| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************//
|
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********//
|
| 3 | #pragma once
|
| 4 |
|
| 5 | namespace bs
|
| 6 | {
|
| 7 | /** @addtogroup General
|
| 8 | * @{
|
| 9 | */
|
| 10 |
|
| 11 | /**
|
| 12 | * Dynamically sized container that statically allocates enough room for @p N elements of type @p Type. If the element
|
| 13 | * count exceeds the statically allocated buffer size the vector falls back to general purpose dynamic allocator.
|
| 14 | */
|
| 15 | template <class Type, UINT32 N>
|
| 16 | class SmallVector final
|
| 17 | {
|
| 18 | public:
|
| 19 | typedef Type ValueType;
|
| 20 | typedef Type* Iterator;
|
| 21 | typedef const Type* ConstIterator;
|
| 22 | typedef std::reverse_iterator<Type*> ReverseIterator;
|
| 23 | typedef std::reverse_iterator<const Type*> ConstReverseIterator;
|
| 24 |
|
| 25 | SmallVector() = default;
|
| 26 | SmallVector(const SmallVector<ValueType, N>& other)
|
| 27 | {
|
| 28 | if(!other.empty())
|
| 29 | *this = other;
|
| 30 | }
|
| 31 |
|
| 32 | SmallVector(SmallVector<ValueType, N>&& other)
|
| 33 | {
|
| 34 | if(!other.empty())
|
| 35 | *this = std::move(other);
|
| 36 | }
|
| 37 |
|
| 38 | SmallVector(UINT32 size, const Type& value = Type())
|
| 39 | {
|
| 40 | append(size, value);
|
| 41 | }
|
| 42 |
|
| 43 | SmallVector(std::initializer_list<Type> list)
|
| 44 | {
|
| 45 | append(list);
|
| 46 | }
|
| 47 |
|
| 48 | ~SmallVector()
|
| 49 | {
|
| 50 | for (auto& entry : *this)
|
| 51 | entry.~Type();
|
| 52 |
|
| 53 | if(!isSmall())
|
| 54 | bs_free(mElements);
|
| 55 | }
|
| 56 |
|
| 57 | SmallVector<ValueType, N>& operator= (const SmallVector<ValueType, N>& other)
|
| 58 | {
|
| 59 | if(this == &other)
|
| 60 | return *this;
|
| 61 |
|
| 62 | UINT32 mySize = size();
|
| 63 | const UINT32 otherSize = other.size();
|
| 64 |
|
| 65 | // Use assignment copy if we have more elements than the other array, and destroy any excess elements
|
| 66 | if(mySize > otherSize)
|
| 67 | {
|
| 68 | Iterator newEnd;
|
| 69 | if(otherSize > 0)
|
| 70 | newEnd = std::copy(other.begin(), other.end(), begin());
|
| 71 | else
|
| 72 | newEnd = begin();
|
| 73 |
|
| 74 | for(;newEnd != end(); ++newEnd)
|
| 75 | (*newEnd).~Type();
|
| 76 |
|
| 77 | }
|
| 78 | // Otherwise we need to partially copy (up to our size), and do uninitialized copy for rest. And an optional
|
| 79 | // grow if our capacity isn't enough (in which case we do uninitialized copy for all).
