1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************//
|
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********//
|
3 | #pragma once
|
4 |
|
5 | namespace bs
|
6 | {
|
7 | /** @addtogroup General
|
8 | * @{
|
9 | */
|
10 |
|
11 | /**
|
12 | * Dynamically sized container that statically allocates enough room for @p N elements of type @p Type. If the element
|
13 | * count exceeds the statically allocated buffer size the vector falls back to general purpose dynamic allocator.
|
14 | */
|
15 | template <class Type, UINT32 N>
|
16 | class SmallVector final
|
17 | {
|
18 | public:
|
19 | typedef Type ValueType;
|
20 | typedef Type* Iterator;
|
21 | typedef const Type* ConstIterator;
|
22 | typedef std::reverse_iterator<Type*> ReverseIterator;
|
23 | typedef std::reverse_iterator<const Type*> ConstReverseIterator;
|
24 |
|
25 | SmallVector() = default;
|
26 | SmallVector(const SmallVector<ValueType, N>& other)
|
27 | {
|
28 | if(!other.empty())
|
29 | *this = other;
|
30 | }
|
31 |
|
32 | SmallVector(SmallVector<ValueType, N>&& other)
|
33 | {
|
34 | if(!other.empty())
|
35 | *this = std::move(other);
|
36 | }
|
37 |
|
38 | SmallVector(UINT32 size, const Type& value = Type())
|
39 | {
|
40 | append(size, value);
|
41 | }
|
42 |
|
43 | SmallVector(std::initializer_list<Type> list)
|
44 | {
|
45 | append(list);
|
46 | }
|
47 |
|
48 | ~SmallVector()
|
49 | {
|
50 | for (auto& entry : *this)
|
51 | entry.~Type();
|
52 |
|
53 | if(!isSmall())
|
54 | bs_free(mElements);
|
55 | }
|
56 |
|
57 | SmallVector<ValueType, N>& operator= (const SmallVector<ValueType, N>& other)
|
58 | {
|
59 | if(this == &other)
|
60 | return *this;
|
61 |
|
62 | UINT32 mySize = size();
|
63 | const UINT32 otherSize = other.size();
|
64 |
|
65 | // Use assignment copy if we have more elements than the other array, and destroy any excess elements
|
66 | if(mySize > otherSize)
|
67 | {
|
68 | Iterator newEnd;
|
69 | if(otherSize > 0)
|
70 | newEnd = std::copy(other.begin(), other.end(), begin());
|
71 | else
|
72 | newEnd = begin();
|
73 |
|
74 | for(;newEnd != end(); ++newEnd)
|
75 | (*newEnd).~Type();
|
76 |
|
77 | }
|
78 | // Otherwise we need to partially copy (up to our size), and do uninitialized copy for rest. And an optional
|
79 | // grow if our capacity isn't enough (in which case we do uninitialized copy for all).
|
80 | else
|
81 | {
|
82 | if (otherSize > mCapacity)
|
83 | {
|
84 | clear();
|
85 | mySize = 0;
|
86 |
|
87 | grow(otherSize);
|
88 | }
|
89 | else if (mySize > 0)
|
90 | std::copy(other.begin(), other.begin() + mySize, begin());
|
91 |
|
92 | std::uninitialized_copy(other.begin() + mySize, other.end(), begin() + mySize);
|
93 | }
|
94 |
|
95 | mSize = otherSize;
|
96 | return *this;
|
97 | }
|
98 |
|
99 | SmallVector<ValueType, N>& operator= (SmallVector<ValueType, N>&& other)
|
100 | {
|
101 | if(this == &other)
|
102 | return *this;
|
103 |
|
104 | // If the other buffer isn't small, we can just steal its buffer
|
105 | if(!other.isSmall())
|
106 | {
|
107 | for(auto& entry : *this)
|
108 | entry.~Type();
|
109 |
|
110 | if(!isSmall())
|
111 | bs_free(mElements);
|
112 |
|
113 | mElements = other.mElements;
|
114 | other.mElements = (Type*)other.mStorage;
|
115 | mSize = std::exchange(other.mSize, 0);
|
116 | mCapacity = std::exchange(other.mCapacity, N);
|
117 | }
|
118 | // Otherwise we do essentially the same thing as in non-move assigment, except for also clearing the other
|
119 | // vector
|
120 | else
|
121 | {
|
122 | UINT32 mySize = size();
|
123 | const UINT32 otherSize = other.size();
|
124 |
|
125 | // Use assignment copy if we have more elements than the other array, and destroy any excess elements
|
126 | if(mySize > otherSize)
