| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | // Header that should be #included by everyone. |
| 23 | // |
| 24 | // This defines very simple utilities that are widely applicable. |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #if defined(__GNUC__) && !KJ_HEADER_WARNINGS |
| 29 | #pragma GCC system_header |
| 30 | #endif |
| 31 | |
| 32 | #ifndef KJ_NO_COMPILER_CHECK |
| 33 | // Technically, __cplusplus should be 201402L for C++14, but GCC 4.9 -- which is supported -- still |
| 34 | // had it defined to 201300L even with -std=c++14. |
| 35 | #if __cplusplus < 201300L && !__CDT_PARSER__ && !_MSC_VER |
| 36 | #error "This code requires C++14. Either your compiler does not support it or it is not enabled." |
| 37 | #ifdef __GNUC__ |
| 38 | // Compiler claims compatibility with GCC, so presumably supports -std. |
| 39 | #error "Pass -std=c++14 on the compiler command line to enable C++14." |
| 40 | #endif |
| 41 | #endif |
| 42 | |
| 43 | #ifdef __GNUC__ |
| 44 | #if __clang__ |
| 45 | #if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 4) |
| 46 | #warning "This library requires at least Clang 3.4." |
| 47 | #elif __cplusplus >= 201402L && !__has_include(<initializer_list>) |
| 48 | #warning "Your compiler supports C++14 but your C++ standard library does not. If your "\ |
| 49 | "system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\ |
| 50 | "-stdlib=libc++ to your CXXFLAGS." |
| 51 | #endif |
| 52 | #else |
| 53 | #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 9) |
| 54 | #warning "This library requires at least GCC 4.9." |
| 55 | #endif |
| 56 | #endif |
| 57 | #elif defined(_MSC_VER) |
| 58 | #if _MSC_VER < 1910 |
| 59 | #error "You need Visual Studio 2017 or better to compile this code." |
| 60 | #endif |
| 61 | #else |
| 62 | #warning "I don't recognize your compiler. As of this writing, Clang, GCC, and Visual Studio "\ |
| 63 | "are the only known compilers with enough C++14 support for this library. "\ |
| 64 | "#define KJ_NO_COMPILER_CHECK to make this warning go away." |
| 65 | #endif |
| 66 | #endif |
| 67 | |
| 68 | #include <stddef.h> |
| 69 | #include <initializer_list> |
| 70 | |
| 71 | #if __linux__ && __cplusplus > 201200L |
| 72 | // Hack around stdlib bug with C++14 that exists on some Linux systems. |
| 73 | // Apparently in this mode the C library decides not to define gets() but the C++ library still |
| 74 | // tries to import it into the std namespace. This bug has been fixed at the source but is still |
| 75 | // widely present in the wild e.g. on Ubuntu 14.04. |
| 76 | #undef _GLIBCXX_HAVE_GETS |
| 77 | #endif |
| 78 | |
| 79 | #if defined(_MSC_VER) |
| 80 | #ifndef NOMINMAX |
| 81 | #define NOMINMAX 1 |
| 82 | #endif |
| 83 | #include <intrin.h> // __popcnt |
| 84 | #endif |
| 85 | |
| 86 | // ======================================================================================= |
| 87 | |
| 88 | namespace kj { |
| 89 | |
| 90 | typedef unsigned int uint; |
| 91 | typedef unsigned char byte; |
| 92 | |
| 93 | // ======================================================================================= |
| 94 | // Common macros, especially for common yet compiler-specific features. |
| 95 | |
| 96 | // Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific |
| 97 | // evidence to the contrary. Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly |
| 98 | // to override these checks. |
| 99 | #ifdef __GNUC__ |
| 100 | #if !defined(KJ_NO_RTTI) && !__GXX_RTTI |
| 101 | #define KJ_NO_RTTI 1 |
| 102 | #endif |
| 103 | #if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS |
| 104 | #define KJ_NO_EXCEPTIONS 1 |
| 105 | #endif |
| 106 | #elif defined(_MSC_VER) |
| 107 | #if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI) |
| 108 | #define KJ_NO_RTTI 1 |
| 109 | #endif |
| 110 | #if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND) |
| 111 | #define KJ_NO_EXCEPTIONS 1 |
| 112 | #endif |
| 113 | #endif |
| 114 | |
| 115 | #if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG) |
| 116 | // Heuristically decide whether to enable debug mode. If DEBUG or NDEBUG is defined, use that. |
| 117 | // Otherwise, fall back to checking whether optimization is enabled. |
| 118 | #if defined(DEBUG) || defined(_DEBUG) |
| 119 | #define KJ_DEBUG |
| 120 | #elif defined(NDEBUG) |
| 121 | #define KJ_NDEBUG |
| 122 | #elif __OPTIMIZE__ |
| 123 | #define KJ_NDEBUG |
| 124 | #else |
| 125 | #define KJ_DEBUG |
| 126 | #endif |
| 127 | #endif |
| 128 | |
| 129 | #define KJ_DISALLOW_COPY(classname) \ |
| 130 | classname(const classname&) = delete; \ |
| 131 | classname& operator=(const classname&) = delete |
| 132 | // Deletes the implicit copy constructor and assignment operator. |
| 133 | |
| 134 | #ifdef __GNUC__ |
| 135 | #define KJ_LIKELY(condition) __builtin_expect(condition, true) |
| 136 | #define KJ_UNLIKELY(condition) __builtin_expect(condition, false) |
| 137 | // Branch prediction macros. Evaluates to the condition given, but also tells the compiler that we |
| 138 | // expect the condition to be true/false enough of the time that it's worth hard-coding branch |
| 139 | // prediction. |
| 140 | #else |
| 141 | #define KJ_LIKELY(condition) (condition) |
| 142 | #define KJ_UNLIKELY(condition) (condition) |
| 143 | #endif |
| 144 | |
| 145 | #if defined(KJ_DEBUG) || __NO_INLINE__ |
| 146 | #define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ |
| 147 | // Don't force inline in debug mode. |
| 148 | #else |
| 149 | #if defined(_MSC_VER) |
| 150 | #define KJ_ALWAYS_INLINE(...) __forceinline __VA_ARGS__ |
| 151 | #else |
| 152 | #define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ __attribute__((always_inline)) |
| 153 | #endif |
| 154 | // Force a function to always be inlined. Apply only to the prototype, not to the definition. |
| 155 | #endif |
| 156 | |
| 157 | #if defined(_MSC_VER) |
| 158 | #define KJ_NOINLINE __declspec(noinline) |
| 159 | #else |
| 160 | #define KJ_NOINLINE __attribute__((noinline)) |
| 161 | #endif |
| 162 | |
| 163 | #if defined(_MSC_VER) && !__clang__ |
| 164 | #define KJ_NORETURN(prototype) __declspec(noreturn) prototype |
| 165 | #define KJ_UNUSED |
| 166 | #define KJ_WARN_UNUSED_RESULT |
| 167 | // TODO(msvc): KJ_WARN_UNUSED_RESULT can use _Check_return_ on MSVC, but it's a prefix, so |
| 168 | // wrapping the whole prototype is needed. http://msdn.microsoft.com/en-us/library/jj159529.aspx |
| 169 | // Similarly, KJ_UNUSED could use __pragma(warning(suppress:...)), but again that's a prefix. |
| 170 | #else |
| 171 | #define KJ_NORETURN(prototype) prototype __attribute__((noreturn)) |
| 172 | #define KJ_UNUSED __attribute__((unused)) |
| 173 | #define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result)) |
| 174 | #endif |
| 175 | |
| 176 | #if __clang__ |
| 177 | #define KJ_UNUSED_MEMBER __attribute__((unused)) |
| 178 | // Inhibits "unused" warning for member variables. Only Clang produces such a warning, while GCC |
| 179 | // complains if the attribute is set on members. |
| 180 | #else |
| 181 | #define KJ_UNUSED_MEMBER |
| 182 | #endif |
| 183 | |
| 184 | #if __clang__ |
| 185 | #define KJ_DEPRECATED(reason) \ |
| 186 | __attribute__((deprecated(reason))) |
| 187 | #define KJ_UNAVAILABLE(reason) \ |
| 188 | __attribute__((unavailable(reason))) |
| 189 | #elif __GNUC__ |
| 190 | #define KJ_DEPRECATED(reason) \ |
| 191 | __attribute__((deprecated)) |
| 192 | #define KJ_UNAVAILABLE(reason) |
| 193 | #else |
| 194 | #define KJ_DEPRECATED(reason) |
| 195 | #define KJ_UNAVAILABLE(reason) |
| 196 | // TODO(msvc): Again, here, MSVC prefers a prefix, __declspec(deprecated). |
| 197 | #endif |
| 198 | |
| 199 | #if KJ_TESTING_KJ // defined in KJ's own unit tests; others should not define this |
| 200 | #undef KJ_DEPRECATED |
| 201 | #define KJ_DEPRECATED(reason) |
| 202 | #endif |
| 203 | |
| 204 | namespace _ { // private |
| 205 | |
| 206 | KJ_NORETURN(void inlineRequireFailure( |
| 207 | const char* file, int line, const char* expectation, const char* macroArgs, |