|
| 80 | else
|
| 81 | {
|
| 82 | if (otherSize > mCapacity)
|
| 83 | {
|
| 84 | clear();
|
| 85 | mySize = 0;
|
| 86 |
|
| 87 | grow(otherSize);
|
| 88 | }
|
| 89 | else if (mySize > 0)
|
| 90 | std::copy(other.begin(), other.begin() + mySize, begin());
|
| 91 |
|
| 92 | std::uninitialized_copy(other.begin() + mySize, other.end(), begin() + mySize);
|
| 93 | }
|
| 94 |
|
| 95 | mSize = otherSize;
|
| 96 | return *this;
|
| 97 | }
|
| 98 |
|
| 99 | SmallVector<ValueType, N>& operator= (SmallVector<ValueType, N>&& other)
|
| 100 | {
|
| 101 | if(this == &other)
|
| 102 | return *this;
|
| 103 |
|
| 104 | // If the other buffer isn't small, we can just steal its buffer
|
| 105 | if(!other.isSmall())
|
| 106 | {
|
| 107 | for(auto& entry : *this)
|
| 108 | entry.~Type();
|
| 109 |
|
| 110 | if(!isSmall())
|
| 111 | bs_free(mElements);
|
| 112 |
|
| 113 | mElements = other.mElements;
|
| 114 | other.mElements = (Type*)other.mStorage;
|
| 115 | mSize = std::exchange(other.mSize, 0);
|
| 116 | mCapacity = std::exchange(other.mCapacity, N);
|
| 117 | }
|
| 118 | // Otherwise we do essentially the same thing as in non-move assigment, except for also clearing the other
|
| 119 | // vector
|
| 120 | else
|
| 121 | {
|
| 122 | UINT32 mySize = size();
|
| 123 | const UINT32 otherSize = other.size();
|
| 124 |
|
| 125 | // Use assignment copy if we have more elements than the other array, and destroy any excess elements
|
| 126 | if(mySize > otherSize)
|
| 127 | {
|
| 128 | Iterator newEnd;
|
| 129 | if(otherSize > 0)
|
| 130 | newEnd = std::move(other.begin(), other.end(), begin());
|
| 131 | else
|
| 132 | newEnd = begin();
|
| 133 |
|
| 134 | for(;newEnd != end(); ++newEnd)
|
| 135 | (*newEnd).~Type();
|
| 136 | }
|
| 137 | else
|
| 138 | {
|
| 139 | if (otherSize > mCapacity)
|
| 140 | {
|
| 141 | clear();
|
| 142 | mySize = 0;
|
| 143 |
|
| 144 | grow(otherSize);
|
| 145 | }
|
| 146 | else if (mySize > 0)
|
| 147 | std::move(other.begin(), other.begin() + mySize, begin());
|
| 148 |
|
| 149 | std::uninitialized_copy(
|
| 150 | std::make_move_iterator(other.begin() + mySize),
|
| 151 | std::make_move_iterator(other.end()),
|
| 152 | begin() + mySize);
|
| 153 | }
|
| 154 |
|
| 155 | mSize = otherSize;
|
| 156 | other.clear();
|
| 157 | }
|
| 158 |
|
| 159 | return *this;
|
| 160 | }
|
| 161 |
|
| 162 | SmallVector<ValueType, N>& operator=(std::initializer_list<Type> list)
|
| 163 | {
|
| 164 | UINT32 mySize = size();
|
| 165 | const UINT32 otherSize = (UINT32)list.size();
|
| 166 |
|
| 167 | // Use assignment copy if we have more elements than the list, and destroy any excess elements
|
| 168 | if(mySize > otherSize)
|
| 169 | {
|
| 170 | Iterator newEnd;
|
| 171 | if(otherSize > 0)
|
| 172 | newEnd = std::copy(list.begin(), list.end(), begin());
|
| 173 | else
|
| 174 | newEnd = begin();
|
| 175 |
|
| 176 | for(;newEnd != end(); ++newEnd)
|
| 177 | (*newEnd).~Type();
|
| 178 |
|
| 179 | }
|
| 180 | // Otherwise we need to partially copy (up to our size), and do uninitialized copy for rest. And an optional
|
| 181 | // grow if our capacity isn't enough (in which case we do uninitialized copy for all).
