| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "Utility/BsTime.h" |
| 4 | #include "Utility/BsTimer.h" |
| 5 | #include "Math/BsMath.h" |
| 6 | |
| 7 | namespace bs |
| 8 | { |
| 9 | constexpr UINT32 Time::MAX_ACCUM_FIXED_UPDATES; |
| 10 | constexpr UINT32 Time::NEW_FIXED_UPDATES_PER_FRAME; |
| 11 | |
| 12 | const double Time::MICROSEC_TO_SEC = 1.0/1000000.0; |
| 13 | |
| 14 | Time::Time() |
| 15 | { |
| 16 | mTimer = bs_new<Timer>(); |
| 17 | mAppStartTime = mTimer->getStartMs(); |
| 18 | mLastFrameTime = mTimer->getMicroseconds(); |
| 19 | mAppStartUpDate = std::time(nullptr); |
| 20 | } |
| 21 | |
| 22 | Time::~Time() |
| 23 | { |
| 24 | bs_delete(mTimer); |
| 25 | } |
| 26 | |
| 27 | void Time::_update() |
| 28 | { |
| 29 | UINT64 currentFrameTime = mTimer->getMicroseconds(); |
| 30 | |
| 31 | if(!mFirstFrame) |
| 32 | mFrameDelta = (float)((currentFrameTime - mLastFrameTime) * MICROSEC_TO_SEC); |
| 33 | else |
| 34 | { |
| 35 | mFrameDelta = 0.0f; |
| 36 | mFirstFrame = false; |
| 37 | } |
| 38 | |
| 39 | mTimeSinceStartMs = (UINT64)(currentFrameTime / 1000); |
| 40 | mTimeSinceStart = mTimeSinceStartMs / 1000.0f; |
| 41 | |
| 42 | mLastFrameTime = currentFrameTime; |
| 43 | |
| 44 | mCurrentFrame.fetch_add(1, std::memory_order_relaxed); |
| 45 | } |
| 46 | |
| 47 | UINT32 Time::_getFixedUpdateStep(UINT64& step) |
| 48 | { |
| 49 | const UINT64 currentTime = getTimePrecise(); |
| 50 | |
| 51 | // Skip fixed update first frame (time delta is zero, and no input received yet) |
| 52 | if (mFirstFixedFrame) |
| 53 | { |
| 54 | mLastFixedUpdateTime = currentTime; |
| 55 | mFirstFixedFrame = false; |
| 56 | } |
| 57 | |
| 58 | const UINT64 nextFrameTime = mLastFixedUpdateTime + mFixedStep; |
| 59 | if (nextFrameTime <= currentTime) |
| 60 | { |
| 61 | const INT64 simulationAmount = (INT64)std::max(currentTime - mLastFixedUpdateTime, mFixedStep); // At least one step |
| 62 | auto numIterations = (UINT32)Math::divideAndRoundUp(simulationAmount, (INT64)mFixedStep); |
| 63 | |
| 64 | // Prevent physics from completely hogging the CPU. If the framerate is low, the physics will want to run many |
| 65 | // iterations per frame, slowing down the game even further. Therefore we limit the number of physics updates |
| 66 | // to a certain number (at the cost of simulation stability). |
| 67 | |
| 68 | // However we don't use a fixed number per frame because performance spikes can cause some frames to take a very |
| 69 | // long time. These spikes can happen even in an otherwise well-performing application and will can wreak havoc |
| 70 | // on the physics simulation. |
| 71 | |
| 72 | // Therefore we keep a "pool" which determines the number of physics frame iterations allowed to run. This pool |
| 73 | // gets exhausted with every iteration, and replenished with every new frame. The pool can hold a large number |
| 74 | // of frames which can then get used up during performance spikes, ensuring simulation stability. If the |
| 75 | // performance is consistently low (not just a spike), then the pool will get exhausted and physics updates |
| 76 | // will slow down to free up the CPU (at the cost of stability, but this time we have no other option). |
| 77 | |
| 78 | auto stepus = (INT64)mFixedStep; |
| 79 | if (numIterations > mNumRemainingFixedUpdates) |
| 80 | { |
| 81 | stepus = Math::divideAndRoundUp(simulationAmount, (INT64)mNumRemainingFixedUpdates); |
| 82 | numIterations = (UINT32)Math::divideAndRoundUp(simulationAmount, (INT64)stepus); |
| 83 | } |
| 84 | |
| 85 | assert(numIterations <= mNumRemainingFixedUpdates); |
| 86 | |
| 87 | mNumRemainingFixedUpdates -= numIterations; |
| 88 | mNumRemainingFixedUpdates = std::min(MAX_ACCUM_FIXED_UPDATES, mNumRemainingFixedUpdates + NEW_FIXED_UPDATES_PER_FRAME); |
| 89 | |
| 90 | step = stepus; |
| 91 | return numIterations; |
| 92 | } |
| 93 | |
| 94 | step = 0; |
| 95 | return 0; |
| 96 | } |
| 97 | |
| 98 | void Time::_advanceFixedUpdate(UINT64 step) |
| 99 | { |
| 100 | mLastFixedUpdateTime += step; |
| 101 | } |
| 102 | |
| 103 | UINT64 Time::getTimePrecise() const |
| 104 | { |
| 105 | return mTimer->getMicroseconds(); |
| 106 | } |
| 107 | |
| 108 | String Time::getCurrentDateTimeString(bool isUTC) |
| 109 | { |
| 110 | std::time_t t = std::time(nullptr); |
| 111 | char out[100]; |
| 112 | if (isUTC) |
| 113 | std::strftime(out, sizeof(out), "%A, %B %d, %Y %T" , std::gmtime(&t)); |
| 114 | else |
| 115 | std::strftime(out, sizeof(out), "%A, %B %d, %Y %T" , std::localtime(&t)); |
| 116 | return String(out); |
| 117 | } |
| 118 | |
| 119 | String Time::getCurrentTimeString(bool isUTC) |
| 120 | { |
| 121 | std::time_t t = std::time(nullptr); |
| 122 | char out[15]; |
| 123 | if (isUTC) |
| 124 | std::strftime(out, sizeof(out), "%T" , std::gmtime(&t)); |
| 125 | else |
| 126 | std::strftime(out, sizeof(out), "%T" , std::localtime(&t)); |
| 127 | return String(out); |
| 128 | } |
| 129 | |
| 130 | String Time::getAppStartUpDateString(bool isUTC) |
| 131 | { |
| 132 | char out[100]; |
| 133 | if (isUTC) |
| 134 | std::strftime(out, sizeof(out), "%A, %B %d, %Y %T" , std::gmtime(&mAppStartUpDate)); |
| 135 | else |
| 136 | std::strftime(out, sizeof(out), "%A, %B %d, %Y %T" , std::localtime(&mAppStartUpDate)); |
| 137 | return String(out); |
| 138 | } |
| 139 | |
| 140 | Time& gTime() |
| 141 | { |
| 142 | return Time::instance(); |
| 143 | } |
| 144 | } |
| 145 | |