| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #pragma once |
| 4 | |
| 5 | #include "Prerequisites/BsPrerequisitesUtil.h" |
| 6 | #include "Math/BsDegree.h" |
| 7 | #include "Math/BsRadian.h" |
| 8 | #include "Math/BsVector3.h" |
| 9 | |
| 10 | namespace bs |
| 11 | { |
| 12 | /** @addtogroup Implementation |
| 13 | * @{ |
| 14 | */ |
| 15 | |
| 16 | namespace impl |
| 17 | { |
| 18 | /** Helper method for implementing variable-parameter Math::min. */ |
| 19 | template<typename T> |
| 20 | const T& min(const T& in) |
| 21 | { |
| 22 | return in; |
| 23 | } |
| 24 | |
| 25 | /** Helper method for implementing variable-parameter Math::min. */ |
| 26 | template<typename A, typename B> |
| 27 | std::common_type_t<A, B> min(const A& a, const B& b) |
| 28 | { |
| 29 | return a < b ? a : b; |
| 30 | } |
| 31 | |
| 32 | /** Helper method for implementing variable-parameter Math::min. */ |
| 33 | template<typename A, typename B, typename ...Args> |
| 34 | std::common_type_t<A, B, Args...> min(const A& a, const B& b, const Args& ...args) |
| 35 | { |
| 36 | return min(min(a, b), min(args...)); |
| 37 | } |
| 38 | |
| 39 | /** Helper method for implementing variable-parameter Math::max. */ |
| 40 | template<typename T> |
| 41 | const T& max(const T& in) |
| 42 | { |
| 43 | return in; |
| 44 | } |
| 45 | |
| 46 | /** Helper method for implementing variable-parameter Math::max. */ |
| 47 | template<typename A, typename B> |
| 48 | std::common_type_t<A, B> max(const A& a, const B& b) |
| 49 | { |
| 50 | return a > b ? a : b; |
| 51 | } |
| 52 | |
| 53 | /** Helper method for implementing variable-parameter Math::max. */ |
| 54 | template<typename A, typename B, typename ...Args> |
| 55 | std::common_type_t<A, B, Args...> max(const A& a, const B& b, const Args& ...args) |
| 56 | { |
| 57 | return max(max(a, b), max(args...)); |
| 58 | } |
| 59 | |
| 60 | /** Helper method for implementing Math::gcd. */ |
| 61 | template <typename A, typename B> |
| 62 | std::common_type_t<A, B> gcd(const A& a, const B& b) |
| 63 | { |
| 64 | return (b == 0) ? a : gcd(b, a % b); |
| 65 | } |
| 66 | |
| 67 | /** Helper method for implementing Math::lcm. */ |
| 68 | template <typename A, typename B> |
| 69 | std::common_type_t<A, B> lcm(const A& a, const B& b) |
| 70 | { |
| 71 | return (a * b) / gcd(a, b); |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | /** @} */ |
| 76 | |
| 77 | /** @addtogroup Math |
| 78 | * @{ |
| 79 | */ |
| 80 | |
| 81 | /** Utility class providing common scalar math operations. */ |
| 82 | class BS_UTILITY_EXPORT Math |
| 83 | { |
| 84 | public: |
| 85 | static constexpr float BIGGEST_FLOAT_SMALLER_THAN_ONE = 0.99999994f; |
| 86 | |
| 87 | /** Inverse cosine. */ |
| 88 | static Radian acos(float val); |
| 89 | |
| 90 | /** Inverse sine. */ |
| 91 | static Radian asin(float val); |
| 92 | |
| 93 | /** Inverse tangent. */ |
| 94 | static Radian atan(float val) { return Radian(std::atan(val)); } |
| 95 | |
| 96 | /** Inverse tangent with two arguments, returns angle between the X axis and the point. */ |
| 97 | static Radian atan2(float y, float x) { return Radian(std::atan2(y, x)); } |
| 98 | |
| 99 | /** Cosine. */ |
| 100 | static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); } |
| 101 | |
| 102 | /** Cosine. */ |
| 103 | static float cos(float val) { return (float)std::cos(val); } |
| 104 | |
| 105 | /** Sine. */ |
| 106 | static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); } |
| 107 | |
| 108 | /** Sine. */ |
| 109 | static float sin(float val) { return (float)std::sin(val); } |
| 110 | |
| 111 | /** Tangent. */ |
| 112 | static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); } |
| 113 | |
| 114 | /** Tangent. */ |
| 115 | static float tan(float val) { return (float)std::tan(val); } |
| 116 | |
| 117 | /** Square root. */ |
| 118 | static float sqrt(float val) { return (float)std::sqrt(val); } |
| 119 | |
| 120 | /** Square root. */ |
| 121 | static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); } |
| 122 | |
| 123 | /** Square root. */ |
| 124 | static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); } |
| 125 | |
| 126 | /** Square root followed by an inverse. */ |
| 127 | static float invSqrt(float val); |
| 128 | |
| 129 | /** Returns square of the provided value. */ |
| 130 | static float sqr(float val) { return val * val; } |
| 131 | |
| 132 | /** Returns base raised to the provided power. */ |
| 133 | static float pow(float base, float exponent) { return (float)std::pow(base, exponent); } |
| 134 | |
| 135 | /** Returns euler number (e) raised to the provided power. */ |
| 136 | static float exp(float val) { return (float)std::exp(val); } |
| 137 | |
| 138 | /** Returns natural (base e) logarithm of the provided value. */ |
| 139 | static float log(float val) { return (float)std::log(val); } |
