| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors | 
|---|
| 2 | // Licensed under the MIT License: | 
|---|
| 3 | // | 
|---|
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy | 
|---|
| 5 | // of this software and associated documentation files (the "Software"), to deal | 
|---|
| 6 | // in the Software without restriction, including without limitation the rights | 
|---|
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|---|
| 8 | // copies of the Software, and to permit persons to whom the Software is | 
|---|
| 9 | // furnished to do so, subject to the following conditions: | 
|---|
| 10 | // | 
|---|
| 11 | // The above copyright notice and this permission notice shall be included in | 
|---|
| 12 | // all copies or substantial portions of the Software. | 
|---|
| 13 | // | 
|---|
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|---|
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|---|
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|---|
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|---|
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|---|
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|---|
| 20 | // THE SOFTWARE. | 
|---|
| 21 |  | 
|---|
| 22 | // Header that should be #included by everyone. | 
|---|
| 23 | // | 
|---|
| 24 | // This defines very simple utilities that are widely applicable. | 
|---|
| 25 |  | 
|---|
| 26 | #pragma once | 
|---|
| 27 |  | 
|---|
| 28 | #if defined(__GNUC__) && !KJ_HEADER_WARNINGS | 
|---|
| 29 | #pragma GCC system_header | 
|---|
| 30 | #endif | 
|---|
| 31 |  | 
|---|
| 32 | #ifndef KJ_NO_COMPILER_CHECK | 
|---|
| 33 | // Technically, __cplusplus should be 201402L for C++14, but GCC 4.9 -- which is supported -- still | 
|---|
| 34 | // had it defined to 201300L even with -std=c++14. | 
|---|
| 35 | #if __cplusplus < 201300L && !__CDT_PARSER__ && !_MSC_VER | 
|---|
| 36 | #error "This code requires C++14. Either your compiler does not support it or it is not enabled." | 
|---|
| 37 | #ifdef __GNUC__ | 
|---|
| 38 | // Compiler claims compatibility with GCC, so presumably supports -std. | 
|---|
| 39 | #error "Pass -std=c++14 on the compiler command line to enable C++14." | 
|---|
| 40 | #endif | 
|---|
| 41 | #endif | 
|---|
| 42 |  | 
|---|
| 43 | #ifdef __GNUC__ | 
|---|
| 44 | #if __clang__ | 
|---|
| 45 | #if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 4) | 
|---|
| 46 | #warning "This library requires at least Clang 3.4." | 
|---|
| 47 | #elif __cplusplus >= 201402L && !__has_include(<initializer_list>) | 
|---|
| 48 | #warning "Your compiler supports C++14 but your C++ standard library does not.  If your "\ | 
|---|
| 49 | "system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\ | 
|---|
| 50 | "-stdlib=libc++ to your CXXFLAGS." | 
|---|
| 51 | #endif | 
|---|
| 52 | #else | 
|---|
| 53 | #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 9) | 
|---|
| 54 | #warning "This library requires at least GCC 4.9." | 
|---|
| 55 | #endif | 
|---|
| 56 | #endif | 
|---|
| 57 | #elif defined(_MSC_VER) | 
|---|
| 58 | #if _MSC_VER < 1910 | 
|---|
| 59 | #error "You need Visual Studio 2017 or better to compile this code." | 
|---|
| 60 | #endif | 
|---|
| 61 | #else | 
|---|
| 62 | #warning "I don't recognize your compiler. As of this writing, Clang, GCC, and Visual Studio "\ | 
|---|
| 63 | "are the only known compilers with enough C++14 support for this library. "\ | 
|---|
| 64 | "#define KJ_NO_COMPILER_CHECK to make this warning go away." | 
|---|
| 65 | #endif | 
|---|
| 66 | #endif | 
|---|
| 67 |  | 
|---|
| 68 | #include <stddef.h> | 
|---|
| 69 | #include <initializer_list> | 
|---|
| 70 |  | 
|---|
| 71 | #if __linux__ && __cplusplus > 201200L | 
|---|
| 72 | // Hack around stdlib bug with C++14 that exists on some Linux systems. | 
|---|
| 73 | // Apparently in this mode the C library decides not to define gets() but the C++ library still | 
|---|
| 74 | // tries to import it into the std namespace. This bug has been fixed at the source but is still | 
|---|
| 75 | // widely present in the wild e.g. on Ubuntu 14.04. | 
|---|
| 76 | #undef _GLIBCXX_HAVE_GETS | 
|---|
| 77 | #endif | 
|---|
| 78 |  | 
|---|
| 79 | #if defined(_MSC_VER) | 
|---|
| 80 | #ifndef NOMINMAX | 
|---|
| 81 | #define NOMINMAX 1 | 
|---|
| 82 | #endif | 
|---|
| 83 | #include <intrin.h>  // __popcnt | 
|---|
| 84 | #endif | 
|---|
| 85 |  | 
|---|
| 86 | // ======================================================================================= | 
|---|
| 87 |  | 
|---|
| 88 | namespace kj { | 
|---|
| 89 |  | 
|---|
| 90 | typedef unsigned int uint; | 
|---|
| 91 | typedef unsigned char byte; | 
|---|
| 92 |  | 
|---|
| 93 | // ======================================================================================= | 
|---|
| 94 | // Common macros, especially for common yet compiler-specific features. | 
|---|
| 95 |  | 
|---|
| 96 | // Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific | 
|---|
| 97 | // evidence to the contrary.  Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly | 
|---|
| 98 | // to override these checks. | 
|---|
| 99 | #ifdef __GNUC__ | 
|---|
| 100 | #if !defined(KJ_NO_RTTI) && !__GXX_RTTI | 
|---|
| 101 | #define KJ_NO_RTTI 1 | 
|---|
| 102 | #endif | 
|---|
| 103 | #if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS | 
|---|
| 104 | #define KJ_NO_EXCEPTIONS 1 | 
|---|
| 105 | #endif | 
|---|
| 106 | #elif defined(_MSC_VER) | 
|---|
| 107 | #if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI) | 
|---|
| 108 | #define KJ_NO_RTTI 1 | 
|---|
| 109 | #endif | 
|---|
| 110 | #if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND) | 
|---|
| 111 | #define KJ_NO_EXCEPTIONS 1 | 
|---|
| 112 | #endif | 
|---|
| 113 | #endif | 
|---|
| 114 |  | 
|---|
| 115 | #if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG) | 
|---|
| 116 | // Heuristically decide whether to enable debug mode.  If DEBUG or NDEBUG is defined, use that. | 
|---|
| 117 | // Otherwise, fall back to checking whether optimization is enabled. | 
|---|
| 118 | #if defined(DEBUG) || defined(_DEBUG) | 
|---|
| 119 | #define KJ_DEBUG | 
|---|
| 120 | #elif defined(NDEBUG) | 
|---|
| 121 | #define KJ_NDEBUG | 
|---|
| 122 | #elif __OPTIMIZE__ | 
|---|
| 123 | #define KJ_NDEBUG | 
|---|
| 124 | #else | 
|---|
| 125 | #define KJ_DEBUG | 
|---|
| 126 | #endif | 
|---|
| 127 | #endif | 
|---|
| 128 |  | 
|---|
| 129 | #define KJ_DISALLOW_COPY(classname) \ | 
|---|
| 130 | classname(const classname&) = delete; \ | 
|---|
| 131 | classname& operator=(const classname&) = delete | 
|---|
| 132 | // Deletes the implicit copy constructor and assignment operator. | 
|---|
| 133 |  | 
|---|
| 134 | #ifdef __GNUC__ | 
|---|
| 135 | #define KJ_LIKELY(condition) __builtin_expect(condition, true) | 
|---|
| 136 | #define KJ_UNLIKELY(condition) __builtin_expect(condition, false) | 
|---|
| 137 | // Branch prediction macros.  Evaluates to the condition given, but also tells the compiler that we | 
|---|
| 138 | // expect the condition to be true/false enough of the time that it's worth hard-coding branch | 
|---|
| 139 | // prediction. | 
|---|
| 140 | #else | 
|---|
| 141 | #define KJ_LIKELY(condition) (condition) | 
|---|
| 142 | #define KJ_UNLIKELY(condition) (condition) | 
|---|
| 143 | #endif | 
|---|
| 144 |  | 
|---|
| 145 | #if defined(KJ_DEBUG) || __NO_INLINE__ | 
|---|
| 146 | #define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ | 
|---|
| 147 | // Don't force inline in debug mode. | 
|---|
| 148 | #else | 
|---|
| 149 | #if defined(_MSC_VER) | 
|---|
| 150 | #define KJ_ALWAYS_INLINE(...) __forceinline __VA_ARGS__ | 
|---|
| 151 | #else | 
|---|
| 152 | #define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ __attribute__((always_inline)) | 
|---|
| 153 | #endif | 
|---|
| 154 | // Force a function to always be inlined.  Apply only to the prototype, not to the definition. | 
|---|
| 155 | #endif | 
|---|
| 156 |  | 
|---|
| 157 | #if defined(_MSC_VER) | 
|---|
| 158 | #define KJ_NOINLINE __declspec(noinline) | 
|---|
| 159 | #else | 
|---|
| 160 | #define KJ_NOINLINE __attribute__((noinline)) | 
|---|
| 161 | #endif | 
|---|
| 162 |  | 
|---|
| 163 | #if defined(_MSC_VER) && !__clang__ | 
|---|
| 164 | #define KJ_NORETURN(prototype) __declspec(noreturn) prototype | 
|---|
| 165 | #define KJ_UNUSED | 
|---|
| 166 | #define KJ_WARN_UNUSED_RESULT | 
|---|
| 167 | // TODO(msvc): KJ_WARN_UNUSED_RESULT can use _Check_return_ on MSVC, but it's a prefix, so | 
|---|
| 168 | //   wrapping the whole prototype is needed. http://msdn.microsoft.com/en-us/library/jj159529.aspx | 
|---|
| 169 | //   Similarly, KJ_UNUSED could use __pragma(warning(suppress:...)), but again that's a prefix. | 
|---|
| 170 | #else | 
|---|
| 171 | #define KJ_NORETURN(prototype) prototype __attribute__((noreturn)) | 
|---|
| 172 | #define KJ_UNUSED __attribute__((unused)) | 
|---|
| 173 | #define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result)) | 
|---|
| 174 | #endif | 
|---|
| 175 |  | 
|---|
| 176 | #if __clang__ | 
|---|
| 177 | #define KJ_UNUSED_MEMBER __attribute__((unused)) | 
