| 1 | /* Copyright (C) 2011-2014 Povilas Kanapickas <povilas@radix.lt> |
| 2 | |
| 3 | Distributed under the Boost Software License, Version 1.0. |
| 4 | (See accompanying file LICENSE_1_0.txt or copy at |
| 5 | http://www.boost.org/LICENSE_1_0.txt) |
| 6 | */ |
| 7 | |
| 8 | #ifndef LIBSIMDPP_SIMDPP_DETAIL_INSN_F_FLOOR_H |
| 9 | #define LIBSIMDPP_SIMDPP_DETAIL_INSN_F_FLOOR_H |
| 10 | |
| 11 | #ifndef LIBSIMDPP_SIMD_H |
| 12 | #error "This file must be included through simd.h" |
| 13 | #endif |
| 14 | |
| 15 | #include <cmath> |
| 16 | #include <simdpp/types.h> |
| 17 | #include <simdpp/core/f_abs.h> |
| 18 | #include <simdpp/core/bit_or.h> |
| 19 | #include <simdpp/core/blend.h> |
| 20 | #include <simdpp/core/cmp_eq.h> |
| 21 | #include <simdpp/core/cmp_gt.h> |
| 22 | #include <simdpp/core/i_shift_r.h> |
| 23 | #include <simdpp/core/i_sub.h> |
| 24 | #include <simdpp/core/to_float32.h> |
| 25 | #include <simdpp/core/to_int32.h> |
| 26 | #include <simdpp/detail/vector_array_macros.h> |
| 27 | |
| 28 | namespace simdpp { |
| 29 | namespace SIMDPP_ARCH_NAMESPACE { |
| 30 | namespace detail { |
| 31 | namespace insn { |
| 32 | |
| 33 | |
| 34 | static SIMDPP_INL |
| 35 | float32x4 i_floor(const float32x4& a) |
| 36 | { |
| 37 | #if SIMDPP_USE_NULL || SIMDPP_USE_NEON_NO_FLT_SP |
| 38 | float32x4 r; |
| 39 | for (unsigned i = 0; i < a.length; i++) { |
| 40 | r.el(i) = std::floor(a.el(i)); |
| 41 | } |
| 42 | return r; |
| 43 | #elif SIMDPP_USE_SSE4_1 |
| 44 | return _mm_floor_ps(a.native()); |
| 45 | #elif SIMDPP_USE_NEON64 |
| 46 | return vrndmq_f32(a.native()); |
| 47 | #elif SIMDPP_USE_SSE2 || SIMDPP_USE_NEON_FLT_SP || SIMDPP_USE_MSA |
| 48 | //check if the value is not too large, or is zero |
| 49 | float32x4 ba = abs(a); |
| 50 | mask_float32x4 mask_range = cmp_le(ba, 8388607.0f); |
| 51 | mask_float32x4 mask_nonzero = cmp_gt(ba, 0); |
| 52 | mask_float32x4 mask = bit_and(mask_range, mask_nonzero); // takes care of nans and zeros |
| 53 | |
| 54 | //calculate the i_floor using trunc |
| 55 | int32x4 s = shift_r((uint32x4)a, 31); //=1 if a<0 |
| 56 | float32x4 at = (float32x4) sub((int32x4)a, s); //=nextafter towards +inf, if a<0 |
| 57 | int32x4 ia = to_int32(at); |
| 58 | ia = sub(ia, s); |
| 59 | float32x4 fa = to_float32(ia); |
| 60 | |
| 61 | //combine the results |
| 62 | return blend(fa, a, mask); |
| 63 | #elif SIMDPP_USE_ALTIVEC |
| 64 | return vec_floor(a.native()); |
| 65 | #endif |
| 66 | } |
| 67 | |
| 68 | #if SIMDPP_USE_AVX |
| 69 | static SIMDPP_INL |
| 70 | float32x8 i_floor(const float32x8& a) |
| 71 | { |
| 72 | return _mm256_floor_ps(a.native()); |
| 73 | } |
| 74 | #endif |
| 75 | |
| 76 | #if SIMDPP_USE_AVX512F |
| 77 | static SIMDPP_INL |
| 78 | float32<16> i_floor(const float32<16>& a) |
| 79 | { |
| 80 | return _mm512_floor_ps(a.native()); |
| 81 | } |
| 82 | #endif |
| 83 | |
| 84 | // ----------------------------------------------------------------------------- |
| 85 | |
| 86 | static SIMDPP_INL |
| 87 | float64x2 i_floor(const float64x2& a) |