| 140 | |
| 141 | /** Returns base 2 logarithm of the provided value. */ |
| 142 | static float log2(float val) { return (float)(std::log(val) / LOG2); } |
| 143 | |
| 144 | /** Returns base N logarithm of the provided value. */ |
| 145 | static float logN(float base, float val) { return (float)(std::log(val) / std::log(base)); } |
| 146 | |
| 147 | /** Returns the sign of the provided value as 1 or -1. */ |
| 148 | static float sign(float val); |
| 149 | |
| 150 | /** Returns the sign of the provided value as 1 or -1. */ |
| 151 | static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); } |
| 152 | |
| 153 | /** Returns the sign of the provided value as 1 or -1. */ |
| 154 | static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); } |
| 155 | |
| 156 | /** Returns the absolute value. */ |
| 157 | static float abs(float val) { return float(std::fabs(val)); } |
| 158 | |
| 159 | /** Returns the absolute value. */ |
| 160 | static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); } |
| 161 | |
| 162 | /** Returns the absolute value. */ |
| 163 | static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); } |
| 164 | |
| 165 | /** Returns the nearest integer equal or higher to the provided value. */ |
| 166 | static float ceil(float val) { return (float)std::ceil(val); } |
| 167 | |
| 168 | /** |
| 169 | * Returns the nearest integer equal or higher to the provided value. If you are sure the input is positive use |
| 170 | * ceilToPosInt() for a slightly faster operation. |
| 171 | */ |
| 172 | static int32_t ceilToInt(float val) |
| 173 | { |
| 174 | assert(val >= std::numeric_limits<int32_t>::min() && val <= std::numeric_limits<int32_t>::max()); |
| 175 | |
| 176 | // Positive values need offset in order to truncate towards positive infinity (cast truncates towards zero) |
| 177 | return val >= 0.0f ? (int32_t)(val + BIGGEST_FLOAT_SMALLER_THAN_ONE) : (int32_t)val; |
| 178 | } |
| 179 | |
| 180 | /** |
| 181 | * Returns the nearest integer equal or higher to the provided value. Value must be non-negative. Slightly faster |
| 182 | * than ceilToInt(). |
| 183 | */ |
| 184 | static uint32_t ceilToPosInt(float val) |
| 185 | { |
| 186 | assert(val >= 0 && val <= std::numeric_limits<uint32_t>::max()); |
| 187 | |
| 188 | return (uint32_t)(val + BIGGEST_FLOAT_SMALLER_THAN_ONE); |
| 189 | } |
| 190 | |
| 191 | /** Returns the integer nearest to the provided value. */ |
| 192 | static float round(float val) { return (float)std::floor(val + 0.5f); } |
| 193 | |
| 194 | /** Returns the integer nearest to the provided value. */ |
| 195 | static float fastRound(float val) { return (val >= 0) ? (float)(val + 0.5f) : (float)(val - 0.5f); } |
| 196 | |
| 197 | /** |
| 198 | * Returns the integer nearest to the provided value. If you are sure the input is positive use roundToPosInt() |
| 199 | * for a slightly faster operation. |
| 200 | */ |
| 201 | static int32_t roundToInt(float val) { return floorToInt(val + 0.5f); } |
| 202 | |
| 203 | /** |
| 204 | * Returns the integer nearest to the provided value. Value must be non-negative. Slightly faster than roundToInt(). |
| 205 | */ |
| 206 | static uint32_t roundToPosInt(float val) { return floorToPosInt(val + 0.5f); } |
| 207 | |
| 208 | /** |
| 209 | * Divides an integer by another integer and returns the result, rounded up. Only works if both integers are |
| 210 | * positive. |
| 211 | */ |
| 212 | template<class T> |
| 213 | static constexpr T divideAndRoundUp(T n, T d) { return (n + d - 1) / d; } |
| 214 | |
| 215 | /** Returns the nearest integer equal or lower of the provided value. */ |
| 216 | static float floor(float val) { return (float)std::floor(val); } |
| 217 | |
| 218 | /** Returns the nearest integer equal or lower of the provided value. */ |
| 219 | static float fastFloor(float val) { return (val >= 0) ? (float)val : (float)val - 1.0f; } |
| 220 | |
| 221 | /** |
| 222 | * Returns the nearest integer equal or lower of the provided value. If you are sure the input is positive |
| 223 | * use floorToPosInt() for a slightly faster operation. |
| 224 | */ |
| 225 | static int floorToInt(float val) |
| 226 | { |
| 227 | assert(val >= std::numeric_limits<int32_t>::min() && val <= std::numeric_limits<int32_t>::max()); |
| 228 | |
| 229 | // Negative values need offset in order to truncate towards negative infinity (cast truncates towards zero) |
| 230 | return val >= 0.0f ? (int32_t)val : (int32_t)(val - BIGGEST_FLOAT_SMALLER_THAN_ONE); |
| 231 | } |
| 232 | |
| 233 | /** |
| 234 | * Returns the nearest integer equal or lower of the provided value. Value must be non-negative. Slightly faster |
| 235 | * than floorToInt(). |
| 236 | */ |
| 237 | static uint32_t floorToPosInt(float val) |
| 238 | { |
| 239 | assert(val >= 0 && val <= std::numeric_limits<uint32_t>::max()); |