|---|
| 178 | // Inhibits "unused" warning for member variables.  Only Clang produces such a warning, while GCC | 
|---|
| 179 | // complains if the attribute is set on members. | 
|---|
| 180 | #else | 
|---|
| 181 | #define KJ_UNUSED_MEMBER | 
|---|
| 182 | #endif | 
|---|
| 183 |  | 
|---|
| 184 | #if __clang__ | 
|---|
| 185 | #define KJ_DEPRECATED(reason) \ | 
|---|
| 186 | __attribute__((deprecated(reason))) | 
|---|
| 187 | #define KJ_UNAVAILABLE(reason) \ | 
|---|
| 188 | __attribute__((unavailable(reason))) | 
|---|
| 189 | #elif __GNUC__ | 
|---|
| 190 | #define KJ_DEPRECATED(reason) \ | 
|---|
| 191 | __attribute__((deprecated)) | 
|---|
| 192 | #define KJ_UNAVAILABLE(reason) | 
|---|
| 193 | #else | 
|---|
| 194 | #define KJ_DEPRECATED(reason) | 
|---|
| 195 | #define KJ_UNAVAILABLE(reason) | 
|---|
| 196 | // TODO(msvc): Again, here, MSVC prefers a prefix, __declspec(deprecated). | 
|---|
| 197 | #endif | 
|---|
| 198 |  | 
|---|
| 199 | #if KJ_TESTING_KJ  // defined in KJ's own unit tests; others should not define this | 
|---|
| 200 | #undef KJ_DEPRECATED | 
|---|
| 201 | #define KJ_DEPRECATED(reason) | 
|---|
| 202 | #endif | 
|---|
| 203 |  | 
|---|
| 204 | namespace _ {  // private | 
|---|
| 205 |  | 
|---|
| 206 | KJ_NORETURN(void inlineRequireFailure( | 
|---|
| 207 | const char* file, int line, const char* expectation, const char* macroArgs, | 
|---|
| 208 | const char* message = nullptr)); | 
|---|
| 209 |  | 
|---|
| 210 | KJ_NORETURN(void unreachable()); | 
|---|
| 211 |  | 
|---|
| 212 | }  // namespace _ (private) | 
|---|
| 213 |  | 
|---|
| 214 | #ifdef KJ_DEBUG | 
|---|
| 215 | #if _MSC_VER | 
|---|
| 216 | #define KJ_IREQUIRE(condition, ...) \ | 
|---|
| 217 | if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \ | 
|---|
| 218 | __FILE__, __LINE__, #condition, "" #__VA_ARGS__, __VA_ARGS__) | 
|---|
| 219 | // Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users.  Used to | 
|---|
| 220 | // check preconditions inside inline methods.  KJ_IREQUIRE is particularly useful in that | 
|---|
| 221 | // it will be enabled depending on whether the application is compiled in debug mode rather than | 
|---|
| 222 | // whether libkj is. | 
|---|
| 223 | #else | 
|---|
| 224 | #define KJ_IREQUIRE(condition, ...) \ | 
|---|
| 225 | if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \ | 
|---|
| 226 | __FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__) | 
|---|
| 227 | // Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users.  Used to | 
|---|
| 228 | // check preconditions inside inline methods.  KJ_IREQUIRE is particularly useful in that | 
|---|
| 229 | // it will be enabled depending on whether the application is compiled in debug mode rather than | 
|---|
| 230 | // whether libkj is. | 
|---|
| 231 | #endif | 
|---|
| 232 | #else | 
|---|
| 233 | #define KJ_IREQUIRE(condition, ...) | 
|---|
| 234 | #endif | 
|---|
| 235 |  | 
|---|
| 236 | #define KJ_IASSERT KJ_IREQUIRE | 
|---|
| 237 |  | 
|---|
| 238 | #define KJ_UNREACHABLE ::kj::_::unreachable(); | 
|---|
| 239 | // Put this on code paths that cannot be reached to suppress compiler warnings about missing | 
|---|
| 240 | // returns. | 
|---|
| 241 |  | 
|---|
| 242 | #if __clang__ | 
|---|
| 243 | #define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT | 
|---|
| 244 | #else | 
|---|
| 245 | #define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE | 
|---|
| 246 | #endif | 
|---|
| 247 |  | 
|---|
| 248 | // #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) | 
|---|
| 249 | // | 
|---|
| 250 | // Allocate an array, preferably on the stack, unless it is too big.  On GCC this will use | 
|---|
| 251 | // variable-sized arrays.  For other compilers we could just use a fixed-size array.  `minStack` | 
|---|
| 252 | // is the stack array size to use if variable-width arrays are not supported.  `maxStack` is the | 
|---|
| 253 | // maximum stack array size if variable-width arrays *are* supported. | 
|---|
| 254 | #if __GNUC__ && !__clang__ | 
|---|
| 255 | #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \ | 
|---|
| 256 | size_t name##_size = (size); \ | 
|---|
| 257 | bool name##_isOnStack = name##_size <= (maxStack); \ | 
|---|
| 258 | type name##_stack[kj::max(1, name##_isOnStack ? name##_size : 0)]; \ | 
|---|
| 259 | ::kj::Array<type> name##_heap = name##_isOnStack ? \ | 
|---|
| 260 | nullptr : kj::heapArray<type>(name##_size); \ | 
|---|
| 261 | ::kj::ArrayPtr<type> name = name##_isOnStack ? \ | 
|---|
| 262 | kj::arrayPtr(name##_stack, name##_size) : name##_heap | 
|---|
| 263 | #else | 
|---|
| 264 | #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \ | 
|---|
| 265 | size_t name##_size = (size); \ | 
|---|
| 266 | bool name##_isOnStack = name##_size <= (minStack); \ | 
|---|
| 267 | type name##_stack[minStack]; \ | 
|---|
| 268 | ::kj::Array<type> name##_heap = name##_isOnStack ? \ | 
|---|
| 269 | nullptr : kj::heapArray<type>(name##_size); \ | 
|---|
| 270 | ::kj::ArrayPtr<type> name = name##_isOnStack ? \ | 
|---|
| 271 | kj::arrayPtr(name##_stack, name##_size) : name##_heap | 
|---|
| 272 | #endif | 
|---|
| 273 |  | 
|---|
| 274 | #define KJ_CONCAT_(x, y) x##y | 
|---|
| 275 | #define KJ_CONCAT(x, y) KJ_CONCAT_(x, y) | 
|---|
| 276 | #define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__) | 
|---|
| 277 | // Create a unique identifier name.  We use concatenate __LINE__ rather than __COUNTER__ so that | 
|---|
| 278 | // the name can be used multiple times in the same macro. | 
|---|
| 279 |  | 
|---|
| 280 | #if _MSC_VER | 
|---|
| 281 |  | 
|---|
| 282 | #define KJ_CONSTEXPR(...) __VA_ARGS__ | 
|---|
| 283 | // Use in cases where MSVC barfs on constexpr. A replacement keyword (e.g. "const") can be | 
|---|
| 284 | // provided, or just leave blank to remove the keyword entirely. | 
|---|
| 285 | // | 
|---|
| 286 | // TODO(msvc): Remove this hack once MSVC fully supports constexpr. | 
|---|
| 287 |  | 
|---|
| 288 | #ifndef __restrict__ | 
|---|
| 289 | #define __restrict__ __restrict | 
|---|
| 290 | // TODO(msvc): Would it be better to define a KJ_RESTRICT macro? | 
|---|
| 291 | #endif | 
|---|
| 292 |  | 
|---|
| 293 | #pragma warning(disable: 4521 4522) | 
|---|
| 294 | // This warning complains when there are two copy constructors, one for a const reference and | 
|---|
| 295 | // one for a non-const reference. It is often quite necessary to do this in wrapper templates, | 
|---|
| 296 | // therefore this warning is dumb and we disable it. | 
|---|
| 297 |  | 
|---|
| 298 | #pragma warning(disable: 4458) | 
|---|
| 299 | // Warns when a parameter name shadows a class member. Unfortunately my code does this a lot, | 
|---|
| 300 | // since I don't use a special name format for members. | 
|---|
| 301 |  | 
|---|
| 302 | #else  // _MSC_VER | 
|---|
| 303 | #define KJ_CONSTEXPR(...) constexpr | 
|---|
| 304 | #endif | 
|---|
| 305 |  | 
|---|
| 306 | #if defined(_MSC_VER) && _MSC_VER < 1910 | 
|---|
| 307 | // TODO(msvc): Visual Studio 2015 mishandles declaring the no-arg constructor `= default` for | 
|---|
| 308 | //   certain template types -- it fails to call member constructors. | 
|---|
| 309 | #define KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY {} | 
|---|
| 310 | #else | 
|---|
| 311 | #define KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY = default; | 
|---|
| 312 | #endif | 
|---|
| 313 |  | 
|---|
| 314 | // ======================================================================================= | 
|---|
| 315 | // Template metaprogramming helpers. | 
|---|
| 316 |  | 
|---|
| 317 | template <typename T> struct NoInfer_ { typedef T Type; }; | 
|---|
| 318 | template <typename T> using NoInfer = typename NoInfer_<T>::Type; | 
|---|
| 319 | // Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of | 
|---|
| 320 | // the type based on the parameter value. | 
|---|
| 321 |  | 
|---|
| 322 | template <typename T> struct RemoveConst_ { typedef T Type; }; | 
|---|
| 323 | template <typename T> struct RemoveConst_<const T> { typedef T Type; }; | 
|---|
| 324 | template <typename T> using RemoveConst = typename RemoveConst_<T>::Type; | 
|---|
| 325 |  | 
|---|
| 326 | template <typename> struct IsLvalueReference_ { static constexpr bool value = false; }; | 
|---|
| 327 | template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; }; | 
|---|
| 328 | template <typename T> | 
|---|
| 329 | inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; } | 
|---|
| 330 |  | 
|---|
| 331 | template <typename T> struct Decay_ { typedef T Type; }; | 
|---|
| 332 | template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; }; | 
|---|
| 333 | template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; }; | 
|---|
| 334 | template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; }; | 
|---|
| 335 | template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; }; | 
|---|
| 336 | template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; }; | 
|---|
| 337 | template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; }; | 
|---|