| 208 | const char* message = nullptr)); |
| 209 | |
| 210 | KJ_NORETURN(void unreachable()); |
| 211 | |
| 212 | } // namespace _ (private) |
| 213 | |
| 214 | #ifdef KJ_DEBUG |
| 215 | #if _MSC_VER |
| 216 | #define KJ_IREQUIRE(condition, ...) \ |
| 217 | if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \ |
| 218 | __FILE__, __LINE__, #condition, "" #__VA_ARGS__, __VA_ARGS__) |
| 219 | // Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to |
| 220 | // check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that |
| 221 | // it will be enabled depending on whether the application is compiled in debug mode rather than |
| 222 | // whether libkj is. |
| 223 | #else |
| 224 | #define KJ_IREQUIRE(condition, ...) \ |
| 225 | if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \ |
| 226 | __FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__) |
| 227 | // Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to |
| 228 | // check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that |
| 229 | // it will be enabled depending on whether the application is compiled in debug mode rather than |
| 230 | // whether libkj is. |
| 231 | #endif |
| 232 | #else |
| 233 | #define KJ_IREQUIRE(condition, ...) |
| 234 | #endif |
| 235 | |
| 236 | #define KJ_IASSERT KJ_IREQUIRE |
| 237 | |
| 238 | #define KJ_UNREACHABLE ::kj::_::unreachable(); |
| 239 | // Put this on code paths that cannot be reached to suppress compiler warnings about missing |
| 240 | // returns. |
| 241 | |
| 242 | #if __clang__ |
| 243 | #define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT |
| 244 | #else |
| 245 | #define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE |
| 246 | #endif |
| 247 | |
| 248 | // #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) |
| 249 | // |
| 250 | // Allocate an array, preferably on the stack, unless it is too big. On GCC this will use |
| 251 | // variable-sized arrays. For other compilers we could just use a fixed-size array. `minStack` |
| 252 | // is the stack array size to use if variable-width arrays are not supported. `maxStack` is the |
| 253 | // maximum stack array size if variable-width arrays *are* supported. |
| 254 | #if __GNUC__ && !__clang__ |
| 255 | #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \ |
| 256 | size_t name##_size = (size); \ |
| 257 | bool name##_isOnStack = name##_size <= (maxStack); \ |
| 258 | type name##_stack[kj::max(1, name##_isOnStack ? name##_size : 0)]; \ |
| 259 | ::kj::Array<type> name##_heap = name##_isOnStack ? \ |
| 260 | nullptr : kj::heapArray<type>(name##_size); \ |
| 261 | ::kj::ArrayPtr<type> name = name##_isOnStack ? \ |
| 262 | kj::arrayPtr(name##_stack, name##_size) : name##_heap |
| 263 | #else |
| 264 | #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \ |
| 265 | size_t name##_size = (size); \ |
| 266 | bool name##_isOnStack = name##_size <= (minStack); \ |
| 267 | type name##_stack[minStack]; \ |
| 268 | ::kj::Array<type> name##_heap = name##_isOnStack ? \ |
| 269 | nullptr : kj::heapArray<type>(name##_size); \ |
| 270 | ::kj::ArrayPtr<type> name = name##_isOnStack ? \ |
| 271 | kj::arrayPtr(name##_stack, name##_size) : name##_heap |
| 272 | #endif |
| 273 | |
| 274 | #define KJ_CONCAT_(x, y) x##y |
| 275 | #define KJ_CONCAT(x, y) KJ_CONCAT_(x, y) |
| 276 | #define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__) |
| 277 | // Create a unique identifier name. We use concatenate __LINE__ rather than __COUNTER__ so that |
| 278 | // the name can be used multiple times in the same macro. |
| 279 | |
| 280 | #if _MSC_VER |
| 281 | |
| 282 | #define KJ_CONSTEXPR(...) __VA_ARGS__ |
| 283 | // Use in cases where MSVC barfs on constexpr. A replacement keyword (e.g. "const") can be |
| 284 | // provided, or just leave blank to remove the keyword entirely. |
| 285 | // |
| 286 | // TODO(msvc): Remove this hack once MSVC fully supports constexpr. |
| 287 | |
| 288 | #ifndef __restrict__ |
| 289 | #define __restrict__ __restrict |
| 290 | // TODO(msvc): Would it be better to define a KJ_RESTRICT macro? |
| 291 | #endif |
| 292 | |
| 293 | #pragma warning(disable: 4521 4522) |
| 294 | // This warning complains when there are two copy constructors, one for a const reference and |
| 295 | // one for a non-const reference. It is often quite necessary to do this in wrapper templates, |
| 296 | // therefore this warning is dumb and we disable it. |
| 297 | |
| 298 | #pragma warning(disable: 4458) |
| 299 | // Warns when a parameter name shadows a class member. Unfortunately my code does this a lot, |
| 300 | // since I don't use a special name format for members. |
| 301 | |
| 302 | #else // _MSC_VER |
| 303 | #define KJ_CONSTEXPR(...) constexpr |
| 304 | #endif |
| 305 | |
| 306 | #if defined(_MSC_VER) && _MSC_VER < 1910 |
| 307 | // TODO(msvc): Visual Studio 2015 mishandles declaring the no-arg constructor `= default` for |
| 308 | // certain template types -- it fails to call member constructors. |
| 309 | #define KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY {} |
| 310 | #else |
| 311 | #define KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY = default; |
| 312 | #endif |
| 313 | |
| 314 | // ======================================================================================= |
| 315 | // Template metaprogramming helpers. |
| 316 | |
| 317 | template <typename T> struct NoInfer_ { typedef T Type; }; |
| 318 | template <typename T> using NoInfer = typename NoInfer_<T>::Type; |
| 319 | // Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of |
| 320 | // the type based on the parameter value. |
| 321 | |
| 322 | template <typename T> struct RemoveConst_ { typedef T Type; }; |
| 323 | template <typename T> struct RemoveConst_<const T> { typedef T Type; }; |
| 324 | template <typename T> using RemoveConst = typename RemoveConst_<T>::Type; |
| 325 | |
| 326 | template <typename> struct IsLvalueReference_ { static constexpr bool value = false; }; |
| 327 | template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; }; |
| 328 | template <typename T> |
| 329 | inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; } |
| 330 | |
| 331 | template <typename T> struct Decay_ { typedef T Type; }; |
| 332 | template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; }; |
| 333 | template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; }; |
| 334 | template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; }; |
| 335 | template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; }; |
| 336 | template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; }; |
| 337 | template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; }; |
| 338 | template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; }; |
| 339 | template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; }; |
| 340 | template <typename T> using Decay = typename Decay_<T>::Type; |
| 341 | |
| 342 | template <bool b> struct EnableIf_; |
| 343 | template <> struct EnableIf_<true> { typedef void Type; }; |
| 344 | template <bool b> using EnableIf = typename EnableIf_<b>::Type; |
| 345 | // Use like: |
| 346 | // |
| 347 | // template <typename T, typename = EnableIf<isValid<T>()> |
| 348 | // void func(T&& t); |
| 349 | |
| 350 | template <typename...> struct VoidSfinae_ { using Type = void; }; |
| 351 | template <typename... Ts> using VoidSfinae = typename VoidSfinae_<Ts...>::Type; |
| 352 | // Note: VoidSfinae is std::void_t from C++17. |
| 353 | |
| 354 | template <typename T> |
| 355 | T instance() noexcept; |
| 356 | // Like std::declval, but doesn't transform T into an rvalue reference. If you want that, specify |
| 357 | // instance<T&&>(). |
| 358 | |
| 359 | struct DisallowConstCopy { |
| 360 | // Inherit from this, or declare a member variable of this type, to prevent the class from being |
| 361 | // copyable from a const reference -- instead, it will only be copyable from non-const references. |