| 240 | |
| 241 | return (uint32_t)val; |
| 242 | } |
| 243 | |
| 244 | /** Rounds @p x to the nearest multiple of @p multiple. */ |
| 245 | static float roundToMultiple(float x, float multiple) |
| 246 | { |
| 247 | return floor((x + multiple * 0.5f) / multiple) * multiple; |
| 248 | } |
| 249 | |
| 250 | /** Clamp a value within an inclusive range. */ |
| 251 | template <typename T> |
| 252 | static T clamp(T val, T minval, T maxval) |
| 253 | { |
| 254 | assert (minval <= maxval && "Invalid clamp range" ); |
| 255 | return std::max(std::min(val, maxval), minval); |
| 256 | } |
| 257 | |
| 258 | /** Clamp a value within an inclusive range [0..1]. */ |
| 259 | template <typename T> |
| 260 | static T clamp01(T val) |
| 261 | { |
| 262 | return std::max(std::min(val, (T)1), (T)0); |
| 263 | } |
| 264 | |
| 265 | /** Returns the fractional part of a floating point number. */ |
| 266 | static float frac(float val) |
| 267 | { |
| 268 | return val - (float)(int32_t)val; |
| 269 | } |
| 270 | |
| 271 | /** Returns a floating point remainder for (@p val / @p length). */ |
| 272 | static float repeat(float val, float length) |
| 273 | { |
| 274 | return val - floor(val / length) * length; |
| 275 | } |
| 276 | |
| 277 | /** |
| 278 | * Wraps the value in range [0, length) and reverses the direction every @p length increment. This results in |
| 279 | * @p val incrementing until @p length, then decrementing back to 0, and so on. |
| 280 | */ |
| 281 | static float pingPong(float val, float length) |
| 282 | { |
| 283 | val = repeat(val, length * 2.0f); |
| 284 | return length - fabs(val - length); |
| 285 | } |
| 286 | |
| 287 | /** Checks if the value is a valid number. */ |
| 288 | static bool isNaN(float f) |
| 289 | { |
| 290 | return f != f; |
| 291 | } |
| 292 | |
| 293 | /** Check if the value is a prime number. */ |
| 294 | static bool isPrime(int n) |
| 295 | { |
| 296 | if (n < 2) |
| 297 | return false; |
| 298 | |
| 299 | if (n % 2 == 0) |
| 300 | return n == 2; |
| 301 | |
| 302 | if (n % 3 == 0) |
| 303 | return n == 3; |
| 304 | |
| 305 | int d = 5; |
| 306 | while (d * d <= n) |
| 307 | { |
| 308 | if (n % d == 0) |
| 309 | return false; |
| 310 | |
| 311 | d += 2; |
| 312 | |
| 313 | if (n % d == 0) |
| 314 | return false; |
| 315 | d += 4; |
| 316 | } |
| 317 | |
| 318 | return true; |
| 319 | } |
| 320 | |
| 321 | /** Performs smooth Hermite interpolation between values. */ |
| 322 | static float smoothStep(float val1, float val2, float t) |
| 323 | { |
| 324 | t = clamp((t - val1) / (val2 - val1), 0.0f, 1.0f); |
| 325 | return t * t * (3.0f - 2.0f * t); |
| 326 | } |
| 327 | |
| 328 | /** |
| 329 | * Performs quintic interpolation where @p val is the value to map onto a quintic S-curve. @p val should be in |
| 330 | * [0, 1] range. |
| 331 | */ |
| 332 | static float quintic(float val) |
| 333 | { |
| 334 | return val * val * val * (val * (val * 6.0f - 15.0f) + 10.0f); |
| 335 | } |
| 336 | |
| 337 | /** |
| 338 | * Performs cubic interpolation between two values bound between two other values where @p f is the alpha value. |
| 339 | * It should range from 0.0f to 1.0f. If it is 0.0f the method returns @p val2. If it is 1.0f it returns @p val3. |
| 340 | */ |
| 341 | static float cubic(float val1, float val2, float val3, float val4, float f) |
| 342 | { |
| 343 | float t = (val4 - val3) - (val1 - val2); |
| 344 | return f * f * f * t + f * f * ((val1 - val2) - t) + f * (val3 - val1) + val2; |
| 345 | } |
| 346 | |
| 347 | /** Compare two floats, using tolerance for inaccuracies. */ |
| 348 | static bool approxEquals(float a, float b, |
| 349 | float tolerance = std::numeric_limits<float>::epsilon()) |
| 350 | { |
| 351 | return fabs(b - a) <= tolerance; |
| 352 | } |
| 353 | |
| 354 | /** Compare two doubles, using tolerance for inaccuracies. */ |
| 355 | static bool approxEquals(double a, double b, |
| 356 | double tolerance = std::numeric_limits<double>::epsilon()) |
| 357 | { |
| 358 | return fabs(b - a) <= tolerance; |
| 359 | } |
| 360 | |
| 361 | /** Compare two 2D vectors, using tolerance for inaccuracies. */ |
| 362 | static bool approxEquals(const Vector2& a, const Vector2& b, |
| 363 | float tolerance = std::numeric_limits<float>::epsilon()); |
| 364 | |
| 365 | /** Compare two 3D vectors, using tolerance for inaccuracies. */ |
| 366 | static bool approxEquals(const Vector3& a, const Vector3& b, |
| 367 | float tolerance = std::numeric_limits<float>::epsilon()); |
| 368 | |
| 369 | /** Compare two 4D vectors, using tolerance for inaccuracies. */ |
| 370 | static bool approxEquals(const Vector4& a, const Vector4& b, |
| 371 | float tolerance = std::numeric_limits<float>::epsilon()); |
| 372 | |
| 373 | /** Compare two quaternions, using tolerance for inaccuracies. */ |