| 338 | template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; }; | 
|---|
| 339 | template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; }; | 
|---|
| 340 | template <typename T> using Decay = typename Decay_<T>::Type; | 
|---|
| 341 |  | 
|---|
| 342 | template <bool b> struct EnableIf_; | 
|---|
| 343 | template <> struct EnableIf_<true> { typedef void Type; }; | 
|---|
| 344 | template <bool b> using EnableIf = typename EnableIf_<b>::Type; | 
|---|
| 345 | // Use like: | 
|---|
| 346 | // | 
|---|
| 347 | //     template <typename T, typename = EnableIf<isValid<T>()> | 
|---|
| 348 | //     void func(T&& t); | 
|---|
| 349 |  | 
|---|
| 350 | template <typename...> struct VoidSfinae_ { using Type = void; }; | 
|---|
| 351 | template <typename... Ts> using VoidSfinae = typename VoidSfinae_<Ts...>::Type; | 
|---|
| 352 | // Note: VoidSfinae is std::void_t from C++17. | 
|---|
| 353 |  | 
|---|
| 354 | template <typename T> | 
|---|
| 355 | T instance() noexcept; | 
|---|
| 356 | // Like std::declval, but doesn't transform T into an rvalue reference.  If you want that, specify | 
|---|
| 357 | // instance<T&&>(). | 
|---|
| 358 |  | 
|---|
| 359 | struct DisallowConstCopy { | 
|---|
| 360 | // Inherit from this, or declare a member variable of this type, to prevent the class from being | 
|---|
| 361 | // copyable from a const reference -- instead, it will only be copyable from non-const references. | 
|---|
| 362 | // This is useful for enforcing transitive constness of contained pointers. | 
|---|
| 363 | // | 
|---|
| 364 | // For example, say you have a type T which contains a pointer.  T has non-const methods which | 
|---|
| 365 | // modify the value at that pointer, but T's const methods are designed to allow reading only. | 
|---|
| 366 | // Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and | 
|---|
| 367 | // then use it to modify the pointed-to value.  However, if T inherits DisallowConstCopy, then | 
|---|
| 368 | // callers will only be able to copy non-const instances of T.  Ideally, there is some | 
|---|
| 369 | // parallel type ImmutableT which is like a version of T that only has const methods, and can | 
|---|
| 370 | // be copied from a const T. | 
|---|
| 371 | // | 
|---|
| 372 | // Note that due to C++ rules about implicit copy constructors and assignment operators, any | 
|---|
| 373 | // type that contains or inherits from a type that disallows const copies will also automatically | 
|---|
| 374 | // disallow const copies.  Hey, cool, that's exactly what we want. | 
|---|
| 375 |  | 
|---|
| 376 | #if CAPNP_DEBUG_TYPES | 
|---|
| 377 | // Alas! Declaring a defaulted non-const copy constructor tickles a bug which causes GCC and | 
|---|
| 378 | // Clang to disagree on ABI, using different calling conventions to pass this type, leading to | 
|---|
| 379 | // immediate segfaults. See: | 
|---|
| 380 | //     https://bugs.llvm.org/show_bug.cgi?id=23764 | 
|---|
| 381 | //     https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58074 | 
|---|
| 382 | // | 
|---|
| 383 | // Because of this, we can't use this technique. We guard it by CAPNP_DEBUG_TYPES so that it | 
|---|
| 384 | // still applies to the Cap'n Proto developers during internal testing. | 
|---|
| 385 |  | 
|---|
| 386 | DisallowConstCopy() = default; | 
|---|
| 387 | DisallowConstCopy(DisallowConstCopy&) = default; | 
|---|
| 388 | DisallowConstCopy(DisallowConstCopy&&) = default; | 
|---|
| 389 | DisallowConstCopy& operator=(DisallowConstCopy&) = default; | 
|---|
| 390 | DisallowConstCopy& operator=(DisallowConstCopy&&) = default; | 
|---|
| 391 | #endif | 
|---|
| 392 | }; | 
|---|
| 393 |  | 
|---|
| 394 | #if _MSC_VER | 
|---|
| 395 |  | 
|---|
| 396 | #define KJ_CPCAP(obj) obj=::kj::cp(obj) | 
|---|
| 397 | // TODO(msvc): MSVC refuses to invoke non-const versions of copy constructors in by-value lambda | 
|---|
| 398 | // captures. Wrap your captured object in this macro to force the compiler to perform a copy. | 
|---|
| 399 | // Example: | 
|---|
| 400 | // | 
|---|
| 401 | //   struct Foo: DisallowConstCopy {}; | 
|---|
| 402 | //   Foo foo; | 
|---|
| 403 | //   auto lambda = [KJ_CPCAP(foo)] {}; | 
|---|
| 404 |  | 
|---|
| 405 | #else | 
|---|
| 406 |  | 
|---|
| 407 | #define KJ_CPCAP(obj) obj | 
|---|
| 408 | // Clang and gcc both already perform copy capturing correctly with non-const copy constructors. | 
|---|
| 409 |  | 
|---|
| 410 | #endif | 
|---|
| 411 |  | 
|---|
| 412 | template <typename T> | 
|---|
| 413 | struct DisallowConstCopyIfNotConst: public DisallowConstCopy { | 
|---|
| 414 | // Inherit from this when implementing a template that contains a pointer to T and which should | 
|---|
| 415 | // enforce transitive constness.  If T is a const type, this has no effect.  Otherwise, it is | 
|---|
| 416 | // an alias for DisallowConstCopy. | 
|---|
| 417 | }; | 
|---|
| 418 |  | 
|---|
| 419 | template <typename T> | 
|---|
| 420 | struct DisallowConstCopyIfNotConst<const T> {}; | 
|---|
| 421 |  | 
|---|
| 422 | template <typename T> struct IsConst_ { static constexpr bool value = false; }; | 
|---|
| 423 | template <typename T> struct IsConst_<const T> { static constexpr bool value = true; }; | 
|---|
| 424 | template <typename T> constexpr bool isConst() { return IsConst_<T>::value; } | 
|---|
| 425 |  | 
|---|
| 426 | template <typename T> struct EnableIfNotConst_ { typedef T Type; }; | 
|---|
| 427 | template <typename T> struct EnableIfNotConst_<const T>; | 
|---|
| 428 | template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type; | 
|---|
| 429 |  | 
|---|
| 430 | template <typename T> struct EnableIfConst_; | 
|---|
| 431 | template <typename T> struct EnableIfConst_<const T> { typedef T Type; }; | 
|---|
| 432 | template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type; | 
|---|
| 433 |  | 
|---|
| 434 | template <typename T> struct RemoveConstOrDisable_ { struct Type; }; | 
|---|
| 435 | template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; }; | 
|---|
| 436 | template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type; | 
|---|
| 437 |  | 
|---|
| 438 | template <typename T> struct IsReference_ { static constexpr bool value = false; }; | 
|---|
| 439 | template <typename T> struct IsReference_<T&> { static constexpr bool value = true; }; | 
|---|
| 440 | template <typename T> constexpr bool isReference() { return IsReference_<T>::value; } | 
|---|
| 441 |  | 
|---|
| 442 | template <typename From, typename To> | 
|---|
| 443 | struct PropagateConst_ { typedef To Type; }; | 
|---|
| 444 | template <typename From, typename To> | 
|---|
| 445 | struct PropagateConst_<const From, To> { typedef const To Type; }; | 
|---|
| 446 | template <typename From, typename To> | 
|---|
| 447 | using PropagateConst = typename PropagateConst_<From, To>::Type; | 
|---|
| 448 |  | 
|---|
| 449 | namespace _ {  // private | 
|---|
| 450 |  | 
|---|
| 451 | template <typename T> | 
|---|
| 452 | T refIfLvalue(T&&); | 
|---|
| 453 |  | 
|---|
| 454 | }  // namespace _ (private) | 
|---|
| 455 |  | 
|---|
| 456 | #define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp)) | 
|---|
| 457 | // Like decltype(exp), but if exp is an lvalue, produces a reference type. | 
|---|
| 458 | // | 
|---|
| 459 | //     int i; | 
|---|
| 460 | //     decltype(i) i1(i);                         // i1 has type int. | 
|---|
| 461 | //     KJ_DECLTYPE_REF(i + 1) i2(i + 1);          // i2 has type int. | 
|---|
| 462 | //     KJ_DECLTYPE_REF(i) i3(i);                  // i3 has type int&. | 
|---|
| 463 | //     KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i));  // i4 has type int. | 
|---|
| 464 |  | 
|---|
| 465 | template <typename T, typename U> struct IsSameType_ { static constexpr bool value = false; }; | 
|---|
| 466 | template <typename T> struct IsSameType_<T, T> { static constexpr bool value = true; }; | 
|---|
| 467 | template <typename T, typename U> constexpr bool isSameType() { return IsSameType_<T, U>::value; } | 
|---|
| 468 |  | 
|---|
| 469 | template <typename T> | 
|---|
| 470 | struct CanConvert_ { | 
|---|
| 471 | static int sfinae(T); | 
|---|
| 472 | static bool sfinae(...); | 
|---|
| 473 | }; | 
|---|
| 474 |  | 
|---|
| 475 | template <typename T, typename U> | 
|---|
| 476 | constexpr bool canConvert() { | 
|---|
| 477 | return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int); | 
|---|
| 478 | } | 
|---|
| 479 |  | 
|---|
| 480 | #if __GNUC__ && !__clang__ && __GNUC__ < 5 | 
|---|
| 481 | template <typename T> | 
|---|
| 482 | constexpr bool canMemcpy() { | 
|---|
| 483 | // Returns true if T can be copied using memcpy instead of using the copy constructor or | 
|---|
| 484 | // assignment operator. | 
|---|
| 485 |  | 
|---|
| 486 | // GCC 4 does not have __is_trivially_constructible and friends, and there doesn't seem to be | 
|---|
| 487 | // any reliable alternative. __has_trivial_copy() and __has_trivial_assign() return the right | 
|---|
| 488 | // thing at one point but later on they changed such that a deleted copy constructor was | 
|---|