|
| 182 | else
|
| 183 | {
|
| 184 | if (otherSize > mCapacity)
|
| 185 | {
|
| 186 | clear();
|
| 187 | mySize = 0;
|
| 188 |
|
| 189 | grow(otherSize);
|
| 190 | }
|
| 191 | else if (mySize > 0)
|
| 192 | std::copy(list.begin(), list.begin() + mySize, begin());
|
| 193 |
|
| 194 | std::uninitialized_copy(list.begin() + mySize, list.end(), begin() + mySize);
|
| 195 | }
|
| 196 |
|
| 197 | mSize = otherSize;
|
| 198 | return *this;;
|
| 199 | }
|
| 200 |
|
| 201 | bool operator== (const SmallVector<ValueType, N>& other)
|
| 202 | {
|
| 203 | if (this->size() != other.size()) return false;
|
| 204 | return std::equal(this->begin(), this->end(), other.begin());
|
| 205 | }
|
| 206 |
|
| 207 | bool operator!= (const SmallVector<ValueType, N>& other)
|
| 208 | {
|
| 209 | return !(*this == other);
|
| 210 | }
|
| 211 |
|
| 212 | bool operator< (const SmallVector<ValueType, N>& other) const
|
| 213 | {
|
| 214 | return std::lexicographical_compare(begin(), end(), other.begin(), other.end());
|
| 215 | }
|
| 216 |
|
| 217 | bool operator> (const SmallVector<ValueType, N>& other) const
|
| 218 | {
|
| 219 | return other < *this;
|
| 220 | }
|
| 221 |
|
| 222 | bool operator<= (const SmallVector<ValueType, N>& other) const
|
| 223 | {
|
| 224 | return !(other < *this);
|
| 225 | }
|
| 226 |
|
| 227 | bool operator>= (const SmallVector<ValueType, N>& other) const
|
| 228 | {
|
| 229 | return !(*this < other);
|
| 230 | }
|
| 231 |
|
| 232 | Type& operator[] (UINT32 index)
|
| 233 | {
|
| 234 | assert(index < mSize && "Array index out-of-range." );
|
| 235 |
|
| 236 | return mElements[index];
|
| 237 | }
|
| 238 |
|
| 239 | const Type& operator[] (UINT32 index) const
|
| 240 | {
|
| 241 | assert(index < mSize && "Array index out-of-range." );
|
| 242 |
|
| 243 | return mElements[index];
|
| 244 | }
|
| 245 |
|
| 246 | bool empty() const { return mSize == 0; }
|
| 247 |
|
| 248 | Iterator begin() { return mElements; }
|
| 249 | Iterator end() { return mElements + mSize; }
|
| 250 |
|
| 251 | ConstIterator begin() const { return mElements; }
|
| 252 | ConstIterator end() const { return mElements + mSize; }
|
| 253 |
|
| 254 | ConstIterator cbegin() const { return mElements; }
|
| 255 | ConstIterator cend() const { return mElements + mSize; }
|
| 256 |
|
| 257 | ReverseIterator rbegin() { return ReverseIterator(end()); }
|
| 258 | ReverseIterator rend() { return ReverseIterator(begin()); }
|
| 259 |
|
| 260 | ConstReverseIterator rbegin() const { return ConstReverseIterator(end()); }
|
| 261 | ConstReverseIterator rend() const { return ConstReverseIterator(begin()); }
|
| 262 |
|
| 263 | ConstReverseIterator crbegin() const { return ConstReverseIterator(end()); }
|
| 264 | ConstReverseIterator crend() const { return ConstReverseIterator(begin()); }
|
| 265 |
|
| 266 | UINT32 size() const { return mSize; }
|
| 267 | UINT32 capacity() const { return mCapacity; }
|
| 268 |
|
| 269 | Type* data() { return mElements; }
|
| 270 | const Type* data() const { return mElements; }
|
| 271 |
|
| 272 | Type& front()
|
| 273 | {
|
| 274 | assert(!empty());
|
| 275 | return mElements[0];
|
| 276 | }
|
| 277 |
|
| 278 | Type& back()
|
| 279 | {
|
| 280 | assert(!empty());
|
| 281 | return mElements[mSize - 1];
|
| 282 | }
|
| 283 |
|
| 284 | const Type& front() const
|
| 285 | {
|
| 286 | assert(!empty());
|
| 287 | return mElements[0];
|
| 288 | }
|
| 289 |
|
| 290 | const Type& back() const
|
| 291 | {
|
| 292 | assert(!empty());
|
| 293 | return mElements[mSize - 1];
|
| 294 | }
|
| 295 |
|
| 296 | void add(const Type& element)
|
| 297 | {
|
| 298 | if (mSize == mCapacity)
|
| 299 | grow(mCapacity << 1);
|
| 300 |
|
| 301 | new (&mElements[mSize++]) Type(element);
|
| 302 | }
|
| 303 |
|
| 304 | void add(Type&& element)
|
| 305 | {
|
| 306 | if (mSize == mCapacity)
|
| 307 | grow(mCapacity << 1);
|
| 308 |
|
| 309 | new (&mElements[mSize++]) Type(std::move(element));
|
| 310 | }
|
| 311 |
|
| 312 | void append(ConstIterator start, ConstIterator end)
|
| 313 | {
|