| 374 | static bool approxEquals(const Quaternion& a, const Quaternion& b, |
| 375 | float tolerance = std::numeric_limits<float>::epsilon()); |
| 376 | |
| 377 | /** Calculates the tangent space vector for a given set of positions / texture coords. */ |
| 378 | static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2, |
| 379 | const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3); |
| 380 | |
| 381 | /************************************************************************/ |
| 382 | /* TRIG APPROXIMATIONS */ |
| 383 | /************************************************************************/ |
| 384 | |
| 385 | /** |
| 386 | * Sine function approximation. |
| 387 | * |
| 388 | * @param[in] val Angle in range [0, pi/2]. |
| 389 | * |
| 390 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 391 | */ |
| 392 | static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); } |
| 393 | |
| 394 | /** |
| 395 | * Sine function approximation. |
| 396 | * |
| 397 | * @param[in] val Angle in range [0, pi/2]. |
| 398 | * |
| 399 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 400 | */ |
| 401 | static float fastSin0(float val); |
| 402 | |
| 403 | /** |
| 404 | * Sine function approximation. |
| 405 | * |
| 406 | * @param[in] val Angle in range [0, pi/2]. |
| 407 | * |
| 408 | * @note |
| 409 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0. |
| 410 | */ |
| 411 | static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); } |
| 412 | |
| 413 | /** |
| 414 | * Sine function approximation. |
| 415 | * |
| 416 | * @param[in] val Angle in range [0, pi/2]. |
| 417 | * |
| 418 | * @note |
| 419 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0. |
| 420 | */ |
| 421 | static float fastSin1(float val); |
| 422 | |
| 423 | /** |
| 424 | * Cosine function approximation. |
| 425 | * |
| 426 | * @param[in] val Angle in range [0, pi/2]. |
| 427 | * |
| 428 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 429 | */ |
| 430 | static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); } |
| 431 | |
| 432 | /** |
| 433 | * Cosine function approximation. |
| 434 | * |
| 435 | * @param[in] val Angle in range [0, pi/2]. |
| 436 | * |
| 437 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 438 | */ |
| 439 | static float fastCos0(float val); |
| 440 | |
| 441 | /** |
| 442 | * Cosine function approximation. |
| 443 | * |
| 444 | * @param[in] val Angle in range [0, pi/2]. |
| 445 | * |
| 446 | * @note |
| 447 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0. |
| 448 | */ |
| 449 | static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); } |
| 450 | |
| 451 | /** |
| 452 | * Cosine function approximation. |
| 453 | * |
| 454 | * @param[in] val Angle in range [0, pi/2]. |
| 455 | * |
| 456 | * @note |
| 457 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0. |
| 458 | */ |
| 459 | static float fastCos1(float val); |
| 460 | |
| 461 | /** |
| 462 | * Tangent function approximation. |
| 463 | * |
| 464 | * @param[in] val Angle in range [0, pi/4]. |
| 465 | * |
| 466 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 467 | */ |
| 468 | static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); } |
| 469 | |
| 470 | /** |
| 471 | * Tangent function approximation. |
| 472 | * |
| 473 | * @param[in] val Angle in range [0, pi/4]. |
| 474 | * |
| 475 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 476 | */ |
| 477 | static float fastTan0(float val); |
| 478 | |
| 479 | /** |
| 480 | * Tangent function approximation. |
| 481 | * |
| 482 | * @param[in] val Angle in range [0, pi/4]. |
| 483 | * |
| 484 | * @note |
| 485 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0. |
| 486 | */ |
| 487 | static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); } |
| 488 | |
| 489 | /** |
| 490 | * Tangent function approximation. |
| 491 | * |
| 492 | * @param[in] val Angle in range [0, pi/4]. |
| 493 | * |
| 494 | * @note |
| 495 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0. |
| 496 | */ |
| 497 | static float fastTan1(float val); |
| 498 | |
| 499 | /** |
| 500 | * Inverse sine function approximation. |
| 501 | * |
| 502 | * @param[in] val Angle in range [0, 1]. |
| 503 | * |
| 504 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 505 | */ |
| 506 | static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); } |
| 507 | |
| 508 | /** |
| 509 | * Inverse sine function approximation. |
| 510 | * |
| 511 | * @param[in] val Angle in range [0, 1]. |
| 512 | * |
| 513 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 514 | */ |
| 515 | static float fastASin0(float val); |
| 516 | |
| 517 | /** |
| 518 | * Inverse sine function approximation. |
| 519 | * |
| 520 | * @param[in] val Angle in range [0, 1]. |
| 521 | * |
| 522 | * @note |
| 523 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0. |