| 88 | { |
| 89 | #if SIMDPP_USE_SSE4_1 |
| 90 | return _mm_floor_pd(a.native()); |
| 91 | #elif SIMDPP_USE_SSE2 || SIMDPP_USE_MSA |
| 92 | float64x2 af = abs(a); |
| 93 | // check if the value is not too large or is a nan |
| 94 | mask_float64x2 mask_range = cmp_le(af, 4503599627370495.0); |
| 95 | // check if truncate to zero or minus one |
| 96 | mask_float64x2 mask_1to1 = cmp_lt(af, 1.0); |
| 97 | |
| 98 | /* Emulate truncation for numbers not less than 1.0. |
| 99 | This is implemented by clearing the mantissa in the source number, |
| 100 | adding 1.0 and subtracting integer 1. The mantissa of the resulting |
| 101 | number will effectively contain a bit mask defining which bits need to |
| 102 | be cleared off the source number in order to truncate it. |
| 103 | */ |
| 104 | float64x2 clearbits = bit_and(af, 0x7ff0000000000000); // clear the mantissa |
| 105 | clearbits = add(clearbits, 1.0); |
| 106 | clearbits = (float64x2) sub(uint64x2(clearbits), 1); |
| 107 | clearbits = bit_andnot(clearbits, 0xfff0000000000000); // leave only the mantissa |
| 108 | |
| 109 | float64x2 a2 = bit_andnot(a, clearbits); // truncate |
| 110 | |
| 111 | // check if we need to subtract one (truncated bits when negative) |
| 112 | mask_float64x2 mask_neg = cmp_lt(a, 0.0); |
| 113 | mask_float64x2 mask_sub1 = cmp_gt(bit_and(a, clearbits), 0.0); |
| 114 | mask_sub1 = bit_and(mask_sub1, mask_neg); |
| 115 | |
| 116 | // one special case is when 'a' is in the range of (-1.0, 0.0) in which |
| 117 | // a & clearbits may still yield to zero. Thus this additional check |
| 118 | mask_sub1 = bit_or(mask_sub1, bit_and(mask_1to1, mask_neg)); |
| 119 | float64x2 sub1 = make_float(-1.0); |
| 120 | sub1 = bit_and(sub1, mask_sub1); |
| 121 | |
| 122 | a2 = bit_andnot(a, mask_1to1); |
| 123 | a2 = sub(a2, sub1); |
| 124 | |
| 125 | return blend(a2, a, mask_range); |
| 126 | #elif SIMDPP_USE_NEON64 |
| 127 | return vrndnq_f64(a.native()); |
| 128 | #elif SIMDPP_USE_VSX_206 |
| 129 | return vec_floor(a.native()); |
| 130 | #elif SIMDPP_USE_NULL || SIMDPP_USE_NEON32 || SIMDPP_USE_ALTIVEC |
| 131 | float64x2 r; |
| 132 | for (unsigned i = 0; i < r.length; ++i) { |
| 133 | r.el(i) = std::floor(a.el(i)); |
| 134 | } |
| 135 | return r; |
| 136 | #endif |
| 137 | } |
| 138 | |
| 139 | #if SIMDPP_USE_AVX |
| 140 | static SIMDPP_INL |
| 141 | float64x4 i_floor(const float64x4& a) |
| 142 | { |
| 143 | return _mm256_floor_pd(a.native()); |
| 144 | } |
| 145 | #endif |
| 146 | |
| 147 | #if SIMDPP_USE_AVX512F |
| 148 | static SIMDPP_INL |
| 149 | float64<8> i_floor(const float64<8>& a) |
| 150 | { |
| 151 | return _mm512_floor_pd(a.native()); |
| 152 | } |
| 153 | #endif |
| 154 | |
| 155 | template<class V> SIMDPP_INL |
| 156 | V i_floor(const V& a) |
| 157 | { |
| 158 | SIMDPP_VEC_ARRAY_IMPL1(V, i_floor, a); |
| 159 | } |
| 160 | |
| 161 | } // namespace insn |
| 162 | } // namespace detail |
| 163 | } // namespace SIMDPP_ARCH_NAMESPACE |
| 164 | } // namespace simdpp |
| 165 | |
| 166 | #endif |
| 167 | |
| 168 | |