| 362 | // This is useful for enforcing transitive constness of contained pointers. |
| 363 | // |
| 364 | // For example, say you have a type T which contains a pointer. T has non-const methods which |
| 365 | // modify the value at that pointer, but T's const methods are designed to allow reading only. |
| 366 | // Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and |
| 367 | // then use it to modify the pointed-to value. However, if T inherits DisallowConstCopy, then |
| 368 | // callers will only be able to copy non-const instances of T. Ideally, there is some |
| 369 | // parallel type ImmutableT which is like a version of T that only has const methods, and can |
| 370 | // be copied from a const T. |
| 371 | // |
| 372 | // Note that due to C++ rules about implicit copy constructors and assignment operators, any |
| 373 | // type that contains or inherits from a type that disallows const copies will also automatically |
| 374 | // disallow const copies. Hey, cool, that's exactly what we want. |
| 375 | |
| 376 | #if CAPNP_DEBUG_TYPES |
| 377 | // Alas! Declaring a defaulted non-const copy constructor tickles a bug which causes GCC and |
| 378 | // Clang to disagree on ABI, using different calling conventions to pass this type, leading to |
| 379 | // immediate segfaults. See: |
| 380 | // https://bugs.llvm.org/show_bug.cgi?id=23764 |
| 381 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58074 |
| 382 | // |
| 383 | // Because of this, we can't use this technique. We guard it by CAPNP_DEBUG_TYPES so that it |
| 384 | // still applies to the Cap'n Proto developers during internal testing. |
| 385 | |
| 386 | DisallowConstCopy() = default; |
| 387 | DisallowConstCopy(DisallowConstCopy&) = default; |
| 388 | DisallowConstCopy(DisallowConstCopy&&) = default; |
| 389 | DisallowConstCopy& operator=(DisallowConstCopy&) = default; |
| 390 | DisallowConstCopy& operator=(DisallowConstCopy&&) = default; |
| 391 | #endif |
| 392 | }; |
| 393 | |
| 394 | #if _MSC_VER |
| 395 | |
| 396 | #define KJ_CPCAP(obj) obj=::kj::cp(obj) |
| 397 | // TODO(msvc): MSVC refuses to invoke non-const versions of copy constructors in by-value lambda |
| 398 | // captures. Wrap your captured object in this macro to force the compiler to perform a copy. |
| 399 | // Example: |
| 400 | // |
| 401 | // struct Foo: DisallowConstCopy {}; |
| 402 | // Foo foo; |
| 403 | // auto lambda = [KJ_CPCAP(foo)] {}; |
| 404 | |
| 405 | #else |
| 406 | |
| 407 | #define KJ_CPCAP(obj) obj |
| 408 | // Clang and gcc both already perform copy capturing correctly with non-const copy constructors. |
| 409 | |
| 410 | #endif |
| 411 | |
| 412 | template <typename T> |
| 413 | struct DisallowConstCopyIfNotConst: public DisallowConstCopy { |
| 414 | // Inherit from this when implementing a template that contains a pointer to T and which should |
| 415 | // enforce transitive constness. If T is a const type, this has no effect. Otherwise, it is |
| 416 | // an alias for DisallowConstCopy. |
| 417 | }; |
| 418 | |
| 419 | template <typename T> |
| 420 | struct DisallowConstCopyIfNotConst<const T> {}; |
| 421 | |
| 422 | template <typename T> struct IsConst_ { static constexpr bool value = false; }; |
| 423 | template <typename T> struct IsConst_<const T> { static constexpr bool value = true; }; |
| 424 | template <typename T> constexpr bool isConst() { return IsConst_<T>::value; } |
| 425 | |
| 426 | template <typename T> struct EnableIfNotConst_ { typedef T Type; }; |
| 427 | template <typename T> struct EnableIfNotConst_<const T>; |
| 428 | template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type; |
| 429 | |
| 430 | template <typename T> struct EnableIfConst_; |
| 431 | template <typename T> struct EnableIfConst_<const T> { typedef T Type; }; |
| 432 | template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type; |
| 433 | |
| 434 | template <typename T> struct RemoveConstOrDisable_ { struct Type; }; |
| 435 | template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; }; |
| 436 | template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type; |
| 437 | |
| 438 | template <typename T> struct IsReference_ { static constexpr bool value = false; }; |
| 439 | template <typename T> struct IsReference_<T&> { static constexpr bool value = true; }; |
| 440 | template <typename T> constexpr bool isReference() { return IsReference_<T>::value; } |
| 441 | |
| 442 | template <typename From, typename To> |
| 443 | struct PropagateConst_ { typedef To Type; }; |
| 444 | template <typename From, typename To> |
| 445 | struct PropagateConst_<const From, To> { typedef const To Type; }; |
| 446 | template <typename From, typename To> |
| 447 | using PropagateConst = typename PropagateConst_<From, To>::Type; |
| 448 | |
| 449 | namespace _ { // private |
| 450 | |
| 451 | template <typename T> |
| 452 | T refIfLvalue(T&&); |
| 453 | |
| 454 | } // namespace _ (private) |
| 455 | |
| 456 | #define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp)) |
| 457 | // Like decltype(exp), but if exp is an lvalue, produces a reference type. |
| 458 | // |
| 459 | // int i; |
| 460 | // decltype(i) i1(i); // i1 has type int. |
| 461 | // KJ_DECLTYPE_REF(i + 1) i2(i + 1); // i2 has type int. |
| 462 | // KJ_DECLTYPE_REF(i) i3(i); // i3 has type int&. |
| 463 | // KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i)); // i4 has type int. |
| 464 | |
| 465 | template <typename T, typename U> struct IsSameType_ { static constexpr bool value = false; }; |
| 466 | template <typename T> struct IsSameType_<T, T> { static constexpr bool value = true; }; |
| 467 | template <typename T, typename U> constexpr bool isSameType() { return IsSameType_<T, U>::value; } |
| 468 | |
| 469 | template <typename T> |
| 470 | struct CanConvert_ { |
| 471 | static int sfinae(T); |
| 472 | static bool sfinae(...); |
| 473 | }; |
| 474 | |
| 475 | template <typename T, typename U> |
| 476 | constexpr bool canConvert() { |
| 477 | return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int); |
| 478 | } |
| 479 | |
| 480 | #if __GNUC__ && !__clang__ && __GNUC__ < 5 |
| 481 | template <typename T> |
| 482 | constexpr bool canMemcpy() { |
| 483 | // Returns true if T can be copied using memcpy instead of using the copy constructor or |
| 484 | // assignment operator. |
| 485 | |
| 486 | // GCC 4 does not have __is_trivially_constructible and friends, and there doesn't seem to be |
| 487 | // any reliable alternative. __has_trivial_copy() and __has_trivial_assign() return the right |
| 488 | // thing at one point but later on they changed such that a deleted copy constructor was |
| 489 | // considered "trivial" (apparently technically correct, though useless). So, on GCC 4 we give up |
| 490 | // and assume we can't memcpy() at all, and must explicitly copy-construct everything. |
| 491 | return false; |
| 492 | } |
| 493 | #define KJ_ASSERT_CAN_MEMCPY(T) |
| 494 | #else |
| 495 | template <typename T> |
| 496 | constexpr bool canMemcpy() { |
| 497 | // Returns true if T can be copied using memcpy instead of using the copy constructor or |
| 498 | // assignment operator. |
| 499 | |
| 500 | return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&); |
| 501 | } |
| 502 | #define KJ_ASSERT_CAN_MEMCPY(T) \ |
| 503 | static_assert(kj::canMemcpy<T>(), "this code expects this type to be memcpy()-able"); |
| 504 | #endif |
| 505 | |
| 506 | // ======================================================================================= |
| 507 | // Equivalents to std::move() and std::forward(), since these are very commonly needed and the |
| 508 | // std header <utility> pulls in lots of other stuff. |
| 509 | // |
| 510 | // We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used |
| 511 | // that the cost of typing more letters outweighs the cost of being slightly harder to understand |
| 512 | // when first encountered. |
| 513 | |
| 514 | template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); } |
| 515 | template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); } |