| 524 | */ |
| 525 | static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); } |
| 526 | |
| 527 | /** |
| 528 | * Inverse sine function approximation. |
| 529 | * |
| 530 | * @param[in] val Angle in range [0, 1]. |
| 531 | * |
| 532 | * @note |
| 533 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0. |
| 534 | */ |
| 535 | static float fastASin1(float val); |
| 536 | |
| 537 | /** |
| 538 | * Inverse cosine function approximation. |
| 539 | * |
| 540 | * @param[in] val Angle in range [0, 1]. |
| 541 | * |
| 542 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 543 | */ |
| 544 | static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); } |
| 545 | |
| 546 | /** |
| 547 | * Inverse cosine function approximation. |
| 548 | * |
| 549 | * @param[in] val Angle in range [0, 1]. |
| 550 | * |
| 551 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 552 | */ |
| 553 | static float fastACos0(float val); |
| 554 | |
| 555 | /** |
| 556 | * Inverse cosine function approximation. |
| 557 | * |
| 558 | * @param[in] val Angle in range [0, 1]. |
| 559 | * |
| 560 | * @note |
| 561 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0. |
| 562 | */ |
| 563 | static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); } |
| 564 | |
| 565 | /** |
| 566 | * Inverse cosine function approximation. |
| 567 | * |
| 568 | * @param[in] val Angle in range [0, 1]. |
| 569 | * |
| 570 | * @note |
| 571 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0. |
| 572 | */ |
| 573 | static float fastACos1(float val); |
| 574 | |
| 575 | /** |
| 576 | * Inverse tangent function approximation. |
| 577 | * |
| 578 | * @param[in] val Angle in range [-1, 1]. |
| 579 | * |
| 580 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 581 | */ |
| 582 | static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); } |
| 583 | |
| 584 | /** |
| 585 | * Inverse tangent function approximation. |
| 586 | * |
| 587 | * @param[in] val Angle in range [-1, 1]. |
| 588 | * |
| 589 | * @note Evaluates trigonometric functions using polynomial approximations. |
| 590 | */ |
| 591 | static float fastATan0(float val); |
| 592 | |
| 593 | /** |
| 594 | * Inverse tangent function approximation. |
| 595 | * |
| 596 | * @param[in] val Angle in range [-1, 1]. |
| 597 | * |
| 598 | * @note |
| 599 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0. |
| 600 | */ |
| 601 | static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); } |
| 602 | |
| 603 | /** |
| 604 | * Inverse tangent function approximation. |
| 605 | * |
| 606 | * @param[in] val Angle in range [-1, 1]. |
| 607 | * |
| 608 | * @note |
| 609 | * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0. |
| 610 | */ |
| 611 | static float fastATan1(float val); |
| 612 | |
| 613 | /** |
| 614 | * Linearly interpolates between the two values using @p t. t should be in [0, 1] range, where t = 0 corresponds |
| 615 | * to @p min value, while t = 1 corresponds to @p max value. |
| 616 | */ |
| 617 | template <typename T> |
| 618 | static T lerp(float t, T min, T max) |
| 619 | { |
| 620 | return (1.0f - t) * min + t * max; |
| 621 | } |
| 622 | /** |
| 623 | * Determines the position of a value between two other values. Returns 0 if @p value is less or equal than |
| 624 | * @p min, 1 if @p value is equal or greater than @p max, and value in range (0, 1) otherwise. |
| 625 | */ |
| 626 | template <typename T> |
| 627 | static float invLerp(T val, T min, T max) |
| 628 | { |
| 629 | return clamp01((val - min) / std::max(max - min, 0.0001F)); |
| 630 | } |
| 631 | |
| 632 | /** Returns the minimum value of the two provided. */ |
| 633 | template <typename A, typename B> |
| 634 | static std::common_type_t<A, B> min(const A& a, const B& b) |
| 635 | { |
| 636 | return impl::min(a, b); |
| 637 | } |
| 638 | |
| 639 | /** Returns the minimum value of all the values provided. */ |
| 640 | template <typename A, typename B, typename... Args> |
| 641 | static std::common_type_t<A, B, Args...> min(const A& a, const B& b, const Args&... args) |
| 642 | { |
| 643 | return impl::min(a, b, args...); |
| 644 | } |
| 645 | |
| 646 | /** Returns the maximum value of the two provided. */ |
| 647 | template <typename A, typename B> |
| 648 | static std::common_type_t<A, B> max(const A& a, const B& b) |
| 649 | { |
| 650 | return impl::max(a, b); |
| 651 | } |
| 652 | |
| 653 | /** Returns the maximum value of all the values provided. */ |
| 654 | template <typename A, typename B, typename... Args> |
| 655 | static std::common_type_t<A, B, Args...> max(const A& a, const B& b, const Args&... args) |
| 656 | { |
| 657 | return impl::max(a, b, args...); |
| 658 | } |
| 659 | |
| 660 | /** Return the greater common divisor between two values. */ |
| 661 | template <typename A, typename B> |