| 489 | // considered "trivial" (apparently technically correct, though useless). So, on GCC 4 we give up | 
|---|
| 490 | // and assume we can't memcpy() at all, and must explicitly copy-construct everything. | 
|---|
| 491 | return false; | 
|---|
| 492 | } | 
|---|
| 493 | #define KJ_ASSERT_CAN_MEMCPY(T) | 
|---|
| 494 | #else | 
|---|
| 495 | template <typename T> | 
|---|
| 496 | constexpr bool canMemcpy() { | 
|---|
| 497 | // Returns true if T can be copied using memcpy instead of using the copy constructor or | 
|---|
| 498 | // assignment operator. | 
|---|
| 499 |  | 
|---|
| 500 | return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&); | 
|---|
| 501 | } | 
|---|
| 502 | #define KJ_ASSERT_CAN_MEMCPY(T) \ | 
|---|
| 503 | static_assert(kj::canMemcpy<T>(), "this code expects this type to be memcpy()-able"); | 
|---|
| 504 | #endif | 
|---|
| 505 |  | 
|---|
| 506 | // ======================================================================================= | 
|---|
| 507 | // Equivalents to std::move() and std::forward(), since these are very commonly needed and the | 
|---|
| 508 | // std header <utility> pulls in lots of other stuff. | 
|---|
| 509 | // | 
|---|
| 510 | // We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used | 
|---|
| 511 | // that the cost of typing more letters outweighs the cost of being slightly harder to understand | 
|---|
| 512 | // when first encountered. | 
|---|
| 513 |  | 
|---|
| 514 | template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); } | 
|---|
| 515 | template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); } | 
|---|
| 516 |  | 
|---|
| 517 | template<typename T> constexpr T cp(T& t) noexcept { return t; } | 
|---|
| 518 | template<typename T> constexpr T cp(const T& t) noexcept { return t; } | 
|---|
| 519 | // Useful to force a copy, particularly to pass into a function that expects T&&. | 
|---|
| 520 |  | 
|---|
| 521 | template <typename T, typename U, bool takeT, bool uOK = true> struct ChooseType_; | 
|---|
| 522 | template <typename T, typename U> struct ChooseType_<T, U, true, true> { typedef T Type; }; | 
|---|
| 523 | template <typename T, typename U> struct ChooseType_<T, U, true, false> { typedef T Type; }; | 
|---|
| 524 | template <typename T, typename U> struct ChooseType_<T, U, false, true> { typedef U Type; }; | 
|---|
| 525 |  | 
|---|
| 526 | template <typename T, typename U> | 
|---|
| 527 | using WiderType = typename ChooseType_<T, U, sizeof(T) >= sizeof(U)>::Type; | 
|---|
| 528 |  | 
|---|
| 529 | template <typename T, typename U> | 
|---|
| 530 | inline constexpr auto min(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> { | 
|---|
| 531 | return a < b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b); | 
|---|
| 532 | } | 
|---|
| 533 |  | 
|---|
| 534 | template <typename T, typename U> | 
|---|
| 535 | inline constexpr auto max(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> { | 
|---|
| 536 | return a > b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b); | 
|---|
| 537 | } | 
|---|
| 538 |  | 
|---|
| 539 | template <typename T, size_t s> | 
|---|
| 540 | inline constexpr size_t size(T (&arr)[s]) { return s; } | 
|---|
| 541 | template <typename T> | 
|---|
| 542 | inline constexpr size_t size(T&& arr) { return arr.size(); } | 
|---|
| 543 | // Returns the size of the parameter, whether the parameter is a regular C array or a container | 
|---|
| 544 | // with a `.size()` method. | 
|---|
| 545 |  | 
|---|
| 546 | class MaxValue_ { | 
|---|
| 547 | private: | 
|---|
| 548 | template <typename T> | 
|---|
| 549 | inline constexpr T maxSigned() const { | 
|---|
| 550 | return (1ull << (sizeof(T) * 8 - 1)) - 1; | 
|---|
| 551 | } | 
|---|
| 552 | template <typename T> | 
|---|
| 553 | inline constexpr T maxUnsigned() const { | 
|---|
| 554 | return ~static_cast<T>(0u); | 
|---|
| 555 | } | 
|---|
| 556 |  | 
|---|
| 557 | public: | 
|---|
| 558 | #define _kJ_HANDLE_TYPE(T) \ | 
|---|
| 559 | inline constexpr operator   signed T() const { return MaxValue_::maxSigned  <  signed T>(); } \ | 
|---|
| 560 | inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); } | 
|---|
| 561 | _kJ_HANDLE_TYPE(char) | 
|---|
| 562 | _kJ_HANDLE_TYPE(short) | 
|---|
| 563 | _kJ_HANDLE_TYPE(int) | 
|---|
| 564 | _kJ_HANDLE_TYPE(long) | 
|---|
| 565 | _kJ_HANDLE_TYPE(long long) | 
|---|
| 566 | #undef _kJ_HANDLE_TYPE | 
|---|
| 567 |  | 
|---|
| 568 | inline constexpr operator char() const { | 
|---|
| 569 | // `char` is different from both `signed char` and `unsigned char`, and may be signed or | 
|---|
| 570 | // unsigned on different platforms.  Ugh. | 
|---|
| 571 | return char(-1) < 0 ? MaxValue_::maxSigned<char>() | 
|---|
| 572 | : MaxValue_::maxUnsigned<char>(); | 
|---|
| 573 | } | 
|---|
| 574 | }; | 
|---|
| 575 |  | 
|---|
| 576 | class MinValue_ { | 
|---|
| 577 | private: | 
|---|
| 578 | template <typename T> | 
|---|
| 579 | inline constexpr T minSigned() const { | 
|---|
| 580 | return 1ull << (sizeof(T) * 8 - 1); | 
|---|
| 581 | } | 
|---|
| 582 | template <typename T> | 
|---|
| 583 | inline constexpr T minUnsigned() const { | 
|---|
| 584 | return 0u; | 
|---|
| 585 | } | 
|---|
| 586 |  | 
|---|
| 587 | public: | 
|---|
| 588 | #define _kJ_HANDLE_TYPE(T) \ | 
|---|
| 589 | inline constexpr operator   signed T() const { return MinValue_::minSigned  <  signed T>(); } \ | 
|---|
| 590 | inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); } | 
|---|
| 591 | _kJ_HANDLE_TYPE(char) | 
|---|
| 592 | _kJ_HANDLE_TYPE(short) | 
|---|
| 593 | _kJ_HANDLE_TYPE(int) | 
|---|
| 594 | _kJ_HANDLE_TYPE(long) | 
|---|
| 595 | _kJ_HANDLE_TYPE(long long) | 
|---|
| 596 | #undef _kJ_HANDLE_TYPE | 
|---|
| 597 |  | 
|---|
| 598 | inline constexpr operator char() const { | 
|---|
| 599 | // `char` is different from both `signed char` and `unsigned char`, and may be signed or | 
|---|
| 600 | // unsigned on different platforms.  Ugh. | 
|---|
| 601 | return char(-1) < 0 ? MinValue_::minSigned<char>() | 
|---|
| 602 | : MinValue_::minUnsigned<char>(); | 
|---|
| 603 | } | 
|---|
| 604 | }; | 
|---|
| 605 |  | 
|---|
| 606 | static KJ_CONSTEXPR(const) MaxValue_ maxValue = MaxValue_(); | 
|---|
| 607 | // A special constant which, when cast to an integer type, takes on the maximum possible value of | 
|---|
| 608 | // that type.  This is useful to use as e.g. a parameter to a function because it will be robust | 
|---|
| 609 | // in the face of changes to the parameter's type. | 
|---|
| 610 | // | 
|---|
| 611 | // `char` is not supported, but `signed char` and `unsigned char` are. | 
|---|
| 612 |  | 
|---|
| 613 | static KJ_CONSTEXPR(const) MinValue_ minValue = MinValue_(); | 
|---|
| 614 | // A special constant which, when cast to an integer type, takes on the minimum possible value | 
|---|
| 615 | // of that type.  This is useful to use as e.g. a parameter to a function because it will be robust | 
|---|
| 616 | // in the face of changes to the parameter's type. | 
|---|
| 617 | // | 
|---|
| 618 | // `char` is not supported, but `signed char` and `unsigned char` are. | 
|---|
| 619 |  | 
|---|
| 620 | template <typename T> | 
|---|
| 621 | inline bool operator==(T t, MaxValue_) { return t == Decay<T>(maxValue); } | 
|---|
| 622 | template <typename T> | 
|---|
| 623 | inline bool operator==(T t, MinValue_) { return t == Decay<T>(minValue); } | 
|---|
| 624 |  | 
|---|
| 625 | template <uint bits> | 
|---|
| 626 | inline constexpr unsigned long long maxValueForBits() { | 
|---|
| 627 | // Get the maximum integer representable in the given number of bits. | 
|---|
| 628 |  | 
|---|
| 629 | // 1ull << 64 is unfortunately undefined. | 
|---|
| 630 | return (bits == 64 ? 0 : (1ull << bits)) - 1; | 
|---|
| 631 | } | 
|---|
| 632 |  | 
|---|
| 633 | struct ThrowOverflow { | 
|---|
| 634 | // Functor which throws an exception complaining about integer overflow. Usually this is used | 
|---|
| 635 | // with the interfaces in units.h, but is defined here because Cap'n Proto wants to avoid | 
|---|
| 636 | // including units.h when not using CAPNP_DEBUG_TYPES. | 
|---|
| 637 | void operator()() const; | 
|---|
| 638 | }; | 
|---|
| 639 |  | 
|---|
| 640 | #if __GNUC__ || __clang__ | 
|---|
| 641 | inline constexpr float inf() { return __builtin_huge_valf(); } | 
|---|
| 642 | inline constexpr float nan() { return __builtin_nanf( ""); } | 
|---|
| 643 |  | 
|---|
| 644 | #elif _MSC_VER | 
|---|
| 645 |  | 
|---|
| 646 | // Do what MSVC math.h does | 
|---|
| 647 | #pragma warning(push) | 
|---|
| 648 | #pragma warning(disable: 4756)  // "overflow in constant arithmetic" | 
|---|
| 649 | inline constexpr float inf() { return (float)(1e300 * 1e300); } | 
|---|
| 650 | #pragma warning(pop) | 
|---|
| 651 |  | 
|---|
| 652 | float nan(); | 
|---|
| 653 | // Unfortunatley, inf() * 0.0f produces a NaN with the sign bit set, whereas our preferred | 
|---|
| 654 | // canonical NaN should not have the sign bit set. std::numeric_limits<float>::quiet_NaN() | 
|---|
| 655 | // returns the correct NaN, but we don't want to #include that here. So, we give up and make | 
