptrThis; | 
| 113 | 	} | 
| 114 |  | 
| 115 | 	void CoreObject::queueGpuCommand(const SPtr<ct::CoreObject>& obj, std::function<void()> func) | 
| 116 | 	{ | 
| 117 | 		// We call another internal method and go through an additional layer of abstraction in order to keep an active | 
| 118 | 		// reference to the obj (saved in the bound function). | 
| 119 | 		// We could have called the function directly using "this" pointer but then we couldn't have used a shared_ptr for the object, | 
| 120 | 		// in which case there is a possibility that the object would be released and deleted while still being in the command queue. | 
| 121 | 		gCoreThread().queueCommand(std::bind(&CoreObject::executeGpuCommand, obj, func)); | 
| 122 | 	} | 
| 123 |  | 
| 124 | 	AsyncOp CoreObject::queueReturnGpuCommand(const SPtr<ct::CoreObject>& obj, std::function<void(AsyncOp&)> func) | 
| 125 | 	{ | 
| 126 | 		// See queueGpuCommand | 
| 127 | 		return gCoreThread().queueReturnCommand(std::bind(&CoreObject::executeReturnGpuCommand, obj, func, _1)); | 
| 128 | 	} | 
| 129 |  | 
| 130 | 	void CoreObject::queueInitializeGpuCommand(const SPtr<ct::CoreObject>& obj) | 
| 131 | 	{ | 
| 132 | 		std::function<void()> func = std::bind(&ct::CoreObject::initialize, obj.get()); | 
| 133 |  | 
| 134 | 		CoreThread::instance().queueCommand(std::bind(&CoreObject::executeGpuCommand, obj, func)); | 
| 135 | 	} | 
| 136 |  | 
| 137 | 	void CoreObject::queueDestroyGpuCommand(const SPtr<ct::CoreObject>& obj) | 
| 138 | 	{ | 
| 139 | 		std::function<void()> func = [&](){}; // Do nothing function. We just need the shared pointer to stay alive until it reaches the core thread | 
| 140 |  | 
| 141 | 		gCoreThread().queueCommand(std::bind(&CoreObject::executeGpuCommand, obj, func)); | 
| 142 | 	} | 
| 143 |  | 
| 144 | 	void CoreObject::executeGpuCommand(const SPtr<ct::CoreObject>& obj, std::function<void()> func) | 
| 145 | 	{ | 
| 146 | 		volatile SPtr<ct::CoreObject> objParam = obj; // Makes sure obj isn't optimized out? | 
| 147 |  | 
| 148 | 		func(); | 
| 149 | 	} | 
| 150 |  | 
| 151 | 	void CoreObject::executeReturnGpuCommand(const SPtr<ct::CoreObject>& obj, std::function<void(AsyncOp&)> func,  | 
| 152 | 		AsyncOp& op) | 
| 153 | 	{ | 
| 154 | 		volatile SPtr<ct::CoreObject> objParam = obj; // Makes sure obj isn't optimized out? | 
| 155 |  | 
| 156 | 		func(op); | 
| 157 | 	} | 
| 158 | } |