|
127 | {
|
128 | Iterator newEnd;
|
129 | if(otherSize > 0)
|
130 | newEnd = std::move(other.begin(), other.end(), begin());
|
131 | else
|
132 | newEnd = begin();
|
133 |
|
134 | for(;newEnd != end(); ++newEnd)
|
135 | (*newEnd).~Type();
|
136 | }
|
137 | else
|
138 | {
|
139 | if (otherSize > mCapacity)
|
140 | {
|
141 | clear();
|
142 | mySize = 0;
|
143 |
|
144 | grow(otherSize);
|
145 | }
|
146 | else if (mySize > 0)
|
147 | std::move(other.begin(), other.begin() + mySize, begin());
|
148 |
|
149 | std::uninitialized_copy(
|
150 | std::make_move_iterator(other.begin() + mySize),
|
151 | std::make_move_iterator(other.end()),
|
152 | begin() + mySize);
|
153 | }
|
154 |
|
155 | mSize = otherSize;
|
156 | other.clear();
|
157 | }
|
158 |
|
159 | return *this;
|
160 | }
|
161 |
|
162 | SmallVector<ValueType, N>& operator=(std::initializer_list<Type> list)
|
163 | {
|
164 | UINT32 mySize = size();
|
165 | const UINT32 otherSize = (UINT32)list.size();
|
166 |
|
167 | // Use assignment copy if we have more elements than the list, and destroy any excess elements
|
168 | if(mySize > otherSize)
|
169 | {
|
170 | Iterator newEnd;
|
171 | if(otherSize > 0)
|
172 | newEnd = std::copy(list.begin(), list.end(), begin());
|
173 | else
|
174 | newEnd = begin();
|
175 |
|
176 | for(;newEnd != end(); ++newEnd)
|
177 | (*newEnd).~Type();
|
178 |
|
179 | }
|
180 | // Otherwise we need to partially copy (up to our size), and do uninitialized copy for rest. And an optional
|
181 | // grow if our capacity isn't enough (in which case we do uninitialized copy for all).
|
182 | else
|
183 | {
|
184 | if (otherSize > mCapacity)
|
185 | {
|
186 | clear();
|
187 | mySize = 0;
|
188 |
|
189 | grow(otherSize);
|
190 | }
|
191 | else if (mySize > 0)
|
192 | std::copy(list.begin(), list.begin() + mySize, begin());
|
193 |
|
194 | std::uninitialized_copy(list.begin() + mySize, list.end(), begin() + mySize);
|
195 | }
|
196 |
|
197 | mSize = otherSize;
|
198 | return *this;;
|
199 | }
|
200 |
|
201 | bool operator== (const SmallVector<ValueType, N>& other)
|
202 | {
|
203 | if (this->size() != other.size()) return false;
|
204 | return std::equal(this->begin(), this->end(), other.begin());
|
205 | }
|
206 |
|
207 | bool operator!= (const SmallVector<ValueType, N>& other)
|
208 | {
|
209 | return !(*this == other);
|
210 | }
|
211 |
|
212 | bool operator< (const SmallVector<ValueType, N>& other) const
|
213 | {
|
214 | return std::lexicographical_compare(begin(), end(), other.begin(), other.end());
|
215 | }
|
216 |
|
217 | bool operator> (const SmallVector<ValueType, N>& other) const
|
218 | {
|
219 | return other < *this;
|
220 | }
|
221 |
|
222 | bool operator<= (const SmallVector<ValueType, N>& other) const
|
223 | {
|
224 | return !(other < *this);
|
225 | }
|
226 |
|
227 | bool operator>= (const SmallVector<ValueType, N>& other) const
|
228 | {
|
229 | return !(*this < other);
|
230 | }
|
231 |
|
232 | Type& operator[] (UINT32 index)
|
233 | {
|
234 | assert(index < mSize && "Array index out-of-range." );
|
235 |
|
236 | return mElements[index];
|
237 | }
|
238 |
|
239 | const Type& operator[] (UINT32 index) const
|
240 | {
|
241 | assert(index < mSize && "Array index out-of-range." );
|
242 |
|
243 | return mElements[index];
|
244 | }
|
245 |
|
246 | bool empty() const { return mSize == 0; }
|
247 |
|
248 | Iterator begin() { return mElements; }
|
249 | Iterator end() { return mElements + mSize; }
|
250 |
|
251 | ConstIterator begin() const { return mElements; }
|
252 | ConstIterator end() const { return mElements + mSize; }
|
253 |
|
254 | ConstIterator cbegin() const { return mElements; }
|
255 | ConstIterator cend() const { return mElements + mSize; }