|---|
| 656 | // this out-of-line on MSVC. | 
|---|
| 657 | // | 
|---|
| 658 | // TODO(msvc): Can we do better? | 
|---|
| 659 |  | 
|---|
| 660 | #else | 
|---|
| 661 | #error "Not sure how to support your compiler." | 
|---|
| 662 | #endif | 
|---|
| 663 |  | 
|---|
| 664 | inline constexpr bool isNaN(float f) { return f != f; } | 
|---|
| 665 | inline constexpr bool isNaN(double f) { return f != f; } | 
|---|
| 666 |  | 
|---|
| 667 | inline int popCount(unsigned int x) { | 
|---|
| 668 | #if defined(_MSC_VER) | 
|---|
| 669 | return __popcnt(x); | 
|---|
| 670 | // Note: __popcnt returns unsigned int, but the value is clearly guaranteed to fit into an int | 
|---|
| 671 | #else | 
|---|
| 672 | return __builtin_popcount(x); | 
|---|
| 673 | #endif | 
|---|
| 674 | } | 
|---|
| 675 |  | 
|---|
| 676 | // ======================================================================================= | 
|---|
| 677 | // Useful fake containers | 
|---|
| 678 |  | 
|---|
| 679 | template <typename T> | 
|---|
| 680 | class Range { | 
|---|
| 681 | public: | 
|---|
| 682 | inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {} | 
|---|
| 683 | inline explicit constexpr Range(const T& end): begin_(0), end_(end) {} | 
|---|
| 684 |  | 
|---|
| 685 | class Iterator { | 
|---|
| 686 | public: | 
|---|
| 687 | Iterator() = default; | 
|---|
| 688 | inline Iterator(const T& value): value(value) {} | 
|---|
| 689 |  | 
|---|
| 690 | inline const T&  operator* () const { return value; } | 
|---|
| 691 | inline const T&  operator[](size_t index) const { return value + index; } | 
|---|
| 692 | inline Iterator& operator++() { ++value; return *this; } | 
|---|
| 693 | inline Iterator  operator++(int) { return Iterator(value++); } | 
|---|
| 694 | inline Iterator& operator--() { --value; return *this; } | 
|---|
| 695 | inline Iterator  operator--(int) { return Iterator(value--); } | 
|---|
| 696 | inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; } | 
|---|
| 697 | inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; } | 
|---|
| 698 | inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value + amount); } | 
|---|
| 699 | inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value - amount); } | 
|---|
| 700 | inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; } | 
|---|
| 701 |  | 
|---|
| 702 | inline bool operator==(const Iterator& other) const { return value == other.value; } | 
|---|
| 703 | inline bool operator!=(const Iterator& other) const { return value != other.value; } | 
|---|
| 704 | inline bool operator<=(const Iterator& other) const { return value <= other.value; } | 
|---|
| 705 | inline bool operator>=(const Iterator& other) const { return value >= other.value; } | 
|---|
| 706 | inline bool operator< (const Iterator& other) const { return value <  other.value; } | 
|---|
| 707 | inline bool operator> (const Iterator& other) const { return value >  other.value; } | 
|---|
| 708 |  | 
|---|
| 709 | private: | 
|---|
| 710 | T value; | 
|---|
| 711 | }; | 
|---|
| 712 |  | 
|---|
| 713 | inline Iterator begin() const { return Iterator(begin_); } | 
|---|
| 714 | inline Iterator end() const { return Iterator(end_); } | 
|---|
| 715 |  | 
|---|
| 716 | inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; } | 
|---|
| 717 |  | 
|---|
| 718 | private: | 
|---|
| 719 | T begin_; | 
|---|
| 720 | T end_; | 
|---|
| 721 | }; | 
|---|
| 722 |  | 
|---|
| 723 | template <typename T, typename U> | 
|---|
| 724 | inline constexpr Range<WiderType<Decay<T>, Decay<U>>> range(T begin, U end) { | 
|---|
| 725 | return Range<WiderType<Decay<T>, Decay<U>>>(begin, end); | 
|---|
| 726 | } | 
|---|
| 727 |  | 
|---|
| 728 | template <typename T> | 
|---|
| 729 | inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); } | 
|---|
| 730 | // Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end` | 
|---|
| 731 | // (exclusive).  Example: | 
|---|
| 732 | // | 
|---|
| 733 | //     // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9. | 
|---|
| 734 | //     for (int i: kj::range(1, 10)) { print(i); } | 
|---|
| 735 |  | 
|---|
| 736 | template <typename T> | 
|---|
| 737 | inline constexpr Range<Decay<T>> zeroTo(T end) { return Range<Decay<T>>(end); } | 
|---|
| 738 | // Returns a fake iterable container containing all values of T from zero (inclusive) to `end` | 
|---|
| 739 | // (exclusive).  Example: | 
|---|
| 740 | // | 
|---|
| 741 | //     // Prints 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. | 
|---|
| 742 | //     for (int i: kj::zeroTo(10)) { print(i); } | 
|---|
| 743 |  | 
|---|
| 744 | template <typename T> | 
|---|
| 745 | inline constexpr Range<size_t> indices(T&& container) { | 
|---|
| 746 | // Shortcut for iterating over the indices of a container: | 
|---|
| 747 | // | 
|---|
| 748 | //     for (size_t i: kj::indices(myArray)) { handle(myArray[i]); } | 
|---|
| 749 |  | 
|---|
| 750 | return range<size_t>(0, kj::size(container)); | 
|---|
| 751 | } | 
|---|
| 752 |  | 
|---|
| 753 | template <typename T> | 
|---|
| 754 | class Repeat { | 
|---|
| 755 | public: | 
|---|
| 756 | inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {} | 
|---|
| 757 |  | 
|---|
| 758 | class Iterator { | 
|---|
| 759 | public: | 
|---|
| 760 | Iterator() = default; | 
|---|
| 761 | inline Iterator(const T& value, size_t index): value(value), index(index) {} | 
|---|
| 762 |  | 
|---|
| 763 | inline const T&  operator* () const { return value; } | 
|---|
| 764 | inline const T&  operator[](ptrdiff_t index) const { return value; } | 
|---|
| 765 | inline Iterator& operator++() { ++index; return *this; } | 
|---|
| 766 | inline Iterator  operator++(int) { return Iterator(value, index++); } | 
|---|
| 767 | inline Iterator& operator--() { --index; return *this; } | 
|---|
| 768 | inline Iterator  operator--(int) { return Iterator(value, index--); } | 
|---|
| 769 | inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; } | 
|---|
| 770 | inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; } | 
|---|
| 771 | inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); } | 
|---|
| 772 | inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); } | 
|---|
| 773 | inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; } | 
|---|
| 774 |  | 
|---|
| 775 | inline bool operator==(const Iterator& other) const { return index == other.index; } | 
|---|
| 776 | inline bool operator!=(const Iterator& other) const { return index != other.index; } | 
|---|
| 777 | inline bool operator<=(const Iterator& other) const { return index <= other.index; } | 
|---|
| 778 | inline bool operator>=(const Iterator& other) const { return index >= other.index; } | 
|---|
| 779 | inline bool operator< (const Iterator& other) const { return index <  other.index; } | 
|---|
| 780 | inline bool operator> (const Iterator& other) const { return index >  other.index; } | 
|---|
| 781 |  | 
|---|
| 782 | private: | 
|---|
| 783 | T value; | 
|---|
| 784 | size_t index; | 
|---|
| 785 | }; | 
|---|
| 786 |  | 
|---|
| 787 | inline Iterator begin() const { return Iterator(value, 0); } | 
|---|
| 788 | inline Iterator end() const { return Iterator(value, count); } | 
|---|
| 789 |  | 
|---|
| 790 | inline size_t size() const { return count; } | 
|---|
| 791 | inline const T& operator[](ptrdiff_t) const { return value; } | 
|---|
| 792 |  | 
|---|
| 793 | private: | 
|---|
| 794 | T value; | 
|---|
| 795 | size_t count; | 
|---|
| 796 | }; | 
|---|
| 797 |  | 
|---|
| 798 | template <typename T> | 
|---|
| 799 | inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) { | 
|---|
| 800 | // Returns a fake iterable which contains `count` repeats of `value`.  Useful for e.g. creating | 
|---|
| 801 | // a bunch of spaces:  `kj::repeat(' ', indent * 2)` | 
|---|
| 802 |  | 
|---|
| 803 | return Repeat<Decay<T>>(value, count); | 
|---|
| 804 | } | 
|---|
| 805 |  | 
|---|
| 806 | // ======================================================================================= | 
|---|
| 807 | // Manually invoking constructors and destructors | 
|---|
| 808 | // | 
|---|
| 809 | // ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively. | 
|---|
| 810 |  | 
|---|
| 811 | // We want placement new, but we don't want to #include <new>.  operator new cannot be defined in | 
|---|
| 812 | // a namespace, and defining it globally conflicts with the definition in <new>.  So we have to | 
|---|
| 813 | // define a dummy type and an operator new that uses it. | 
|---|
| 814 |  | 
|---|
| 815 | namespace _ {  // private | 
|---|
| 816 | struct PlacementNew {}; | 
|---|
| 817 | }  // namespace _ (private) | 
|---|
| 818 | } // namespace kj | 
|---|
| 819 |  | 
|---|
| 820 | inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept { | 
|---|
| 821 | return __p; | 
|---|
| 822 | } | 
|---|
| 823 |  | 
|---|
| 824 | inline void operator delete(void*, kj::_::PlacementNew, void* __p) noexcept {} | 
|---|
| 825 |  | 
|---|
| 826 | namespace kj { | 
|---|
| 827 |  | 
|---|
| 828 | template <typename T, typename... Params> | 
|---|
| 829 | inline void ctor(T& location, Params&&... params) { | 