| 516 | |
| 517 | template<typename T> constexpr T cp(T& t) noexcept { return t; } |
| 518 | template<typename T> constexpr T cp(const T& t) noexcept { return t; } |
| 519 | // Useful to force a copy, particularly to pass into a function that expects T&&. |
| 520 | |
| 521 | template <typename T, typename U, bool takeT, bool uOK = true> struct ChooseType_; |
| 522 | template <typename T, typename U> struct ChooseType_<T, U, true, true> { typedef T Type; }; |
| 523 | template <typename T, typename U> struct ChooseType_<T, U, true, false> { typedef T Type; }; |
| 524 | template <typename T, typename U> struct ChooseType_<T, U, false, true> { typedef U Type; }; |
| 525 | |
| 526 | template <typename T, typename U> |
| 527 | using WiderType = typename ChooseType_<T, U, sizeof(T) >= sizeof(U)>::Type; |
| 528 | |
| 529 | template <typename T, typename U> |
| 530 | inline constexpr auto min(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> { |
| 531 | return a < b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b); |
| 532 | } |
| 533 | |
| 534 | template <typename T, typename U> |
| 535 | inline constexpr auto max(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> { |
| 536 | return a > b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b); |
| 537 | } |
| 538 | |
| 539 | template <typename T, size_t s> |
| 540 | inline constexpr size_t size(T (&arr)[s]) { return s; } |
| 541 | template <typename T> |
| 542 | inline constexpr size_t size(T&& arr) { return arr.size(); } |
| 543 | // Returns the size of the parameter, whether the parameter is a regular C array or a container |
| 544 | // with a `.size()` method. |
| 545 | |
| 546 | class MaxValue_ { |
| 547 | private: |
| 548 | template <typename T> |
| 549 | inline constexpr T maxSigned() const { |
| 550 | return (1ull << (sizeof(T) * 8 - 1)) - 1; |
| 551 | } |
| 552 | template <typename T> |
| 553 | inline constexpr T maxUnsigned() const { |
| 554 | return ~static_cast<T>(0u); |
| 555 | } |
| 556 | |
| 557 | public: |
| 558 | #define _kJ_HANDLE_TYPE(T) \ |
| 559 | inline constexpr operator signed T() const { return MaxValue_::maxSigned < signed T>(); } \ |
| 560 | inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); } |
| 561 | _kJ_HANDLE_TYPE(char) |
| 562 | _kJ_HANDLE_TYPE(short) |
| 563 | _kJ_HANDLE_TYPE(int) |
| 564 | _kJ_HANDLE_TYPE(long) |
| 565 | _kJ_HANDLE_TYPE(long long) |
| 566 | #undef _kJ_HANDLE_TYPE |
| 567 | |
| 568 | inline constexpr operator char() const { |
| 569 | // `char` is different from both `signed char` and `unsigned char`, and may be signed or |
| 570 | // unsigned on different platforms. Ugh. |
| 571 | return char(-1) < 0 ? MaxValue_::maxSigned<char>() |
| 572 | : MaxValue_::maxUnsigned<char>(); |
| 573 | } |
| 574 | }; |
| 575 | |
| 576 | class MinValue_ { |
| 577 | private: |
| 578 | template <typename T> |
| 579 | inline constexpr T minSigned() const { |
| 580 | return 1ull << (sizeof(T) * 8 - 1); |
| 581 | } |
| 582 | template <typename T> |
| 583 | inline constexpr T minUnsigned() const { |
| 584 | return 0u; |
| 585 | } |
| 586 | |
| 587 | public: |
| 588 | #define _kJ_HANDLE_TYPE(T) \ |
| 589 | inline constexpr operator signed T() const { return MinValue_::minSigned < signed T>(); } \ |
| 590 | inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); } |
| 591 | _kJ_HANDLE_TYPE(char) |
| 592 | _kJ_HANDLE_TYPE(short) |
| 593 | _kJ_HANDLE_TYPE(int) |
| 594 | _kJ_HANDLE_TYPE(long) |
| 595 | _kJ_HANDLE_TYPE(long long) |
| 596 | #undef _kJ_HANDLE_TYPE |
| 597 | |
| 598 | inline constexpr operator char() const { |
| 599 | // `char` is different from both `signed char` and `unsigned char`, and may be signed or |
| 600 | // unsigned on different platforms. Ugh. |
| 601 | return char(-1) < 0 ? MinValue_::minSigned<char>() |
| 602 | : MinValue_::minUnsigned<char>(); |
| 603 | } |
| 604 | }; |
| 605 | |
| 606 | static KJ_CONSTEXPR(const) MaxValue_ maxValue = MaxValue_(); |
| 607 | // A special constant which, when cast to an integer type, takes on the maximum possible value of |
| 608 | // that type. This is useful to use as e.g. a parameter to a function because it will be robust |
| 609 | // in the face of changes to the parameter's type. |
| 610 | // |
| 611 | // `char` is not supported, but `signed char` and `unsigned char` are. |
| 612 | |
| 613 | static KJ_CONSTEXPR(const) MinValue_ minValue = MinValue_(); |
| 614 | // A special constant which, when cast to an integer type, takes on the minimum possible value |
| 615 | // of that type. This is useful to use as e.g. a parameter to a function because it will be robust |
| 616 | // in the face of changes to the parameter's type. |
| 617 | // |
| 618 | // `char` is not supported, but `signed char` and `unsigned char` are. |
| 619 | |
| 620 | template <typename T> |
| 621 | inline bool operator==(T t, MaxValue_) { return t == Decay<T>(maxValue); } |
| 622 | template <typename T> |
| 623 | inline bool operator==(T t, MinValue_) { return t == Decay<T>(minValue); } |
| 624 | |
| 625 | template <uint bits> |
| 626 | inline constexpr unsigned long long maxValueForBits() { |
| 627 | // Get the maximum integer representable in the given number of bits. |
| 628 | |
| 629 | // 1ull << 64 is unfortunately undefined. |
| 630 | return (bits == 64 ? 0 : (1ull << bits)) - 1; |
| 631 | } |
| 632 | |
| 633 | struct ThrowOverflow { |
| 634 | // Functor which throws an exception complaining about integer overflow. Usually this is used |
| 635 | // with the interfaces in units.h, but is defined here because Cap'n Proto wants to avoid |
| 636 | // including units.h when not using CAPNP_DEBUG_TYPES. |
| 637 | void operator()() const; |
| 638 | }; |
| 639 | |
| 640 | #if __GNUC__ || __clang__ |
| 641 | inline constexpr float inf() { return __builtin_huge_valf(); } |
| 642 | inline constexpr float nan() { return __builtin_nanf("" ); } |
| 643 | |
| 644 | #elif _MSC_VER |
| 645 | |
| 646 | // Do what MSVC math.h does |
| 647 | #pragma warning(push) |
| 648 | #pragma warning(disable: 4756) // "overflow in constant arithmetic" |
| 649 | inline constexpr float inf() { return (float)(1e300 * 1e300); } |
| 650 | #pragma warning(pop) |
| 651 | |
| 652 | float nan(); |
| 653 | // Unfortunatley, inf() * 0.0f produces a NaN with the sign bit set, whereas our preferred |
| 654 | // canonical NaN should not have the sign bit set. std::numeric_limits<float>::quiet_NaN() |
| 655 | // returns the correct NaN, but we don't want to #include that here. So, we give up and make |
| 656 | // this out-of-line on MSVC. |
| 657 | // |
| 658 | // TODO(msvc): Can we do better? |
| 659 | |
| 660 | #else |
| 661 | #error "Not sure how to support your compiler." |
| 662 | #endif |
| 663 | |
| 664 | inline constexpr bool isNaN(float f) { return f != f; } |
| 665 | inline constexpr bool isNaN(double f) { return f != f; } |
| 666 | |
| 667 | inline int popCount(unsigned int x) { |
| 668 | #if defined(_MSC_VER) |
| 669 | return __popcnt(x); |
| 670 | // Note: __popcnt returns unsigned int, but the value is clearly guaranteed to fit into an int |
| 671 | #else |
| 672 | return __builtin_popcount(x); |
| 673 | #endif |
| 674 | } |
| 675 | |
| 676 | // ======================================================================================= |
| 677 | // Useful fake containers |
| 678 | |
| 679 | template <typename T> |
| 680 | class Range { |
| 681 | public: |
| 682 | inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {} |
| 683 | inline explicit constexpr Range(const T& end): begin_(0), end_(end) {} |
| 684 | |
| 685 | class Iterator { |
| 686 | public: |
| 687 | Iterator() = default; |
| 688 | inline Iterator(const T& value): value(value) {} |
| 689 | |
| 690 | inline const T& operator* () const { return value; } |
| 691 | inline const T& operator[](size_t index) const { return value + index; } |
| 692 | inline Iterator& operator++() { ++value; return *this; } |
| 693 | inline Iterator operator++(int) { return Iterator(value++); } |