|
256 |
|
257 | ReverseIterator rbegin() { return ReverseIterator(end()); }
|
258 | ReverseIterator rend() { return ReverseIterator(begin()); }
|
259 |
|
260 | ConstReverseIterator rbegin() const { return ConstReverseIterator(end()); }
|
261 | ConstReverseIterator rend() const { return ConstReverseIterator(begin()); }
|
262 |
|
263 | ConstReverseIterator crbegin() const { return ConstReverseIterator(end()); }
|
264 | ConstReverseIterator crend() const { return ConstReverseIterator(begin()); }
|
265 |
|
266 | UINT32 size() const { return mSize; }
|
267 | UINT32 capacity() const { return mCapacity; }
|
268 |
|
269 | Type* data() { return mElements; }
|
270 | const Type* data() const { return mElements; }
|
271 |
|
272 | Type& front()
|
273 | {
|
274 | assert(!empty());
|
275 | return mElements[0];
|
276 | }
|
277 |
|
278 | Type& back()
|
279 | {
|
280 | assert(!empty());
|
281 | return mElements[mSize - 1];
|
282 | }
|
283 |
|
284 | const Type& front() const
|
285 | {
|
286 | assert(!empty());
|
287 | return mElements[0];
|
288 | }
|
289 |
|
290 | const Type& back() const
|
291 | {
|
292 | assert(!empty());
|
293 | return mElements[mSize - 1];
|
294 | }
|
295 |
|
296 | void add(const Type& element)
|
297 | {
|
298 | if (mSize == mCapacity)
|
299 | grow(mCapacity << 1);
|
300 |
|
301 | new (&mElements[mSize++]) Type(element);
|
302 | }
|
303 |
|
304 | void add(Type&& element)
|
305 | {
|
306 | if (mSize == mCapacity)
|
307 | grow(mCapacity << 1);
|
308 |
|
309 | new (&mElements[mSize++]) Type(std::move(element));
|
310 | }
|
311 |
|
312 | void append(ConstIterator start, ConstIterator end)
|
313 | {
|
314 | const UINT32 count = (UINT32)std::distance(start, end);
|
315 |
|
316 | if ((size() + count) > capacity())
|
317 | this->grow(size() + count);
|
318 |
|
319 | std::uninitialized_copy(start, end, this->end());
|
320 | mSize += count;
|
321 | }
|
322 |
|
323 | void append(UINT32 count, const Type& element)
|
324 | {
|
325 | if ((size() + count) > capacity())
|
326 | this->grow(size() + count);
|
327 |
|
328 | std::uninitialized_fill_n(end(), count, element);
|
329 | mSize += count;
|
330 | }
|
331 |
|
332 | void append(std::initializer_list<Type> list)
|
333 | {
|
334 | append(list.begin(), list.end());
|
335 | }
|
336 |
|
337 | void pop()
|
338 | {
|
339 | assert(mSize > 0 && "Popping an empty array." );
|
340 | mSize--;
|
341 | mElements[mSize].~Type();
|
342 | }
|
343 |
|
344 | Iterator erase(ConstIterator iter)
|
345 | {
|
346 | assert(iter >= begin() && "Iterator to erase is out of bounds." );
|
347 | assert(iter < end() && "Erasing at past-the-end iterator." );
|
348 |
|
349 | Iterator toErase = const_cast<Iterator>(iter);
|
350 | std::move(toErase + 1, end(), toErase);
|
351 | pop();
|
352 |
|
353 | return toErase;
|
354 | }
|
355 |
|
356 | void remove(UINT32 index)
|
357 | {
|
358 | erase(begin() + index);
|
359 | }
|
360 |
|
361 | bool contains(const Type& element)
|
362 | {
|
363 | for (UINT32 i = 0; i < mSize; i++)
|
364 | {
|
365 | if (mElements[i] == element)
|
366 | return true;
|
367 | }
|
368 |
|
369 | return false;
|
370 | }
|
371 |
|
372 | void removeValue(const Type& element)
|
373 | {
|
374 | for (UINT32 i = 0; i < mSize; i++)
|
375 | {
|
376 | if (mElements[i] == element)
|
377 | {
|
378 | remove(i);
|
379 | break;
|
380 | }
|
381 | }
|
382 | }
|
383 |
|
384 | void clear()
|
385 | {
|
386 | for (UINT32 i = 0; i < mSize; ++i)
|
387 | mElements[i].~Type();
|
388 |
|
389 | mSize = 0;
|
390 | }
|
391 |
|
392 | void reserve(UINT32 capacity)
|
393 | {
|
394 | if (capacity > mCapacity)
|
395 | grow(capacity);
|
396 | }
|
397 |
|
398 | void resize(UINT32 size, const Type& value = Type())
|
399 | {
|
400 | if(size > mCapacity)