|---|
| 830 | new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...); | 
|---|
| 831 | } | 
|---|
| 832 |  | 
|---|
| 833 | template <typename T> | 
|---|
| 834 | inline void dtor(T& location) { | 
|---|
| 835 | location.~T(); | 
|---|
| 836 | } | 
|---|
| 837 |  | 
|---|
| 838 | // ======================================================================================= | 
|---|
| 839 | // Maybe | 
|---|
| 840 | // | 
|---|
| 841 | // Use in cases where you want to indicate that a value may be null.  Using Maybe<T&> instead of T* | 
|---|
| 842 | // forces the caller to handle the null case in order to satisfy the compiler, thus reliably | 
|---|
| 843 | // preventing null pointer dereferences at runtime. | 
|---|
| 844 | // | 
|---|
| 845 | // Maybe<T> can be implicitly constructed from T and from nullptr.  Additionally, it can be | 
|---|
| 846 | // implicitly constructed from T*, in which case the pointer is checked for nullness at runtime. | 
|---|
| 847 | // To read the value of a Maybe<T>, do: | 
|---|
| 848 | // | 
|---|
| 849 | //    KJ_IF_MAYBE(value, someFuncReturningMaybe()) { | 
|---|
| 850 | //      doSomething(*value); | 
|---|
| 851 | //    } else { | 
|---|
| 852 | //      maybeWasNull(); | 
|---|
| 853 | //    } | 
|---|
| 854 | // | 
|---|
| 855 | // KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following | 
|---|
| 856 | // block.  The variable will behave like a (guaranteed non-null) pointer to the Maybe's value, | 
|---|
| 857 | // though it may or may not actually be a pointer. | 
|---|
| 858 | // | 
|---|
| 859 | // Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean | 
|---|
| 860 | // indicating nullness. | 
|---|
| 861 |  | 
|---|
| 862 | template <typename T> | 
|---|
| 863 | class Maybe; | 
|---|
| 864 |  | 
|---|
| 865 | namespace _ {  // private | 
|---|
| 866 |  | 
|---|
| 867 | template <typename T> | 
|---|
| 868 | class NullableValue { | 
|---|
| 869 | // Class whose interface behaves much like T*, but actually contains an instance of T and a | 
|---|
| 870 | // boolean flag indicating nullness. | 
|---|
| 871 |  | 
|---|
| 872 | public: | 
|---|
| 873 | inline NullableValue(NullableValue&& other) noexcept(noexcept(T(instance<T&&>()))) | 
|---|
| 874 | : isSet(other.isSet) { | 
|---|
| 875 | if (isSet) { | 
|---|
| 876 | ctor(value, kj::mv(other.value)); | 
|---|
| 877 | } | 
|---|
| 878 | } | 
|---|
| 879 | inline NullableValue(const NullableValue& other) | 
|---|
| 880 | : isSet(other.isSet) { | 
|---|
| 881 | if (isSet) { | 
|---|
| 882 | ctor(value, other.value); | 
|---|
| 883 | } | 
|---|
| 884 | } | 
|---|
| 885 | inline NullableValue(NullableValue& other) | 
|---|
| 886 | : isSet(other.isSet) { | 
|---|
| 887 | if (isSet) { | 
|---|
| 888 | ctor(value, other.value); | 
|---|
| 889 | } | 
|---|
| 890 | } | 
|---|
| 891 | inline ~NullableValue() | 
|---|
| 892 | #if _MSC_VER | 
|---|
| 893 | // TODO(msvc): MSVC has a hard time with noexcept specifier expressions that are more complex | 
|---|
| 894 | //   than `true` or `false`. We had a workaround for VS2015, but VS2017 regressed. | 
|---|
| 895 | noexcept(false) | 
|---|
| 896 | #else | 
|---|
| 897 | noexcept(noexcept(instance<T&>().~T())) | 
|---|
| 898 | #endif | 
|---|
| 899 | { | 
|---|
| 900 | if (isSet) { | 
|---|
| 901 | dtor(value); | 
|---|
| 902 | } | 
|---|
| 903 | } | 
|---|
| 904 |  | 
|---|
| 905 | inline T& operator*() & { return value; } | 
|---|
| 906 | inline const T& operator*() const & { return value; } | 
|---|
| 907 | inline T&& operator*() && { return kj::mv(value); } | 
|---|
| 908 | inline const T&& operator*() const && { return kj::mv(value); } | 
|---|
| 909 | inline T* operator->() { return &value; } | 
|---|
| 910 | inline const T* operator->() const { return &value; } | 
|---|
| 911 | inline operator T*() { return isSet ? &value : nullptr; } | 
|---|
| 912 | inline operator const T*() const { return isSet ? &value : nullptr; } | 
|---|
| 913 |  | 
|---|
| 914 | template <typename... Params> | 
|---|
| 915 | inline T& emplace(Params&&... params) { | 
|---|
| 916 | if (isSet) { | 
|---|
| 917 | isSet = false; | 
|---|
| 918 | dtor(value); | 
|---|
| 919 | } | 
|---|
| 920 | ctor(value, kj::fwd<Params>(params)...); | 
|---|
| 921 | isSet = true; | 
|---|
| 922 | return value; | 
|---|
| 923 | } | 
|---|
| 924 |  | 
|---|
| 925 | inline NullableValue() noexcept: isSet(false) {} | 
|---|
| 926 | inline NullableValue(T&& t) noexcept(noexcept(T(instance<T&&>()))) | 
|---|
| 927 | : isSet(true) { | 
|---|
| 928 | ctor(value, kj::mv(t)); | 
|---|
| 929 | } | 
|---|
| 930 | inline NullableValue(T& t) | 
|---|
| 931 | : isSet(true) { | 
|---|
| 932 | ctor(value, t); | 
|---|
| 933 | } | 
|---|
| 934 | inline NullableValue(const T& t) | 
|---|
| 935 | : isSet(true) { | 
|---|
| 936 | ctor(value, t); | 
|---|
| 937 | } | 
|---|
| 938 | inline NullableValue(const T* t) | 
|---|
| 939 | : isSet(t != nullptr) { | 
|---|
| 940 | if (isSet) ctor(value, *t); | 
|---|
| 941 | } | 
|---|
| 942 | template <typename U> | 
|---|
| 943 | inline NullableValue(NullableValue<U>&& other) noexcept(noexcept(T(instance<U&&>()))) | 
|---|
| 944 | : isSet(other.isSet) { | 
|---|
| 945 | if (isSet) { | 
|---|
| 946 | ctor(value, kj::mv(other.value)); | 
|---|
| 947 | } | 
|---|
| 948 | } | 
|---|
| 949 | template <typename U> | 
|---|
| 950 | inline NullableValue(const NullableValue<U>& other) | 
|---|
| 951 | : isSet(other.isSet) { | 
|---|
| 952 | if (isSet) { | 
|---|
| 953 | ctor(value, other.value); | 
|---|
| 954 | } | 
|---|
| 955 | } | 
|---|
| 956 | template <typename U> | 
|---|
| 957 | inline NullableValue(const NullableValue<U&>& other) | 
|---|
| 958 | : isSet(other.isSet) { | 
|---|
| 959 | if (isSet) { | 
|---|
| 960 | ctor(value, *other.ptr); | 
|---|
| 961 | } | 
|---|
| 962 | } | 
|---|
| 963 | inline NullableValue(decltype(nullptr)): isSet(false) {} | 
|---|
| 964 |  | 
|---|
| 965 | inline NullableValue& operator=(NullableValue&& other) { | 
|---|
| 966 | if (&other != this) { | 
|---|
| 967 | // Careful about throwing destructors/constructors here. | 
|---|
| 968 | if (isSet) { | 
|---|
| 969 | isSet = false; | 
|---|
| 970 | dtor(value); | 
|---|
| 971 | } | 
|---|
| 972 | if (other.isSet) { | 
|---|
| 973 | ctor(value, kj::mv(other.value)); | 
|---|
| 974 | isSet = true; | 
|---|
| 975 | } | 
|---|
| 976 | } | 
|---|
| 977 | return *this; | 
|---|
| 978 | } | 
|---|
| 979 |  | 
|---|
| 980 | inline NullableValue& operator=(NullableValue& other) { | 
|---|
| 981 | if (&other != this) { | 
|---|
| 982 | // Careful about throwing destructors/constructors here. | 
|---|
| 983 | if (isSet) { | 
|---|
| 984 | isSet = false; | 
|---|
| 985 | dtor(value); | 
|---|
| 986 | } | 
|---|
| 987 | if (other.isSet) { | 
|---|
| 988 | ctor(value, other.value); | 
|---|
| 989 | isSet = true; | 
|---|
| 990 | } | 
|---|
| 991 | } | 
|---|
| 992 | return *this; | 
|---|
| 993 | } | 
|---|
| 994 |  | 
|---|
| 995 | inline NullableValue& operator=(const NullableValue& other) { | 
|---|
| 996 | if (&other != this) { | 
|---|
| 997 | // Careful about throwing destructors/constructors here. | 
|---|
| 998 | if (isSet) { | 
|---|
| 999 | isSet = false; | 
|---|
| 1000 | dtor(value); | 
|---|
| 1001 | } | 
|---|
| 1002 | if (other.isSet) { | 
|---|
| 1003 | ctor(value, other.value); | 
|---|
| 1004 | isSet = true; | 
|---|
| 1005 | } | 
|---|
| 1006 | } | 
|---|
| 1007 | return *this; | 
|---|
| 1008 | } | 
|---|
| 1009 |  | 
|---|
| 1010 | inline bool operator==(decltype(nullptr)) const { return !isSet; } | 
|---|
| 1011 | inline bool operator!=(decltype(nullptr)) const { return isSet; } | 
|---|
| 1012 |  | 
|---|
| 1013 | private: | 
|---|
| 1014 | bool isSet; | 
|---|
| 1015 |  | 
|---|
| 1016 | #if _MSC_VER | 
|---|
| 1017 | #pragma warning(push) | 
|---|
| 1018 | #pragma warning(disable: 4624) | 
|---|
| 1019 | // Warns that the anonymous union has a deleted destructor when T is non-trivial. This warning | 
|---|
| 1020 | // seems broken. | 
|---|
| 1021 | #endif | 
|---|
| 1022 |  | 
|---|
| 1023 | union { | 
|---|
| 1024 | T value; | 
|---|
| 1025 | }; | 
|---|
| 1026 |  | 
|---|
| 1027 | #if _MSC_VER | 
|---|
| 1028 | #pragma warning(pop) | 
|---|
| 1029 | #endif | 
|---|
| 1030 |  | 
|---|
| 1031 | friend class kj::Maybe<T>; | 
|---|
| 1032 | template <typename U> | 
|---|
| 1033 | friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe); | 
|---|
| 1034 | }; | 
|---|
| 1035 |  | 
|---|
| 1036 | template <typename T> | 
|---|
| 1037 | inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); } | 
|---|
| 1038 | template <typename T> | 
|---|
| 1039 | inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; } | 
|---|
| 1040 | template <typename T> | 
|---|
| 1041 | inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; } | 
|---|
| 1042 | template <typename T> | 
|---|
| 1043 | inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; } | 
|---|
| 1044 | template <typename T> | 
|---|
| 1045 | inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; } | 
|---|
| 1046 |  | 
|---|