| 314 | const UINT32 count = (UINT32)std::distance(start, end);
|
| 315 |
|
| 316 | if ((size() + count) > capacity())
|
| 317 | this->grow(size() + count);
|
| 318 |
|
| 319 | std::uninitialized_copy(start, end, this->end());
|
| 320 | mSize += count;
|
| 321 | }
|
| 322 |
|
| 323 | void append(UINT32 count, const Type& element)
|
| 324 | {
|
| 325 | if ((size() + count) > capacity())
|
| 326 | this->grow(size() + count);
|
| 327 |
|
| 328 | std::uninitialized_fill_n(end(), count, element);
|
| 329 | mSize += count;
|
| 330 | }
|
| 331 |
|
| 332 | void append(std::initializer_list<Type> list)
|
| 333 | {
|
| 334 | append(list.begin(), list.end());
|
| 335 | }
|
| 336 |
|
| 337 | void pop()
|
| 338 | {
|
| 339 | assert(mSize > 0 && "Popping an empty array." );
|
| 340 | mSize--;
|
| 341 | mElements[mSize].~Type();
|
| 342 | }
|
| 343 |
|
| 344 | Iterator erase(ConstIterator iter)
|
| 345 | {
|
| 346 | assert(iter >= begin() && "Iterator to erase is out of bounds." );
|
| 347 | assert(iter < end() && "Erasing at past-the-end iterator." );
|
| 348 |
|
| 349 | Iterator toErase = const_cast<Iterator>(iter);
|
| 350 | std::move(toErase + 1, end(), toErase);
|
| 351 | pop();
|
| 352 |
|
| 353 | return toErase;
|
| 354 | }
|
| 355 |
|
| 356 | void remove(UINT32 index)
|
| 357 | {
|
| 358 | erase(begin() + index);
|
| 359 | }
|
| 360 |
|
| 361 | bool contains(const Type& element)
|
| 362 | {
|
| 363 | for (UINT32 i = 0; i < mSize; i++)
|
| 364 | {
|
| 365 | if (mElements[i] == element)
|
| 366 | return true;
|
| 367 | }
|
| 368 |
|
| 369 | return false;
|
| 370 | }
|
| 371 |
|
| 372 | void removeValue(const Type& element)
|
| 373 | {
|
| 374 | for (UINT32 i = 0; i < mSize; i++)
|
| 375 | {
|
| 376 | if (mElements[i] == element)
|
| 377 | {
|
| 378 | remove(i);
|
| 379 | break;
|
| 380 | }
|
| 381 | }
|
| 382 | }
|
| 383 |
|
| 384 | void clear()
|
| 385 | {
|
| 386 | for (UINT32 i = 0; i < mSize; ++i)
|
| 387 | mElements[i].~Type();
|
| 388 |
|
| 389 | mSize = 0;
|
| 390 | }
|
| 391 |
|
| 392 | void reserve(UINT32 capacity)
|
| 393 | {
|
| 394 | if (capacity > mCapacity)
|
| 395 | grow(capacity);
|
| 396 | }
|
| 397 |
|
| 398 | void resize(UINT32 size, const Type& value = Type())
|
| 399 | {
|
| 400 | if(size > mCapacity)
|
| 401 | grow(size);
|
| 402 |
|
| 403 | if(size > mSize)
|
| 404 | {
|
| 405 | for(UINT32 i = mSize; i < size; i++)
|
| 406 | new (&mElements[i]) Type(value);
|
| 407 | }
|
| 408 | else
|
| 409 | {
|
| 410 | for(UINT32 i = size; i < mSize; i++)
|
| 411 | mElements[i].~Type();
|
| 412 | }
|
| 413 |
|
| 414 | mSize = size;
|
| 415 | }
|
| 416 |
|
| 417 | private:
|
| 418 | /** Returns true if the vector is still using its static memory and hasn't made any dynamic allocations. */
|
| 419 | bool isSmall() const { return mElements == (Type*)mStorage; }
|
| 420 |
|
| 421 | void grow(UINT32 capacity)
|
| 422 | {
|
| 423 | assert(capacity > N);
|
| 424 |
|
| 425 | // Allocate memory with the new capacity (caller guarantees never to call this with capacity <= N, so we don't
|
| 426 | // need to worry about the static buffer)
|
| 427 | Type* buffer = bs_allocN<Type>(capacity);
|
| 428 |
|
| 429 | // Move any existing elements
|
| 430 | std::uninitialized_copy(
|
| 431 | std::make_move_iterator(begin()),
|
| 432 | std::make_move_iterator(end()),
|
| 433 | buffer);
|
| 434 |
|
| 435 | // Destoy existing elements in old memory
|
| 436 | for (auto& entry : *this)
|
| 437 | entry.~Type();
|
| 438 |
|
| 439 | // If the current buffer is dynamically allocated, free it
|
| 440 | if(!isSmall())
|
| 441 | bs_free(mElements);
|
| 442 |
|
| 443 | mElements = buffer;
|
| 444 | mCapacity = capacity;
|
| 445 | }
|
| 446 |
|
| 447 | std::aligned_storage_t<sizeof(Type), alignof(Type)> mStorage[N];
|
| 448 | Type* mElements = (Type*)mStorage;
|
| 449 |
|
| 450 | UINT32 mSize = 0;
|
| 451 | UINT32 mCapacity = N;
|
| 452 | };
|
| 453 |
|
| 454 | /** @} */
|
| 455 |
|
| 456 | /** @cond SPECIALIZATIONS */
|
| 457 |
|
| 458 | /**
|
| 459 | * RTTIPlainType for SmallVector.