| 694 | inline Iterator& operator--() { --value; return *this; } |
| 695 | inline Iterator operator--(int) { return Iterator(value--); } |
| 696 | inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; } |
| 697 | inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; } |
| 698 | inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value + amount); } |
| 699 | inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value - amount); } |
| 700 | inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; } |
| 701 | |
| 702 | inline bool operator==(const Iterator& other) const { return value == other.value; } |
| 703 | inline bool operator!=(const Iterator& other) const { return value != other.value; } |
| 704 | inline bool operator<=(const Iterator& other) const { return value <= other.value; } |
| 705 | inline bool operator>=(const Iterator& other) const { return value >= other.value; } |
| 706 | inline bool operator< (const Iterator& other) const { return value < other.value; } |
| 707 | inline bool operator> (const Iterator& other) const { return value > other.value; } |
| 708 | |
| 709 | private: |
| 710 | T value; |
| 711 | }; |
| 712 | |
| 713 | inline Iterator begin() const { return Iterator(begin_); } |
| 714 | inline Iterator end() const { return Iterator(end_); } |
| 715 | |
| 716 | inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; } |
| 717 | |
| 718 | private: |
| 719 | T begin_; |
| 720 | T end_; |
| 721 | }; |
| 722 | |
| 723 | template <typename T, typename U> |
| 724 | inline constexpr Range<WiderType<Decay<T>, Decay<U>>> range(T begin, U end) { |
| 725 | return Range<WiderType<Decay<T>, Decay<U>>>(begin, end); |
| 726 | } |
| 727 | |
| 728 | template <typename T> |
| 729 | inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); } |
| 730 | // Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end` |
| 731 | // (exclusive). Example: |
| 732 | // |
| 733 | // // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9. |
| 734 | // for (int i: kj::range(1, 10)) { print(i); } |
| 735 | |
| 736 | template <typename T> |
| 737 | inline constexpr Range<Decay<T>> zeroTo(T end) { return Range<Decay<T>>(end); } |
| 738 | // Returns a fake iterable container containing all values of T from zero (inclusive) to `end` |
| 739 | // (exclusive). Example: |
| 740 | // |
| 741 | // // Prints 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. |
| 742 | // for (int i: kj::zeroTo(10)) { print(i); } |
| 743 | |
| 744 | template <typename T> |
| 745 | inline constexpr Range<size_t> indices(T&& container) { |
| 746 | // Shortcut for iterating over the indices of a container: |
| 747 | // |
| 748 | // for (size_t i: kj::indices(myArray)) { handle(myArray[i]); } |
| 749 | |
| 750 | return range<size_t>(0, kj::size(container)); |
| 751 | } |
| 752 | |
| 753 | template <typename T> |
| 754 | class Repeat { |
| 755 | public: |
| 756 | inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {} |
| 757 | |
| 758 | class Iterator { |
| 759 | public: |
| 760 | Iterator() = default; |
| 761 | inline Iterator(const T& value, size_t index): value(value), index(index) {} |
| 762 | |
| 763 | inline const T& operator* () const { return value; } |
| 764 | inline const T& operator[](ptrdiff_t index) const { return value; } |
| 765 | inline Iterator& operator++() { ++index; return *this; } |
| 766 | inline Iterator operator++(int) { return Iterator(value, index++); } |
| 767 | inline Iterator& operator--() { --index; return *this; } |
| 768 | inline Iterator operator--(int) { return Iterator(value, index--); } |
| 769 | inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; } |
| 770 | inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; } |
| 771 | inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); } |
| 772 | inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); } |
| 773 | inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; } |
| 774 | |
| 775 | inline bool operator==(const Iterator& other) const { return index == other.index; } |
| 776 | inline bool operator!=(const Iterator& other) const { return index != other.index; } |
| 777 | inline bool operator<=(const Iterator& other) const { return index <= other.index; } |
| 778 | inline bool operator>=(const Iterator& other) const { return index >= other.index; } |
| 779 | inline bool operator< (const Iterator& other) const { return index < other.index; } |
| 780 | inline bool operator> (const Iterator& other) const { return index > other.index; } |
| 781 | |
| 782 | private: |
| 783 | T value; |
| 784 | size_t index; |
| 785 | }; |
| 786 | |
| 787 | inline Iterator begin() const { return Iterator(value, 0); } |
| 788 | inline Iterator end() const { return Iterator(value, count); } |
| 789 | |
| 790 | inline size_t size() const { return count; } |
| 791 | inline const T& operator[](ptrdiff_t) const { return value; } |
| 792 | |
| 793 | private: |
| 794 | T value; |
| 795 | size_t count; |
| 796 | }; |
| 797 | |
| 798 | template <typename T> |
| 799 | inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) { |
| 800 | // Returns a fake iterable which contains `count` repeats of `value`. Useful for e.g. creating |
| 801 | // a bunch of spaces: `kj::repeat(' ', indent * 2)` |
| 802 | |
| 803 | return Repeat<Decay<T>>(value, count); |
| 804 | } |
| 805 | |
| 806 | // ======================================================================================= |
| 807 | // Manually invoking constructors and destructors |
| 808 | // |
| 809 | // ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively. |
| 810 | |
| 811 | // We want placement new, but we don't want to #include <new>. operator new cannot be defined in |
| 812 | // a namespace, and defining it globally conflicts with the definition in <new>. So we have to |
| 813 | // define a dummy type and an operator new that uses it. |
| 814 | |
| 815 | namespace _ { // private |
| 816 | struct PlacementNew {}; |
| 817 | } // namespace _ (private) |
| 818 | } // namespace kj |
| 819 | |
| 820 | inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept { |
| 821 | return __p; |
| 822 | } |
| 823 | |
| 824 | inline void operator delete(void*, kj::_::PlacementNew, void* __p) noexcept {} |
| 825 | |
| 826 | namespace kj { |
| 827 | |
| 828 | template <typename T, typename... Params> |
| 829 | inline void ctor(T& location, Params&&... params) { |
| 830 | new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...); |
| 831 | } |
| 832 | |
| 833 | template <typename T> |
| 834 | inline void dtor(T& location) { |
| 835 | location.~T(); |
| 836 | } |
| 837 | |
| 838 | // ======================================================================================= |
| 839 | // Maybe |
| 840 | // |
| 841 | // Use in cases where you want to indicate that a value may be null. Using Maybe<T&> instead of T* |
| 842 | // forces the caller to handle the null case in order to satisfy the compiler, thus reliably |
| 843 | // preventing null pointer dereferences at runtime. |
| 844 | // |
| 845 | // Maybe<T> can be implicitly constructed from T and from nullptr. Additionally, it can be |
| 846 | // implicitly constructed from T*, in which case the pointer is checked for nullness at runtime. |
| 847 | // To read the value of a Maybe<T>, do: |
| 848 | // |
| 849 | // KJ_IF_MAYBE(value, someFuncReturningMaybe()) { |
| 850 | // doSomething(*value); |
| 851 | // } else { |
| 852 | // maybeWasNull(); |
| 853 | // } |
| 854 | // |
| 855 | // KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following |
| 856 | // block. The variable will behave like a (guaranteed non-null) pointer to the Maybe's value, |
| 857 | // though it may or may not actually be a pointer. |
| 858 | // |
| 859 | // Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean |
| 860 | // indicating nullness. |
| 861 | |
| 862 | template <typename T> |
| 863 | class Maybe; |
| 864 | |
| 865 | namespace _ { // private |
| 866 | |
| 867 | template <typename T> |
| 868 | class NullableValue { |