| 1047 | template <typename T> | 
|---|
| 1048 | inline T* readMaybe(T* ptr) { return ptr; } | 
|---|
| 1049 | // Allow KJ_IF_MAYBE to work on regular pointers. | 
|---|
| 1050 |  | 
|---|
| 1051 | }  // namespace _ (private) | 
|---|
| 1052 |  | 
|---|
| 1053 | #define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp)) | 
|---|
| 1054 |  | 
|---|
| 1055 | template <typename T> | 
|---|
| 1056 | class Maybe { | 
|---|
| 1057 | // A T, or nullptr. | 
|---|
| 1058 |  | 
|---|
| 1059 | // IF YOU CHANGE THIS CLASS:  Note that there is a specialization of it in memory.h. | 
|---|
| 1060 |  | 
|---|
| 1061 | public: | 
|---|
| 1062 | Maybe(): ptr(nullptr) {} | 
|---|
| 1063 | Maybe(T&& t) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(t)) {} | 
|---|
| 1064 | Maybe(T& t): ptr(t) {} | 
|---|
| 1065 | Maybe(const T& t): ptr(t) {} | 
|---|
| 1066 | Maybe(const T* t) noexcept: ptr(t) {} | 
|---|
| 1067 | Maybe(Maybe&& other) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(other.ptr)) {} | 
|---|
| 1068 | Maybe(const Maybe& other): ptr(other.ptr) {} | 
|---|
| 1069 | Maybe(Maybe& other): ptr(other.ptr) {} | 
|---|
| 1070 |  | 
|---|
| 1071 | template <typename U> | 
|---|
| 1072 | Maybe(Maybe<U>&& other) noexcept(noexcept(T(instance<U&&>()))) { | 
|---|
| 1073 | KJ_IF_MAYBE(val, kj::mv(other)) { | 
|---|
| 1074 | ptr.emplace(kj::mv(*val)); | 
|---|
| 1075 | } | 
|---|
| 1076 | } | 
|---|
| 1077 | template <typename U> | 
|---|
| 1078 | Maybe(const Maybe<U>& other) { | 
|---|
| 1079 | KJ_IF_MAYBE(val, other) { | 
|---|
| 1080 | ptr.emplace(*val); | 
|---|
| 1081 | } | 
|---|
| 1082 | } | 
|---|
| 1083 |  | 
|---|
| 1084 | Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {} | 
|---|
| 1085 |  | 
|---|
| 1086 | template <typename... Params> | 
|---|
| 1087 | inline T& emplace(Params&&... params) { | 
|---|
| 1088 | // Replace this Maybe's content with a new value constructed by passing the given parametrs to | 
|---|
| 1089 | // T's constructor. This can be used to initialize a Maybe without copying or even moving a T. | 
|---|
| 1090 | // Returns a reference to the newly-constructed value. | 
|---|
| 1091 |  | 
|---|
| 1092 | return ptr.emplace(kj::fwd<Params>(params)...); | 
|---|
| 1093 | } | 
|---|
| 1094 |  | 
|---|
| 1095 | inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; } | 
|---|
| 1096 | inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; } | 
|---|
| 1097 | inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; } | 
|---|
| 1098 |  | 
|---|
| 1099 | inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; } | 
|---|
| 1100 | inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; } | 
|---|
| 1101 |  | 
|---|
| 1102 | T& orDefault(T& defaultValue) & { | 
|---|
| 1103 | if (ptr == nullptr) { | 
|---|
| 1104 | return defaultValue; | 
|---|
| 1105 | } else { | 
|---|
| 1106 | return *ptr; | 
|---|
| 1107 | } | 
|---|
| 1108 | } | 
|---|
| 1109 | const T& orDefault(const T& defaultValue) const & { | 
|---|
| 1110 | if (ptr == nullptr) { | 
|---|
| 1111 | return defaultValue; | 
|---|
| 1112 | } else { | 
|---|
| 1113 | return *ptr; | 
|---|
| 1114 | } | 
|---|
| 1115 | } | 
|---|
| 1116 | T&& orDefault(T&& defaultValue) && { | 
|---|
| 1117 | if (ptr == nullptr) { | 
|---|
| 1118 | return kj::mv(defaultValue); | 
|---|
| 1119 | } else { | 
|---|
| 1120 | return kj::mv(*ptr); | 
|---|
| 1121 | } | 
|---|
| 1122 | } | 
|---|
| 1123 | const T&& orDefault(const T&& defaultValue) const && { | 
|---|
| 1124 | if (ptr == nullptr) { | 
|---|
| 1125 | return kj::mv(defaultValue); | 
|---|
| 1126 | } else { | 
|---|
| 1127 | return kj::mv(*ptr); | 
|---|
| 1128 | } | 
|---|
| 1129 | } | 
|---|
| 1130 |  | 
|---|
| 1131 | template <typename Func> | 
|---|
| 1132 | auto map(Func&& f) & -> Maybe<decltype(f(instance<T&>()))> { | 
|---|
| 1133 | if (ptr == nullptr) { | 
|---|
| 1134 | return nullptr; | 
|---|
| 1135 | } else { | 
|---|
| 1136 | return f(*ptr); | 
|---|
| 1137 | } | 
|---|
| 1138 | } | 
|---|
| 1139 |  | 
|---|
| 1140 | template <typename Func> | 
|---|
| 1141 | auto map(Func&& f) const & -> Maybe<decltype(f(instance<const T&>()))> { | 
|---|
| 1142 | if (ptr == nullptr) { | 
|---|
| 1143 | return nullptr; | 
|---|
| 1144 | } else { | 
|---|
| 1145 | return f(*ptr); | 
|---|
| 1146 | } | 
|---|
| 1147 | } | 
|---|
| 1148 |  | 
|---|
| 1149 | template <typename Func> | 
|---|
| 1150 | auto map(Func&& f) && -> Maybe<decltype(f(instance<T&&>()))> { | 
|---|
| 1151 | if (ptr == nullptr) { | 
|---|
| 1152 | return nullptr; | 
|---|
| 1153 | } else { | 
|---|
| 1154 | return f(kj::mv(*ptr)); | 
|---|
| 1155 | } | 
|---|
| 1156 | } | 
|---|
| 1157 |  | 
|---|
| 1158 | template <typename Func> | 
|---|
| 1159 | auto map(Func&& f) const && -> Maybe<decltype(f(instance<const T&&>()))> { | 
|---|
| 1160 | if (ptr == nullptr) { | 
|---|
| 1161 | return nullptr; | 
|---|
| 1162 | } else { | 
|---|
| 1163 | return f(kj::mv(*ptr)); | 
|---|
| 1164 | } | 
|---|
| 1165 | } | 
|---|
| 1166 |  | 
|---|
| 1167 | private: | 
|---|
| 1168 | _::NullableValue<T> ptr; | 
|---|
| 1169 |  | 
|---|
| 1170 | template <typename U> | 
|---|
| 1171 | friend class Maybe; | 
|---|
| 1172 | template <typename U> | 
|---|
| 1173 | friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe); | 
|---|
| 1174 | template <typename U> | 
|---|
| 1175 | friend U* _::readMaybe(Maybe<U>& maybe); | 
|---|
| 1176 | template <typename U> | 
|---|
| 1177 | friend const U* _::readMaybe(const Maybe<U>& maybe); | 
|---|
| 1178 | }; | 
|---|
| 1179 |  | 
|---|
| 1180 | template <typename T> | 
|---|
| 1181 | class Maybe<T&>: public DisallowConstCopyIfNotConst<T> { | 
|---|
| 1182 | public: | 
|---|
| 1183 | Maybe() noexcept: ptr(nullptr) {} | 
|---|
| 1184 | Maybe(T& t) noexcept: ptr(&t) {} | 
|---|
| 1185 | Maybe(T* t) noexcept: ptr(t) {} | 
|---|
| 1186 |  | 
|---|
| 1187 | template <typename U> | 
|---|
| 1188 | inline Maybe(Maybe<U&>& other) noexcept: ptr(other.ptr) {} | 
|---|
| 1189 | template <typename U> | 
|---|
| 1190 | inline Maybe(const Maybe<U&>& other) noexcept: ptr(const_cast<const U*>(other.ptr)) {} | 
|---|
| 1191 | inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {} | 
|---|
| 1192 |  | 
|---|
| 1193 | inline Maybe& operator=(T& other) noexcept { ptr = &other; return *this; } | 
|---|
| 1194 | inline Maybe& operator=(T* other) noexcept { ptr = other; return *this; } | 
|---|
| 1195 | template <typename U> | 
|---|
| 1196 | inline Maybe& operator=(Maybe<U&>& other) noexcept { ptr = other.ptr; return *this; } | 
|---|
| 1197 | template <typename U> | 
|---|
| 1198 | inline Maybe& operator=(const Maybe<const U&>& other) noexcept { ptr = other.ptr; return *this; } | 
|---|
| 1199 |  | 
|---|
| 1200 | inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; } | 
|---|
| 1201 | inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; } | 
|---|
| 1202 |  | 
|---|
| 1203 | T& orDefault(T& defaultValue) { | 
|---|
| 1204 | if (ptr == nullptr) { | 
|---|
| 1205 | return defaultValue; | 
|---|
| 1206 | } else { | 
|---|
| 1207 | return *ptr; | 
|---|
| 1208 | } | 
|---|
| 1209 | } | 
|---|
| 1210 | const T& orDefault(const T& defaultValue) const { | 
|---|
| 1211 | if (ptr == nullptr) { | 
|---|
| 1212 | return defaultValue; | 
|---|
| 1213 | } else { | 
|---|
| 1214 | return *ptr; | 
|---|
| 1215 | } | 
|---|
| 1216 | } | 
|---|
| 1217 |  | 
|---|
| 1218 | template <typename Func> | 
|---|
| 1219 | auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> { | 
|---|
| 1220 | if (ptr == nullptr) { | 
|---|
| 1221 | return nullptr; | 
|---|
| 1222 | } else { | 
|---|
| 1223 | return f(*ptr); | 
|---|
| 1224 | } | 
|---|
| 1225 | } | 
|---|
| 1226 |  | 
|---|
| 1227 | template <typename Func> | 
|---|
| 1228 | auto map(Func&& f) const -> Maybe<decltype(f(instance<const T&>()))> { | 
|---|
| 1229 | if (ptr == nullptr) { | 
|---|
| 1230 | return nullptr; | 
|---|
| 1231 | } else { | 
|---|
| 1232 | const T& ref = *ptr; | 
|---|
| 1233 | return f(ref); | 
|---|
| 1234 | } | 
|---|
| 1235 | } | 
|---|
| 1236 |  | 
|---|
| 1237 | private: | 
|---|
| 1238 | T* ptr; | 
|---|
| 1239 |  | 
|---|
| 1240 | template <typename U> | 
|---|
| 1241 | friend class Maybe; | 
|---|
| 1242 | template <typename U> | 
|---|
| 1243 | friend U* _::readMaybe(Maybe<U&>&& maybe); | 
|---|
| 1244 | template <typename U> | 
|---|
| 1245 | friend U* _::readMaybe(const Maybe<U&>& maybe); | 
|---|
| 1246 | }; | 
|---|
| 1247 |  | 
|---|
| 1248 | // ======================================================================================= | 
|---|
| 1249 | // ArrayPtr | 
|---|
| 1250 | // | 
|---|
| 1251 | // So common that we put it in common.h rather than array.h. | 
|---|
| 1252 |  | 
|---|
| 1253 | template <typename T> | 
|---|
| 1254 | class Array; | 
|---|
| 1255 |  | 
|---|
| 1256 | template <typename T> | 
|---|
| 1257 | class ArrayPtr: public DisallowConstCopyIfNotConst<T> { | 
|---|
| 1258 | // A pointer to an array.  Includes a size.  Like any pointer, it doesn't own the target data, | 
|---|
| 1259 | // and passing by value only copies the pointer, not the target. | 
|---|
| 1260 |  | 