|
401 | grow(size);
|
402 |
|
403 | if(size > mSize)
|
404 | {
|
405 | for(UINT32 i = mSize; i < size; i++)
|
406 | new (&mElements[i]) Type(value);
|
407 | }
|
408 | else
|
409 | {
|
410 | for(UINT32 i = size; i < mSize; i++)
|
411 | mElements[i].~Type();
|
412 | }
|
413 |
|
414 | mSize = size;
|
415 | }
|
416 |
|
417 | private:
|
418 | /** Returns true if the vector is still using its static memory and hasn't made any dynamic allocations. */
|
419 | bool isSmall() const { return mElements == (Type*)mStorage; }
|
420 |
|
421 | void grow(UINT32 capacity)
|
422 | {
|
423 | assert(capacity > N);
|
424 |
|
425 | // Allocate memory with the new capacity (caller guarantees never to call this with capacity <= N, so we don't
|
426 | // need to worry about the static buffer)
|
427 | Type* buffer = bs_allocN<Type>(capacity);
|
428 |
|
429 | // Move any existing elements
|
430 | std::uninitialized_copy(
|
431 | std::make_move_iterator(begin()),
|
432 | std::make_move_iterator(end()),
|
433 | buffer);
|
434 |
|
435 | // Destoy existing elements in old memory
|
436 | for (auto& entry : *this)
|
437 | entry.~Type();
|
438 |
|
439 | // If the current buffer is dynamically allocated, free it
|
440 | if(!isSmall())
|
441 | bs_free(mElements);
|
442 |
|
443 | mElements = buffer;
|
444 | mCapacity = capacity;
|
445 | }
|
446 |
|
447 | std::aligned_storage_t<sizeof(Type), alignof(Type)> mStorage[N];
|
448 | Type* mElements = (Type*)mStorage;
|
449 |
|
450 | UINT32 mSize = 0;
|
451 | UINT32 mCapacity = N;
|
452 | };
|
453 |
|
454 | /** @} */
|
455 |
|
456 | /** @cond SPECIALIZATIONS */
|
457 |
|
458 | /**
|
459 | * RTTIPlainType for SmallVector.
|
460 | *
|
461 | * @see RTTIPlainType
|
462 | */
|
463 | template<class T, UINT32 N> struct RTTIPlainType<SmallVector<T, N>>
|
464 | {
|
465 | enum { id = TID_SmallVector }; enum { hasDynamicSize = 1 };
|
466 |
|
467 | /** @copydoc RTTIPlainType::toMemory */
|
468 | static void toMemory(const SmallVector<T, N>& data, char* memory)
|
469 | {
|
470 | UINT32 size = sizeof(UINT32);
|
471 | char* memoryStart = memory;
|
472 | memory += sizeof(UINT32);
|
473 |
|
474 | UINT32 numElements = (UINT32)data.size();
|
475 | memcpy(memory, &numElements, sizeof(UINT32));
|
476 | memory += sizeof(UINT32);
|
477 | size += sizeof(UINT32);
|
478 |
|
479 | for(const auto& item : data)
|
480 | {
|
481 | UINT32 elementSize = rttiGetElemSize(item);
|
482 | RTTIPlainType<T>::toMemory(item, memory);
|
483 |
|
484 | memory += elementSize;
|
485 | size += elementSize;
|
486 | }
|
487 |
|
488 | memcpy(memoryStart, &size, sizeof(UINT32));
|
489 | }
|
490 |
|
491 | /** @copydoc RTTIPlainType::fromMemory */
|
492 | static UINT32 fromMemory(SmallVector<T, N>& data, char* memory)
|
493 | {
|
494 | UINT32 size = 0;
|
495 | memcpy(&size, memory, sizeof(UINT32));
|
496 | memory += sizeof(UINT32);
|
497 |
|
498 | UINT32 numElements;
|
499 | memcpy(&numElements, memory, sizeof(UINT32));
|
500 | memory += sizeof(UINT32);
|
501 |
|
502 | data.clear();
|
503 | for(UINT32 i = 0; i < numElements; i++)
|
504 | {
|
505 | T element;
|
506 | UINT32 elementSize = RTTIPlainType<T>::fromMemory(element, memory);
|
507 | data.add(element);
|
508 |
|
509 | memory += elementSize;
|
510 | }
|
511 |
|
512 | return size;
|
513 | }
|
514 |
|
515 | /** @copydoc RTTIPlainType::getDynamicSize */
|
516 | static UINT32 getDynamicSize(const SmallVector<T, N>& data)
|
517 | {
|
518 | UINT64 dataSize = sizeof(UINT32) * 2;
|
519 |
|
520 | for(const auto& item : data)
|
521 | dataSize += rttiGetElemSize(item);
|
522 |
|
523 | assert(dataSize <= std::numeric_limits<UINT32>::max());
|
524 |
|
525 | return (UINT32)dataSize;
|
526 | }
|
527 | };
|
528 |
|
529 | /** @endcond */
|
530 | } |