| 869 | // Class whose interface behaves much like T*, but actually contains an instance of T and a |
| 870 | // boolean flag indicating nullness. |
| 871 | |
| 872 | public: |
| 873 | inline NullableValue(NullableValue&& other) noexcept(noexcept(T(instance<T&&>()))) |
| 874 | : isSet(other.isSet) { |
| 875 | if (isSet) { |
| 876 | ctor(value, kj::mv(other.value)); |
| 877 | } |
| 878 | } |
| 879 | inline NullableValue(const NullableValue& other) |
| 880 | : isSet(other.isSet) { |
| 881 | if (isSet) { |
| 882 | ctor(value, other.value); |
| 883 | } |
| 884 | } |
| 885 | inline NullableValue(NullableValue& other) |
| 886 | : isSet(other.isSet) { |
| 887 | if (isSet) { |
| 888 | ctor(value, other.value); |
| 889 | } |
| 890 | } |
| 891 | inline ~NullableValue() |
| 892 | #if _MSC_VER |
| 893 | // TODO(msvc): MSVC has a hard time with noexcept specifier expressions that are more complex |
| 894 | // than `true` or `false`. We had a workaround for VS2015, but VS2017 regressed. |
| 895 | noexcept(false) |
| 896 | #else |
| 897 | noexcept(noexcept(instance<T&>().~T())) |
| 898 | #endif |
| 899 | { |
| 900 | if (isSet) { |
| 901 | dtor(value); |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | inline T& operator*() & { return value; } |
| 906 | inline const T& operator*() const & { return value; } |
| 907 | inline T&& operator*() && { return kj::mv(value); } |
| 908 | inline const T&& operator*() const && { return kj::mv(value); } |
| 909 | inline T* operator->() { return &value; } |
| 910 | inline const T* operator->() const { return &value; } |
| 911 | inline operator T*() { return isSet ? &value : nullptr; } |
| 912 | inline operator const T*() const { return isSet ? &value : nullptr; } |
| 913 | |
| 914 | template <typename... Params> |
| 915 | inline T& emplace(Params&&... params) { |
| 916 | if (isSet) { |
| 917 | isSet = false; |
| 918 | dtor(value); |
| 919 | } |
| 920 | ctor(value, kj::fwd<Params>(params)...); |
| 921 | isSet = true; |
| 922 | return value; |
| 923 | } |
| 924 | |
| 925 | inline NullableValue() noexcept: isSet(false) {} |
| 926 | inline NullableValue(T&& t) noexcept(noexcept(T(instance<T&&>()))) |
| 927 | : isSet(true) { |
| 928 | ctor(value, kj::mv(t)); |
| 929 | } |
| 930 | inline NullableValue(T& t) |
| 931 | : isSet(true) { |
| 932 | ctor(value, t); |
| 933 | } |
| 934 | inline NullableValue(const T& t) |
| 935 | : isSet(true) { |
| 936 | ctor(value, t); |
| 937 | } |
| 938 | inline NullableValue(const T* t) |
| 939 | : isSet(t != nullptr) { |
| 940 | if (isSet) ctor(value, *t); |
| 941 | } |
| 942 | template <typename U> |
| 943 | inline NullableValue(NullableValue<U>&& other) noexcept(noexcept(T(instance<U&&>()))) |
| 944 | : isSet(other.isSet) { |
| 945 | if (isSet) { |
| 946 | ctor(value, kj::mv(other.value)); |
| 947 | } |
| 948 | } |
| 949 | template <typename U> |
| 950 | inline NullableValue(const NullableValue<U>& other) |
| 951 | : isSet(other.isSet) { |
| 952 | if (isSet) { |
| 953 | ctor(value, other.value); |
| 954 | } |
| 955 | } |
| 956 | template <typename U> |
| 957 | inline NullableValue(const NullableValue<U&>& other) |
| 958 | : isSet(other.isSet) { |
| 959 | if (isSet) { |
| 960 | ctor(value, *other.ptr); |
| 961 | } |
| 962 | } |
| 963 | inline NullableValue(decltype(nullptr)): isSet(false) {} |
| 964 | |
| 965 | inline NullableValue& operator=(NullableValue&& other) { |
| 966 | if (&other != this) { |
| 967 | // Careful about throwing destructors/constructors here. |
| 968 | if (isSet) { |
| 969 | isSet = false; |
| 970 | dtor(value); |
| 971 | } |
| 972 | if (other.isSet) { |
| 973 | ctor(value, kj::mv(other.value)); |
| 974 | isSet = true; |
| 975 | } |
| 976 | } |
| 977 | return *this; |
| 978 | } |
| 979 | |
| 980 | inline NullableValue& operator=(NullableValue& other) { |
| 981 | if (&other != this) { |
| 982 | // Careful about throwing destructors/constructors here. |
| 983 | if (isSet) { |
| 984 | isSet = false; |
| 985 | dtor(value); |
| 986 | } |
| 987 | if (other.isSet) { |
| 988 | ctor(value, other.value); |
| 989 | isSet = true; |
| 990 | } |
| 991 | } |
| 992 | return *this; |
| 993 | } |
| 994 | |
| 995 | inline NullableValue& operator=(const NullableValue& other) { |
| 996 | if (&other != this) { |
| 997 | // Careful about throwing destructors/constructors here. |
| 998 | if (isSet) { |
| 999 | isSet = false; |
| 1000 | dtor(value); |
| 1001 | } |
| 1002 | if (other.isSet) { |
| 1003 | ctor(value, other.value); |
| 1004 | isSet = true; |
| 1005 | } |
| 1006 | } |
| 1007 | return *this; |
| 1008 | } |
| 1009 | |
| 1010 | inline bool operator==(decltype(nullptr)) const { return !isSet; } |
| 1011 | inline bool operator!=(decltype(nullptr)) const { return isSet; } |
| 1012 | |
| 1013 | private: |
| 1014 | bool isSet; |
| 1015 | |
| 1016 | #if _MSC_VER |
| 1017 | #pragma warning(push) |
| 1018 | #pragma warning(disable: 4624) |
| 1019 | // Warns that the anonymous union has a deleted destructor when T is non-trivial. This warning |
| 1020 | // seems broken. |
| 1021 | #endif |
| 1022 | |
| 1023 | union { |
| 1024 | T value; |
| 1025 | }; |
| 1026 | |
| 1027 | #if _MSC_VER |
| 1028 | #pragma warning(pop) |
| 1029 | #endif |
| 1030 | |
| 1031 | friend class kj::Maybe<T>; |
| 1032 | template <typename U> |
| 1033 | friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe); |
| 1034 | }; |
| 1035 | |
| 1036 | template <typename T> |
| 1037 | inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); } |
| 1038 | template <typename T> |
| 1039 | inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; } |
| 1040 | template <typename T> |
| 1041 | inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; } |
| 1042 | template <typename T> |
| 1043 | inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; } |
| 1044 | template <typename T> |
| 1045 | inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; } |
| 1046 | |
| 1047 | template <typename T> |
| 1048 | inline T* readMaybe(T* ptr) { return ptr; } |
| 1049 | // Allow KJ_IF_MAYBE to work on regular pointers. |
| 1050 | |
| 1051 | } // namespace _ (private) |
| 1052 | |
| 1053 | #define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp)) |
| 1054 | |
| 1055 | template <typename T> |
| 1056 | class Maybe { |
| 1057 | // A T, or nullptr. |
| 1058 | |
| 1059 | // IF YOU CHANGE THIS CLASS: Note that there is a specialization of it in memory.h. |
| 1060 | |
| 1061 | public: |
| 1062 | Maybe(): ptr(nullptr) {} |
| 1063 | Maybe(T&& t) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(t)) {} |
| 1064 | Maybe(T& t): ptr(t) {} |
| 1065 | Maybe(const T& t): ptr(t) {} |
| 1066 | Maybe(const T* t) noexcept: ptr(t) {} |
| 1067 | Maybe(Maybe&& other) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(other.ptr)) {} |
| 1068 | Maybe(const Maybe& other): ptr(other.ptr) {} |
| 1069 | Maybe(Maybe& other): ptr(other.ptr) {} |
| 1070 | |
| 1071 | template <typename U> |
| 1072 | Maybe(Maybe<U>&& other) noexcept(noexcept(T(instance<U&&>()))) { |
| 1073 | KJ_IF_MAYBE(val, kj::mv(other)) { |
| 1074 | ptr.emplace(kj::mv(*val)); |
| 1075 | } |
| 1076 | } |
| 1077 | template <typename U> |
| 1078 | Maybe(const Maybe<U>& other) { |
| 1079 | KJ_IF_MAYBE(val, other) { |
| 1080 | ptr.emplace(*val); |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {} |
| 1085 | |
| 1086 | template <typename... Params> |
| 1087 | inline T& emplace(Params&&... params) { |
| 1088 | // Replace this Maybe's content with a new value constructed by passing the given parametrs to |
| 1089 | // T's constructor. This can be used to initialize a Maybe without copying or even moving a T. |
| 1090 | // Returns a reference to the newly-constructed value. |
| 1091 | |
| 1092 | return ptr.emplace(kj::fwd<Params>(params)...); |
| 1093 | } |
| 1094 | |
| 1095 | inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; } |
| 1096 | inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; } |
| 1097 | inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; } |
| 1098 | |
| 1099 | inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; } |