|
| 460 | *
|
| 461 | * @see RTTIPlainType
|
| 462 | */
|
| 463 | template<class T, UINT32 N> struct RTTIPlainType<SmallVector<T, N>>
|
| 464 | {
|
| 465 | enum { id = TID_SmallVector }; enum { hasDynamicSize = 1 };
|
| 466 |
|
| 467 | /** @copydoc RTTIPlainType::toMemory */
|
| 468 | static void toMemory(const SmallVector<T, N>& data, char* memory)
|
| 469 | {
|
| 470 | UINT32 size = sizeof(UINT32);
|
| 471 | char* memoryStart = memory;
|
| 472 | memory += sizeof(UINT32);
|
| 473 |
|
| 474 | UINT32 numElements = (UINT32)data.size();
|
| 475 | memcpy(memory, &numElements, sizeof(UINT32));
|
| 476 | memory += sizeof(UINT32);
|
| 477 | size += sizeof(UINT32);
|
| 478 |
|
| 479 | for(const auto& item : data)
|
| 480 | {
|
| 481 | UINT32 elementSize = rttiGetElemSize(item);
|
| 482 | RTTIPlainType<T>::toMemory(item, memory);
|
| 483 |
|
| 484 | memory += elementSize;
|
| 485 | size += elementSize;
|
| 486 | }
|
| 487 |
|
| 488 | memcpy(memoryStart, &size, sizeof(UINT32));
|
| 489 | }
|
| 490 |
|
| 491 | /** @copydoc RTTIPlainType::fromMemory */
|
| 492 | static UINT32 fromMemory(SmallVector<T, N>& data, char* memory)
|
| 493 | {
|
| 494 | UINT32 size = 0;
|
| 495 | memcpy(&size, memory, sizeof(UINT32));
|
| 496 | memory += sizeof(UINT32);
|
| 497 |
|
| 498 | UINT32 numElements;
|
| 499 | memcpy(&numElements, memory, sizeof(UINT32));
|
| 500 | memory += sizeof(UINT32);
|
| 501 |
|
| 502 | data.clear();
|
| 503 | for(UINT32 i = 0; i < numElements; i++)
|
| 504 | {
|
| 505 | T element;
|
| 506 | UINT32 elementSize = RTTIPlainType<T>::fromMemory(element, memory);
|
| 507 | data.add(element);
|
| 508 |
|
| 509 | memory += elementSize;
|
| 510 | }
|
| 511 |
|
| 512 | return size;
|
| 513 | }
|
| 514 |
|
| 515 | /** @copydoc RTTIPlainType::getDynamicSize */
|
| 516 | static UINT32 getDynamicSize(const SmallVector<T, N>& data)
|
| 517 | {
|
| 518 | UINT64 dataSize = sizeof(UINT32) * 2;
|
| 519 |
|
| 520 | for(const auto& item : data)
|
| 521 | dataSize += rttiGetElemSize(item);
|
| 522 |
|
| 523 | assert(dataSize <= std::numeric_limits<UINT32>::max());
|
| 524 |
|
| 525 | return (UINT32)dataSize;
|
| 526 | }
|
| 527 | };
|
| 528 |
|
| 529 | /** @endcond */
|
| 530 | } |