| 662 | static std::common_type_t<A, B> gcd(const A& a, const B& b) |
| 663 | { |
| 664 | return impl::gcd(a, b); |
| 665 | } |
| 666 | |
| 667 | /** Return the least common multiple between two values. */ |
| 668 | template <typename A, typename B> |
| 669 | static std::common_type_t<A, B> lcm(const A& a, const B& b) |
| 670 | { |
| 671 | return impl::lcm(a, b); |
| 672 | } |
| 673 | |
| 674 | /** |
| 675 | * Solves the linear equation with the parameters A, B. Returns number of roots found and the roots themselves will |
| 676 | * be output in the @p roots array. |
| 677 | * |
| 678 | * @param[in] A First variable. |
| 679 | * @param[in] B Second variable. |
| 680 | * @param[out] roots Must be at least size of 1. |
| 681 | * |
| 682 | * @note Only returns real roots. |
| 683 | */ |
| 684 | template <typename T> |
| 685 | static UINT32 solveLinear(T A, T B, T* roots) |
| 686 | { |
| 687 | if (!approxEquals(A, (T)0)) |
| 688 | { |
| 689 | roots[0] = -B / A; |
| 690 | return 1; |
| 691 | } |
| 692 | |
| 693 | roots[0] = 0.0f; |
| 694 | return 1; |
| 695 | } |
| 696 | |
| 697 | /** |
| 698 | * Solves the quadratic equation with the parameters A, B, C. Returns number of roots found and the roots themselves |
| 699 | * will be output in the @p roots array. |
| 700 | * |
| 701 | * @param[in] A First variable. |
| 702 | * @param[in] B Second variable. |
| 703 | * @param[in] C Third variable. |
| 704 | * @param[out] roots Must be at least size of 2. |
| 705 | * |
| 706 | * @note Only returns real roots. |
| 707 | */ |
| 708 | template <typename T> |
| 709 | static UINT32 solveQuadratic(T A, T B, T C, T* roots) |
| 710 | { |
| 711 | if (!approxEquals(A, (T)0)) |
| 712 | { |
| 713 | T p = B / (2 * A); |
| 714 | T q = C / A; |
| 715 | T D = p * p - q; |
| 716 | |
| 717 | if (!approxEquals(D, (T)0)) |
| 718 | { |
| 719 | if (D < (T)0) |
| 720 | return 0; |
| 721 | |
| 722 | T sqrtD = sqrt(D); |
| 723 | roots[0] = sqrtD - p; |
| 724 | roots[1] = -sqrtD - p; |
| 725 | |
| 726 | return 2; |
| 727 | } |
| 728 | else |
| 729 | { |
| 730 | roots[0] = -p; |
| 731 | roots[1] = -p; |
| 732 | |
| 733 | return 1; |
| 734 | } |
| 735 | } |
| 736 | else |
| 737 | { |
| 738 | return solveLinear(B, C, roots); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | /** |
| 743 | * Solves the cubic equation with the parameters A, B, C, D. Returns number of roots found and the roots themselves |
| 744 | * will be output in the @p roots array. |
| 745 | * |
| 746 | * @param[in] A First variable. |
| 747 | * @param[in] B Second variable. |
| 748 | * @param[in] C Third variable. |
| 749 | * @param[in] D Fourth variable. |
| 750 | * @param[out] roots Must be at least size of 3. |
| 751 | * |
| 752 | * @note Only returns real roots. |
| 753 | */ |
| 754 | template <typename T> |
| 755 | static UINT32 solveCubic(T A, T B, T C, T D, T* roots) |
| 756 | { |
| 757 | static const T THIRD = (1 / (T)3); |
| 758 | |
| 759 | T invA = 1 / A; |
| 760 | A = B * invA; |
| 761 | B = C * invA; |
| 762 | C = D * invA; |
| 763 | |
| 764 | T sqA = A * A; |
| 765 | T p = THIRD * (-THIRD * sqA + B); |
| 766 | T q = ((T)0.5) * ((2 / (T)27) * A * sqA - THIRD * A * B + C); |
| 767 | |
| 768 | T cbp = p * p * p; |
| 769 | D = q * q + cbp; |
| 770 | |
| 771 | UINT32 numRoots = 0; |
| 772 | if (!approxEquals(D, (T)0)) |
| 773 | { |
| 774 | if (D < 0.0) |
| 775 | { |
| 776 | T phi = THIRD * ::acos(-q / sqrt(-cbp)); |
| 777 | T t = 2 * sqrt(-p); |
| 778 | |
| 779 | roots[0] = t * cos(phi); |
| 780 | roots[1] = -t * cos(phi + PI * THIRD); |
| 781 | roots[2] = -t * cos(phi - PI * THIRD); |
| 782 | |
| 783 | numRoots = 3; |
| 784 | } |
| 785 | else |
| 786 | { |
| 787 | T sqrtD = sqrt(D); |
| 788 | T u = cbrt(sqrtD + fabs(q)); |
| 789 | |
| 790 | if (q > (T)0) |
| 791 | roots[0] = -u + p / u; |
| 792 | else |
| 793 | roots[0] = u - p / u; |
| 794 | |
| 795 | numRoots = 1; |
| 796 | } |
| 797 | } |
| 798 | else |
| 799 | { |
| 800 | if (!approxEquals(q, (T)0)) |
| 801 | { |
| 802 | T u = cbrt(-q); |
| 803 | roots[0] = 2 * u; |
| 804 | roots[1] = -u; |
| 805 | |
| 806 | numRoots = 2; |
| 807 | } |
| 808 | else |
| 809 | { |
| 810 | roots[0] = 0.0f; |
| 811 | numRoots = 1; |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | T sub = THIRD * A; |
| 816 | for (UINT32 i = 0; i < numRoots; i++) |
| 817 | roots[i] -= sub; |
| 818 | |
| 819 | return numRoots; |
| 820 | } |
| 821 | |
| 822 | /** |
| 823 | * Solves the quartic equation with the parameters A, B, C, D, E. Returns number of roots found and the roots |
| 824 | * themselves will be output in the @p roots array. |
| 825 | * |
| 826 | * @param[in] A First variable. |
| 827 | * @param[in] B Second variable. |
| 828 | * @param[in] C Third variable. |
| 829 | * @param[in] D Fourth variable. |
| 830 | * @param[in] E Fifth variable. |