| 1100 | inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; } |
| 1101 | |
| 1102 | T& orDefault(T& defaultValue) & { |
| 1103 | if (ptr == nullptr) { |
| 1104 | return defaultValue; |
| 1105 | } else { |
| 1106 | return *ptr; |
| 1107 | } |
| 1108 | } |
| 1109 | const T& orDefault(const T& defaultValue) const & { |
| 1110 | if (ptr == nullptr) { |
| 1111 | return defaultValue; |
| 1112 | } else { |
| 1113 | return *ptr; |
| 1114 | } |
| 1115 | } |
| 1116 | T&& orDefault(T&& defaultValue) && { |
| 1117 | if (ptr == nullptr) { |
| 1118 | return kj::mv(defaultValue); |
| 1119 | } else { |
| 1120 | return kj::mv(*ptr); |
| 1121 | } |
| 1122 | } |
| 1123 | const T&& orDefault(const T&& defaultValue) const && { |
| 1124 | if (ptr == nullptr) { |
| 1125 | return kj::mv(defaultValue); |
| 1126 | } else { |
| 1127 | return kj::mv(*ptr); |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | template <typename Func> |
| 1132 | auto map(Func&& f) & -> Maybe<decltype(f(instance<T&>()))> { |
| 1133 | if (ptr == nullptr) { |
| 1134 | return nullptr; |
| 1135 | } else { |
| 1136 | return f(*ptr); |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | template <typename Func> |
| 1141 | auto map(Func&& f) const & -> Maybe<decltype(f(instance<const T&>()))> { |
| 1142 | if (ptr == nullptr) { |
| 1143 | return nullptr; |
| 1144 | } else { |
| 1145 | return f(*ptr); |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | template <typename Func> |
| 1150 | auto map(Func&& f) && -> Maybe<decltype(f(instance<T&&>()))> { |
| 1151 | if (ptr == nullptr) { |
| 1152 | return nullptr; |
| 1153 | } else { |
| 1154 | return f(kj::mv(*ptr)); |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | template <typename Func> |
| 1159 | auto map(Func&& f) const && -> Maybe<decltype(f(instance<const T&&>()))> { |
| 1160 | if (ptr == nullptr) { |
| 1161 | return nullptr; |
| 1162 | } else { |
| 1163 | return f(kj::mv(*ptr)); |
| 1164 | } |
| 1165 | } |
| 1166 | |
| 1167 | private: |
| 1168 | _::NullableValue<T> ptr; |
| 1169 | |
| 1170 | template <typename U> |
| 1171 | friend class Maybe; |
| 1172 | template <typename U> |
| 1173 | friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe); |
| 1174 | template <typename U> |
| 1175 | friend U* _::readMaybe(Maybe<U>& maybe); |
| 1176 | template <typename U> |
| 1177 | friend const U* _::readMaybe(const Maybe<U>& maybe); |
| 1178 | }; |
| 1179 | |
| 1180 | template <typename T> |
| 1181 | class Maybe<T&>: public DisallowConstCopyIfNotConst<T> { |
| 1182 | public: |
| 1183 | Maybe() noexcept: ptr(nullptr) {} |
| 1184 | Maybe(T& t) noexcept: ptr(&t) {} |
| 1185 | Maybe(T* t) noexcept: ptr(t) {} |
| 1186 | |
| 1187 | template <typename U> |
| 1188 | inline Maybe(Maybe<U&>& other) noexcept: ptr(other.ptr) {} |
| 1189 | template <typename U> |
| 1190 | inline Maybe(const Maybe<U&>& other) noexcept: ptr(const_cast<const U*>(other.ptr)) {} |
| 1191 | inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {} |
| 1192 | |
| 1193 | inline Maybe& operator=(T& other) noexcept { ptr = &other; return *this; } |
| 1194 | inline Maybe& operator=(T* other) noexcept { ptr = other; return *this; } |
| 1195 | template <typename U> |
| 1196 | inline Maybe& operator=(Maybe<U&>& other) noexcept { ptr = other.ptr; return *this; } |
| 1197 | template <typename U> |
| 1198 | inline Maybe& operator=(const Maybe<const U&>& other) noexcept { ptr = other.ptr; return *this; } |
| 1199 | |
| 1200 | inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; } |
| 1201 | inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; } |
| 1202 | |
| 1203 | T& orDefault(T& defaultValue) { |
| 1204 | if (ptr == nullptr) { |
| 1205 | return defaultValue; |
| 1206 | } else { |
| 1207 | return *ptr; |
| 1208 | } |
| 1209 | } |
| 1210 | const T& orDefault(const T& defaultValue) const { |
| 1211 | if (ptr == nullptr) { |
| 1212 | return defaultValue; |
| 1213 | } else { |
| 1214 | return *ptr; |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | template <typename Func> |
| 1219 | auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> { |
| 1220 | if (ptr == nullptr) { |
| 1221 | return nullptr; |
| 1222 | } else { |
| 1223 | return f(*ptr); |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | template <typename Func> |
| 1228 | auto map(Func&& f) const -> Maybe<decltype(f(instance<const T&>()))> { |
| 1229 | if (ptr == nullptr) { |
| 1230 | return nullptr; |
| 1231 | } else { |
| 1232 | const T& ref = *ptr; |
| 1233 | return f(ref); |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | private: |
| 1238 | T* ptr; |
| 1239 | |
| 1240 | template <typename U> |
| 1241 | friend class Maybe; |
| 1242 | template <typename U> |
| 1243 | friend U* _::readMaybe(Maybe<U&>&& maybe); |
| 1244 | template <typename U> |
| 1245 | friend U* _::readMaybe(const Maybe<U&>& maybe); |
| 1246 | }; |
| 1247 | |
| 1248 | // ======================================================================================= |
| 1249 | // ArrayPtr |
| 1250 | // |
| 1251 | // So common that we put it in common.h rather than array.h. |
| 1252 | |
| 1253 | template <typename T> |
| 1254 | class Array; |
| 1255 | |
| 1256 | template <typename T> |
| 1257 | class ArrayPtr: public DisallowConstCopyIfNotConst<T> { |
| 1258 | // A pointer to an array. Includes a size. Like any pointer, it doesn't own the target data, |
| 1259 | // and passing by value only copies the pointer, not the target. |
| 1260 | |
| 1261 | public: |
| 1262 | inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {} |
| 1263 | inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {} |
| 1264 | inline constexpr ArrayPtr(T* ptr, size_t size): ptr(ptr), size_(size) {} |
| 1265 | inline constexpr ArrayPtr(T* begin, T* end): ptr(begin), size_(end - begin) {} |
| 1266 | inline KJ_CONSTEXPR() ArrayPtr(::std::initializer_list<RemoveConstOrDisable<T>> init) |
| 1267 | : ptr(init.begin()), size_(init.size()) {} |
| 1268 | |
| 1269 | template <size_t size> |
| 1270 | inline constexpr ArrayPtr(T (&native)[size]): ptr(native), size_(size) { |
| 1271 | // Construct an ArrayPtr from a native C-style array. |
| 1272 | // |
| 1273 | // We disable this constructor for const char arrays because otherwise you would be able to |
| 1274 | // implicitly convert a character literal to ArrayPtr<const char>, which sounds really great, |
| 1275 | // except that the NUL terminator would be included, which probably isn't what you intended. |
| 1276 | // |
| 1277 | // TODO(someday): Maybe we should support character literals but explicitly chop off the NUL |
| 1278 | // terminator. This could do the wrong thing if someone tries to construct an |
| 1279 | // ArrayPtr<const char> from a non-NUL-terminated char array, but evidence suggests that all |
| 1280 | // real use cases are in fact intending to remove the NUL terminator. It's convenient to be |
| 1281 | // able to specify ArrayPtr<const char> as a parameter type and be able to accept strings |
| 1282 | // as input in addition to arrays. Currently, you'll need overloading to support string |
| 1283 | // literals in this case, but if you overload StringPtr, then you'll find that several |
| 1284 | // conversions (e.g. from String and from a literal char array) become ambiguous! You end up |
| 1285 | // having to overload for literal char arrays specifically which is cumbersome. |
| 1286 | |
| 1287 | static_assert(!isSameType<T, const char>(), |
| 1288 | "Can't implicitly convert literal char array to ArrayPtr because we don't know if " |
| 1289 | "you meant to include the NUL terminator. We may change this in the future to " |
| 1290 | "automatically drop the NUL terminator. For now, try explicitly converting to StringPtr, " |
| 1291 | "which can in turn implicitly convert to ArrayPtr<const char>." ); |
| 1292 | static_assert(!isSameType<T, const char16_t>(), "see above" ); |
| 1293 | static_assert(!isSameType<T, const char32_t>(), "see above" ); |
| 1294 | } |
| 1295 | |