| 831 | * @param[out] roots Must be at least size of 4. |
| 832 | * |
| 833 | * @note Only returns real roots. |
| 834 | */ |
| 835 | template <typename T> |
| 836 | static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots) |
| 837 | { |
| 838 | T invA = 1 / A; |
| 839 | A = B * invA; |
| 840 | B = C * invA; |
| 841 | C = D * invA; |
| 842 | D = E * invA; |
| 843 | |
| 844 | T sqA = A*A; |
| 845 | T p = -(3 / (T)8) * sqA + B; |
| 846 | T q = (1 / (T)8) * sqA * A - (T)0.5 * A * B + C; |
| 847 | T r = -(3 / (T)256) * sqA * sqA + (1 / (T)16) * sqA * B - (1 / (T)4) * A * C + D; |
| 848 | |
| 849 | UINT32 numRoots = 0; |
| 850 | if (!approxEquals(r, (T)0)) |
| 851 | { |
| 852 | T cubicA = 1; |
| 853 | T cubicB = -(T)0.5 * p ; |
| 854 | T cubicC = -r; |
| 855 | T cubicD = (T)0.5 * r * p - (1 / (T)8) * q * q; |
| 856 | |
| 857 | solveCubic(cubicA, cubicB, cubicC, cubicD, roots); |
| 858 | T z = roots[0]; |
| 859 | |
| 860 | T u = z * z - r; |
| 861 | T v = 2 * z - p; |
| 862 | |
| 863 | if (approxEquals(u, T(0))) |
| 864 | u = 0; |
| 865 | else if (u > 0) |
| 866 | u = sqrt(u); |
| 867 | else |
| 868 | return 0; |
| 869 | |
| 870 | if (approxEquals(v, T(0))) |
| 871 | v = 0; |
| 872 | else if (v > 0) |
| 873 | v = sqrt(v); |
| 874 | else |
| 875 | return 0; |
| 876 | |
| 877 | T quadraticA = 1; |
| 878 | T quadraticB = q < 0 ? -v : v; |
| 879 | T quadraticC = z - u; |
| 880 | |
| 881 | numRoots = solveQuadratic(quadraticA, quadraticB, quadraticC, roots); |
| 882 | |
| 883 | quadraticA = 1; |
| 884 | quadraticB = q < 0 ? v : -v; |
| 885 | quadraticC = z + u; |
| 886 | |
| 887 | numRoots += solveQuadratic(quadraticA, quadraticB, quadraticC, roots + numRoots); |
| 888 | } |
| 889 | else |
| 890 | { |
| 891 | numRoots = solveCubic(q, p, (T)0, (T)1, roots); |
| 892 | roots[numRoots++] = 0; |
| 893 | } |
| 894 | |
| 895 | T sub = (1/(T)4) * A; |
| 896 | for (UINT32 i = 0; i < numRoots; i++) |
| 897 | roots[i] -= sub; |
| 898 | |
| 899 | return numRoots; |
| 900 | } |
| 901 | |
| 902 | /** |
| 903 | * Evaluates a cubic Hermite curve at a specific point. |
| 904 | * |
| 905 | * @param[in] t Parameter that at which to evaluate the curve, in range [0, 1]. |
| 906 | * @param[in] pointA Starting point (at t=0). |
| 907 | * @param[in] pointB Ending point (at t=1). |
| 908 | * @param[in] tangentA Starting tangent (at t=0). |
| 909 | * @param[in] tangentB Ending tangent (at t = 1). |
| 910 | * @return Evaluated value at @p t. |
| 911 | */ |
| 912 | template<class T> |
| 913 | static T cubicHermite(float t, const T& pointA, const T& pointB, const T& tangentA, const T& tangentB) |
| 914 | { |
| 915 | float t2 = t * t; |
| 916 | float t3 = t2 * t; |
| 917 | |
| 918 | float a = 2 * t3 - 3 * t2 + 1; |
| 919 | float b = t3 - 2 * t2 + t; |
| 920 | float c = -2 * t3 + 3 * t2; |
| 921 | float d = t3 - t2; |
| 922 | |
| 923 | return a * pointA + b * tangentA + c * pointB + d * tangentB; |
| 924 | } |
| 925 | |
| 926 | /** |
| 927 | * Evaluates the first derivative of a cubic Hermite curve at a specific point. |
| 928 | * |
| 929 | * @param[in] t Parameter that at which to evaluate the curve, in range [0, 1]. |
| 930 | * @param[in] pointA Starting point (at t=0). |
| 931 | * @param[in] pointB Ending point (at t=1). |
| 932 | * @param[in] tangentA Starting tangent (at t=0). |
| 933 | * @param[in] tangentB Ending tangent (at t = 1). |
| 934 | * @return Evaluated value at @p t. |
| 935 | */ |
| 936 | template<class T> |
| 937 | static T cubicHermiteD1(float t, const T& pointA, const T& pointB, const T& tangentA, const T& tangentB) |
| 938 | { |
| 939 | float t2 = t * t; |
| 940 | |
| 941 | float a = 6 * t2 - 6 * t; |
| 942 | float b = 3 * t2 - 4 * t + 1; |
| 943 | float c = -6 * t2 + 6 * t; |
| 944 | float d = 3 * t2 - 2 * t; |
| 945 | |
| 946 | return a * pointA + b * tangentA + c * pointB + d * tangentB; |
| 947 | } |
| 948 | |
| 949 | /** |
| 950 | * Calculates coefficients needed for evaluating a cubic curve in Hermite form. Assumes @p t has been normalized is |
| 951 | * in range [0, 1]. Tangents must be scaled by the length of the curve (length is the maximum value of @p t before |
| 952 | * it was normalized). |
| 953 | * |
| 954 | * @param[in] pointA Starting point (at t=0). |
| 955 | * @param[in] pointB Ending point (at t=1). |
| 956 | * @param[in] tangentA Starting tangent (at t=0). |
| 957 | * @param[in] tangentB Ending tangent (at t = 1). |
| 958 | * @param[out] coefficients Four coefficients for the cubic curve, in order [t^3, t^2, t, 1]. |
| 959 | */ |
| 960 | template<class T> |
| 961 | static void cubicHermiteCoefficients(const T& pointA, const T& pointB, const T& tangentA, const T& tangentB, |
| 962 | T (&coefficients)[4]) |
| 963 | { |
| 964 | T diff = pointA - pointB; |
| 965 | |
| 966 | coefficients[0] = 2 * diff + tangentA + tangentB; |