| 1296 | inline operator ArrayPtr<const T>() const { |
| 1297 | return ArrayPtr<const T>(ptr, size_); |
| 1298 | } |
| 1299 | inline ArrayPtr<const T> asConst() const { |
| 1300 | return ArrayPtr<const T>(ptr, size_); |
| 1301 | } |
| 1302 | |
| 1303 | inline constexpr size_t size() const { return size_; } |
| 1304 | inline const T& operator[](size_t index) const { |
| 1305 | KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access." ); |
| 1306 | return ptr[index]; |
| 1307 | } |
| 1308 | inline T& operator[](size_t index) { |
| 1309 | KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access." ); |
| 1310 | return ptr[index]; |
| 1311 | } |
| 1312 | |
| 1313 | inline T* begin() { return ptr; } |
| 1314 | inline T* end() { return ptr + size_; } |
| 1315 | inline T& front() { return *ptr; } |
| 1316 | inline T& back() { return *(ptr + size_ - 1); } |
| 1317 | inline constexpr const T* begin() const { return ptr; } |
| 1318 | inline constexpr const T* end() const { return ptr + size_; } |
| 1319 | inline const T& front() const { return *ptr; } |
| 1320 | inline const T& back() const { return *(ptr + size_ - 1); } |
| 1321 | |
| 1322 | inline ArrayPtr<const T> slice(size_t start, size_t end) const { |
| 1323 | KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice()." ); |
| 1324 | return ArrayPtr<const T>(ptr + start, end - start); |
| 1325 | } |
| 1326 | inline ArrayPtr slice(size_t start, size_t end) { |
| 1327 | KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice()." ); |
| 1328 | return ArrayPtr(ptr + start, end - start); |
| 1329 | } |
| 1330 | |
| 1331 | inline ArrayPtr<PropagateConst<T, byte>> asBytes() const { |
| 1332 | // Reinterpret the array as a byte array. This is explicitly legal under C++ aliasing |
| 1333 | // rules. |
| 1334 | return { reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_ * sizeof(T) }; |
| 1335 | } |
| 1336 | inline ArrayPtr<PropagateConst<T, char>> asChars() const { |
| 1337 | // Reinterpret the array as a char array. This is explicitly legal under C++ aliasing |
| 1338 | // rules. |
| 1339 | return { reinterpret_cast<PropagateConst<T, char>*>(ptr), size_ * sizeof(T) }; |
| 1340 | } |
| 1341 | |
| 1342 | inline bool operator==(decltype(nullptr)) const { return size_ == 0; } |
| 1343 | inline bool operator!=(decltype(nullptr)) const { return size_ != 0; } |
| 1344 | |
| 1345 | inline bool operator==(const ArrayPtr& other) const { |
| 1346 | if (size_ != other.size_) return false; |
| 1347 | for (size_t i = 0; i < size_; i++) { |
| 1348 | if (ptr[i] != other[i]) return false; |
| 1349 | } |
| 1350 | return true; |
| 1351 | } |
| 1352 | inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); } |
| 1353 | |
| 1354 | template <typename U> |
| 1355 | inline bool operator==(const ArrayPtr<U>& other) const { |
| 1356 | if (size_ != other.size()) return false; |
| 1357 | for (size_t i = 0; i < size_; i++) { |
| 1358 | if (ptr[i] != other[i]) return false; |
| 1359 | } |
| 1360 | return true; |
| 1361 | } |
| 1362 | template <typename U> |
| 1363 | inline bool operator!=(const ArrayPtr<U>& other) const { return !(*this == other); } |
| 1364 | |
| 1365 | template <typename... Attachments> |
| 1366 | Array<T> attach(Attachments&&... attachments) const KJ_WARN_UNUSED_RESULT; |
| 1367 | // Like Array<T>::attach(), but also promotes an ArrayPtr to an Array. Generally the attachment |
| 1368 | // should be an object that actually owns the array that the ArrayPtr is pointing at. |
| 1369 | // |
| 1370 | // You must include kj/array.h to call this. |
| 1371 | |
| 1372 | private: |
| 1373 | T* ptr; |
| 1374 | size_t size_; |
| 1375 | }; |
| 1376 | |
| 1377 | template <typename T> |
| 1378 | inline constexpr ArrayPtr<T> arrayPtr(T* ptr, size_t size) { |
| 1379 | // Use this function to construct ArrayPtrs without writing out the type name. |
| 1380 | return ArrayPtr<T>(ptr, size); |
| 1381 | } |
| 1382 | |
| 1383 | template <typename T> |
| 1384 | inline constexpr ArrayPtr<T> arrayPtr(T* begin, T* end) { |
| 1385 | // Use this function to construct ArrayPtrs without writing out the type name. |
| 1386 | return ArrayPtr<T>(begin, end); |
| 1387 | } |
| 1388 | |
| 1389 | // ======================================================================================= |
| 1390 | // Casts |
| 1391 | |
| 1392 | template <typename To, typename From> |
| 1393 | To implicitCast(From&& from) { |
| 1394 | // `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit. Useful |
| 1395 | // for e.g. resolving ambiguous overloads without sacrificing type-safety. |
| 1396 | return kj::fwd<From>(from); |
| 1397 | } |
| 1398 | |
| 1399 | template <typename To, typename From> |
| 1400 | Maybe<To&> dynamicDowncastIfAvailable(From& from) { |
| 1401 | // If RTTI is disabled, always returns nullptr. Otherwise, works like dynamic_cast. Useful |
| 1402 | // in situations where dynamic_cast could allow an optimization, but isn't strictly necessary |
| 1403 | // for correctness. It is highly recommended that you try to arrange all your dynamic_casts |
| 1404 | // this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface |
| 1405 | // design. |
| 1406 | |
| 1407 | // Force a compile error if To is not a subtype of From. Cross-casting is rare; if it is needed |
| 1408 | // we should have a separate cast function like dynamicCrosscastIfAvailable(). |
| 1409 | if (false) { |
| 1410 | kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr)); |
| 1411 | } |
| 1412 | |
| 1413 | #if KJ_NO_RTTI |
| 1414 | return nullptr; |
| 1415 | #else |
| 1416 | return dynamic_cast<To*>(&from); |
| 1417 | #endif |
| 1418 | } |
| 1419 | |
| 1420 | template <typename To, typename From> |
| 1421 | To& downcast(From& from) { |
| 1422 | // Down-cast a value to a sub-type, asserting that the cast is valid. In opt mode this is a |
| 1423 | // static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify |
| 1424 | // that the value really has the requested type. |
| 1425 | |
| 1426 | // Force a compile error if To is not a subtype of From. |
| 1427 | if (false) { |
| 1428 | kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr)); |
| 1429 | } |
| 1430 | |
| 1431 | #if !KJ_NO_RTTI |
| 1432 | KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type." ); |
| 1433 | #endif |
| 1434 | |
| 1435 | return static_cast<To&>(from); |
| 1436 | } |
| 1437 | |
| 1438 | // ======================================================================================= |
| 1439 | // Defer |
| 1440 | |
| 1441 | namespace _ { // private |
| 1442 | |
| 1443 | template <typename Func> |
| 1444 | class Deferred { |
| 1445 | public: |
| 1446 | inline Deferred(Func&& func): func(kj::fwd<Func>(func)), canceled(false) {} |
| 1447 | inline ~Deferred() noexcept(false) { if (!canceled) func(); } |
| 1448 | KJ_DISALLOW_COPY(Deferred); |
| 1449 | |
| 1450 | // This move constructor is usually optimized away by the compiler. |
| 1451 | inline Deferred(Deferred&& other): func(kj::mv(other.func)), canceled(false) { |
| 1452 | other.canceled = true; |
| 1453 | } |
| 1454 | private: |
| 1455 | Func func; |
| 1456 | bool canceled; |
| 1457 | }; |
| 1458 | |
| 1459 | } // namespace _ (private) |
| 1460 | |
| 1461 | template <typename Func> |
| 1462 | _::Deferred<Func> defer(Func&& func) { |
| 1463 | // Returns an object which will invoke the given functor in its destructor. The object is not |
| 1464 | // copyable but is movable with the semantics you'd expect. Since the return type is private, |
| 1465 | // you need to assign to an `auto` variable. |
| 1466 | // |
| 1467 | // The KJ_DEFER macro provides slightly more convenient syntax for the common case where you |
| 1468 | // want some code to run at current scope exit. |
| 1469 | |
| 1470 | return _::Deferred<Func>(kj::fwd<Func>(func)); |
| 1471 | } |
| 1472 | |
| 1473 | #define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;}) |
| 1474 | // Run the given code when the function exits, whether by return or exception. |
| 1475 | |
| 1476 | } // namespace kj |
| 1477 | |