| 967 | coefficients[1] = -3 * diff - 2 * tangentA - tangentB; |
| 968 | coefficients[2] = tangentA; |
| 969 | coefficients[3] = pointA; |
| 970 | } |
| 971 | |
| 972 | /** |
| 973 | * Calculates coefficients needed for evaluating a cubic curve in Hermite form. Assumes @p t is in range |
| 974 | * [0, @p length]. Tangents must not be scaled by @p length. |
| 975 | * |
| 976 | * @param[in] pointA Starting point (at t=0). |
| 977 | * @param[in] pointB Ending point (at t=length). |
| 978 | * @param[in] tangentA Starting tangent (at t=0). |
| 979 | * @param[in] tangentB Ending tangent (at t=length). |
| 980 | * @param[in] length Maximum value the curve will be evaluated at. |
| 981 | * @param[out] coefficients Four coefficients for the cubic curve, in order [t^3, t^2, t, 1]. |
| 982 | */ |
| 983 | template<class T> |
| 984 | static void cubicHermiteCoefficients(const T& pointA, const T& pointB, const T& tangentA, const T& tangentB, |
| 985 | float length, T (&coefficients)[4]) |
| 986 | { |
| 987 | float length2 = length * length; |
| 988 | float invLength2 = 1.0f / length2; |
| 989 | float invLength3 = 1.0f / (length2 * length); |
| 990 | |
| 991 | T scaledTangentA = tangentA * length; |
| 992 | T scaledTangentB = tangentB * length; |
| 993 | |
| 994 | T diff = pointA - pointB; |
| 995 | |
| 996 | coefficients[0] = (2 * diff + scaledTangentA + scaledTangentB) * invLength3; |
| 997 | coefficients[1] = (-3 * diff - 2 * scaledTangentA - scaledTangentB) * invLength2; |
| 998 | coefficients[2] = tangentA; |
| 999 | coefficients[3] = pointA; |
| 1000 | } |
| 1001 | |
| 1002 | /** |
| 1003 | * Calculates the Romberg Integration. |
| 1004 | * |
| 1005 | * @param[in] a Lower bound. |
| 1006 | * @param[in] b Upper bound. |
| 1007 | * @param[in] order Order of the function. |
| 1008 | * @param[in] integrand Function to integrate. |
| 1009 | * @return Integrated function. |
| 1010 | */ |
| 1011 | template <typename T> |
| 1012 | static T rombergIntegration(T a, T b, int order, const std::function<T(T)> integrand) |
| 1013 | { |
| 1014 | T h[order + 1]; |
| 1015 | T r[order + 1][order + 1]; |
| 1016 | |
| 1017 | for (int i = 1; i < order + 1; ++i) |
| 1018 | h[i] = (b - a) / Math::pow(2, i - 1); |
| 1019 | |
| 1020 | r[1][1] = h[1] / 2 * (integrand(a) + integrand(b)); |
| 1021 | |
| 1022 | for (int i = 2; i < order + 1; ++i) |
| 1023 | { |
| 1024 | T coeff = 0; |
| 1025 | for (int k = 1; k <= Math::pow(2, i - 2); ++k) |
| 1026 | coeff += integrand(a + (2 * k - 1) * h[i]); |
| 1027 | |
| 1028 | r[i][1] = 0.5 * (r[i - 1][1] + h[i - 1] * coeff); |
| 1029 | } |
| 1030 | |
| 1031 | for (int i = 2; i < order + 1; ++i) |
| 1032 | { |
| 1033 | for (int j = 2; j <= i; ++j) |
| 1034 | r[i][j] = r[i][j - 1] + (r[i][j - 1] - r[i - 1][j - 1]) / (Math::pow(4, j - 1) - 1); |
| 1035 | } |
| 1036 | |
| 1037 | return r[order][order]; |
| 1038 | } |
| 1039 | |
| 1040 | /** |
| 1041 | * Calculates the Gaussian Quadrature. |
| 1042 | * |
| 1043 | * @param[in] a Lower bound. |
| 1044 | * @param[in] b Upper bound. |
| 1045 | * @param[in] roots Roots of the function. |
| 1046 | * @param[in] coefficients Coefficients of the function. |
| 1047 | * @param[in] integrand Function to integrate. |
| 1048 | * @return Gaussian Quadrature integration. |
| 1049 | */ |
| 1050 | template <typename T> |
| 1051 | static T gaussianQuadrature(T a, T b, T* roots, T* coefficients, const std::function <T(T)>& integrand) |
| 1052 | { |
| 1053 | const T half = (T)0.5; |
| 1054 | const T radius = half * (b - a); |
| 1055 | const T center = half * (b + a); |
| 1056 | T res = (T)0; |
| 1057 | |
| 1058 | for (UINT32 i = 0; i < sizeof(roots) / sizeof(*roots); ++i) |
| 1059 | res += coefficients[i] * integrand(radius * roots[i] + center); |
| 1060 | |
| 1061 | res *= radius; |
| 1062 | |
| 1063 | return res; |
| 1064 | } |
| 1065 | |
| 1066 | static constexpr float POS_INFINITY = std::numeric_limits<float>::infinity(); |
| 1067 | static constexpr float NEG_INFINITY = -std::numeric_limits<float>::infinity(); |
| 1068 | static constexpr float PI = 3.14159265358979323846f; |
| 1069 | static constexpr float TWO_PI = (float)(2.0f * PI); |
| 1070 | static constexpr float HALF_PI = (float)(0.5f * PI); |
| 1071 | static constexpr float QUARTER_PI = (float)(0.25f * PI); |
| 1072 | static constexpr float INV_PI = (float)(1 / PI); |
| 1073 | static constexpr float INV_HALF_PI = (float)(INV_PI / 2); |
| 1074 | static constexpr float INV_TWO_PI = (float)(2.0f * INV_PI); |
| 1075 | static constexpr float DEG2RAD = PI / 180.0f; |
| 1076 | static constexpr float RAD2DEG = 180.0f / PI; |
| 1077 | static constexpr float SQRT2 = 1.4142135623730951f; |
| 1078 | static constexpr float INV_SQRT2 = (float)(1.0f / SQRT2); |
| 1079 | static const float LOG2; |
| 1080 | }; |
| 1081 | |
| 1082 | /** @} */ |
| 1083 | } |
| 1084 | |