|---|
| 1261 | public: | 
|---|
| 1262 | inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {} | 
|---|
| 1263 | inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {} | 
|---|
| 1264 | inline constexpr ArrayPtr(T* ptr, size_t size): ptr(ptr), size_(size) {} | 
|---|
| 1265 | inline constexpr ArrayPtr(T* begin, T* end): ptr(begin), size_(end - begin) {} | 
|---|
| 1266 | inline KJ_CONSTEXPR() ArrayPtr(::std::initializer_list<RemoveConstOrDisable<T>> init) | 
|---|
| 1267 | : ptr(init.begin()), size_(init.size()) {} | 
|---|
| 1268 |  | 
|---|
| 1269 | template <size_t size> | 
|---|
| 1270 | inline constexpr ArrayPtr(T (&native)[size]): ptr(native), size_(size) { | 
|---|
| 1271 | // Construct an ArrayPtr from a native C-style array. | 
|---|
| 1272 | // | 
|---|
| 1273 | // We disable this constructor for const char arrays because otherwise you would be able to | 
|---|
| 1274 | // implicitly convert a character literal to ArrayPtr<const char>, which sounds really great, | 
|---|
| 1275 | // except that the NUL terminator would be included, which probably isn't what you intended. | 
|---|
| 1276 | // | 
|---|
| 1277 | // TODO(someday): Maybe we should support character literals but explicitly chop off the NUL | 
|---|
| 1278 | //   terminator. This could do the wrong thing if someone tries to construct an | 
|---|
| 1279 | //   ArrayPtr<const char> from a non-NUL-terminated char array, but evidence suggests that all | 
|---|
| 1280 | //   real use cases are in fact intending to remove the NUL terminator. It's convenient to be | 
|---|
| 1281 | //   able to specify ArrayPtr<const char> as a parameter type and be able to accept strings | 
|---|
| 1282 | //   as input in addition to arrays. Currently, you'll need overloading to support string | 
|---|
| 1283 | //   literals in this case, but if you overload StringPtr, then you'll find that several | 
|---|
| 1284 | //   conversions (e.g. from String and from a literal char array) become ambiguous! You end up | 
|---|
| 1285 | //   having to overload for literal char arrays specifically which is cumbersome. | 
|---|
| 1286 |  | 
|---|
| 1287 | static_assert(!isSameType<T, const char>(), | 
|---|
| 1288 | "Can't implicitly convert literal char array to ArrayPtr because we don't know if " | 
|---|
| 1289 | "you meant to include the NUL terminator. We may change this in the future to " | 
|---|
| 1290 | "automatically drop the NUL terminator. For now, try explicitly converting to StringPtr, " | 
|---|
| 1291 | "which can in turn implicitly convert to ArrayPtr<const char>."); | 
|---|
| 1292 | static_assert(!isSameType<T, const char16_t>(), "see above"); | 
|---|
| 1293 | static_assert(!isSameType<T, const char32_t>(), "see above"); | 
|---|
| 1294 | } | 
|---|
| 1295 |  | 
|---|
| 1296 | inline operator ArrayPtr<const T>() const { | 
|---|
| 1297 | return ArrayPtr<const T>(ptr, size_); | 
|---|
| 1298 | } | 
|---|
| 1299 | inline ArrayPtr<const T> asConst() const { | 
|---|
| 1300 | return ArrayPtr<const T>(ptr, size_); | 
|---|
| 1301 | } | 
|---|
| 1302 |  | 
|---|
| 1303 | inline constexpr size_t size() const { return size_; } | 
|---|
| 1304 | inline const T& operator[](size_t index) const { | 
|---|
| 1305 | KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access."); | 
|---|
| 1306 | return ptr[index]; | 
|---|
| 1307 | } | 
|---|
| 1308 | inline T& operator[](size_t index) { | 
|---|
| 1309 | KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access."); | 
|---|
| 1310 | return ptr[index]; | 
|---|
| 1311 | } | 
|---|
| 1312 |  | 
|---|
| 1313 | inline T* begin() { return ptr; } | 
|---|
| 1314 | inline T* end() { return ptr + size_; } | 
|---|
| 1315 | inline T& front() { return *ptr; } | 
|---|
| 1316 | inline T& back() { return *(ptr + size_ - 1); } | 
|---|
| 1317 | inline constexpr const T* begin() const { return ptr; } | 
|---|
| 1318 | inline constexpr const T* end() const { return ptr + size_; } | 
|---|
| 1319 | inline const T& front() const { return *ptr; } | 
|---|
| 1320 | inline const T& back() const { return *(ptr + size_ - 1); } | 
|---|
| 1321 |  | 
|---|
| 1322 | inline ArrayPtr<const T> slice(size_t start, size_t end) const { | 
|---|
| 1323 | KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice()."); | 
|---|
| 1324 | return ArrayPtr<const T>(ptr + start, end - start); | 
|---|
| 1325 | } | 
|---|
| 1326 | inline ArrayPtr slice(size_t start, size_t end) { | 
|---|
| 1327 | KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice()."); | 
|---|
| 1328 | return ArrayPtr(ptr + start, end - start); | 
|---|
| 1329 | } | 
|---|
| 1330 |  | 
|---|
| 1331 | inline ArrayPtr<PropagateConst<T, byte>> asBytes() const { | 
|---|
| 1332 | // Reinterpret the array as a byte array. This is explicitly legal under C++ aliasing | 
|---|
| 1333 | // rules. | 
|---|
| 1334 | return { reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_ * sizeof(T) }; | 
|---|
| 1335 | } | 
|---|
| 1336 | inline ArrayPtr<PropagateConst<T, char>> asChars() const { | 
|---|
| 1337 | // Reinterpret the array as a char array. This is explicitly legal under C++ aliasing | 
|---|
| 1338 | // rules. | 
|---|
| 1339 | return { reinterpret_cast<PropagateConst<T, char>*>(ptr), size_ * sizeof(T) }; | 
|---|
| 1340 | } | 
|---|
| 1341 |  | 
|---|
| 1342 | inline bool operator==(decltype(nullptr)) const { return size_ == 0; } | 
|---|
| 1343 | inline bool operator!=(decltype(nullptr)) const { return size_ != 0; } | 
|---|
| 1344 |  | 
|---|
| 1345 | inline bool operator==(const ArrayPtr& other) const { | 
|---|
| 1346 | if (size_ != other.size_) return false; | 
|---|
| 1347 | for (size_t i = 0; i < size_; i++) { | 
|---|
| 1348 | if (ptr[i] != other[i]) return false; | 
|---|
| 1349 | } | 
|---|
| 1350 | return true; | 
|---|
| 1351 | } | 
|---|
| 1352 | inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); } | 
|---|
| 1353 |  | 
|---|
| 1354 | template <typename U> | 
|---|
| 1355 | inline bool operator==(const ArrayPtr<U>& other) const { | 
|---|
| 1356 | if (size_ != other.size()) return false; | 
|---|
| 1357 | for (size_t i = 0; i < size_; i++) { | 
|---|
| 1358 | if (ptr[i] != other[i]) return false; | 
|---|
| 1359 | } | 
|---|
| 1360 | return true; | 
|---|
| 1361 | } | 
|---|
| 1362 | template <typename U> | 
|---|
| 1363 | inline bool operator!=(const ArrayPtr<U>& other) const { return !(*this == other); } | 
|---|
| 1364 |  | 
|---|
| 1365 | template <typename... Attachments> | 
|---|
| 1366 | Array<T> attach(Attachments&&... attachments) const KJ_WARN_UNUSED_RESULT; | 
|---|
| 1367 | // Like Array<T>::attach(), but also promotes an ArrayPtr to an Array. Generally the attachment | 
|---|
| 1368 | // should be an object that actually owns the array that the ArrayPtr is pointing at. | 
|---|
| 1369 | // | 
|---|
| 1370 | // You must include kj/array.h to call this. | 
|---|
| 1371 |  | 
|---|
| 1372 | private: | 
|---|
| 1373 | T* ptr; | 
|---|
| 1374 | size_t size_; | 
|---|
| 1375 | }; | 
|---|
| 1376 |  | 
|---|
| 1377 | template <typename T> | 
|---|
| 1378 | inline constexpr ArrayPtr<T> arrayPtr(T* ptr, size_t size) { | 
|---|
| 1379 | // Use this function to construct ArrayPtrs without writing out the type name. | 
|---|
| 1380 | return ArrayPtr<T>(ptr, size); | 
|---|
| 1381 | } | 
|---|
| 1382 |  | 
|---|
| 1383 | template <typename T> | 
|---|
| 1384 | inline constexpr ArrayPtr<T> arrayPtr(T* begin, T* end) { | 
|---|
| 1385 | // Use this function to construct ArrayPtrs without writing out the type name. | 
|---|
| 1386 | return ArrayPtr<T>(begin, end); | 
|---|
| 1387 | } | 
|---|
| 1388 |  | 
|---|
| 1389 | // ======================================================================================= | 
|---|
| 1390 | // Casts | 
|---|
| 1391 |  | 
|---|
| 1392 | template <typename To, typename From> | 
|---|
| 1393 | To implicitCast(From&& from) { | 
|---|
| 1394 | // `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit.  Useful | 
|---|
| 1395 | // for e.g. resolving ambiguous overloads without sacrificing type-safety. | 
|---|
| 1396 | return kj::fwd<From>(from); | 
|---|
| 1397 | } | 
|---|
| 1398 |  | 
|---|
| 1399 | template <typename To, typename From> | 
|---|
| 1400 | Maybe<To&> dynamicDowncastIfAvailable(From& from) { | 
|---|
| 1401 | // If RTTI is disabled, always returns nullptr.  Otherwise, works like dynamic_cast.  Useful | 
|---|
| 1402 | // in situations where dynamic_cast could allow an optimization, but isn't strictly necessary | 
|---|
| 1403 | // for correctness.  It is highly recommended that you try to arrange all your dynamic_casts | 
|---|
| 1404 | // this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface | 
|---|
| 1405 | // design. | 
|---|
| 1406 |  | 
|---|
| 1407 | // Force a compile error if To is not a subtype of From.  Cross-casting is rare; if it is needed | 
|---|
| 1408 | // we should have a separate cast function like dynamicCrosscastIfAvailable(). | 
|---|
| 1409 | if (false) { | 
|---|
| 1410 | kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr)); | 
|---|
| 1411 | } | 
|---|
| 1412 |  | 
|---|
| 1413 | #if KJ_NO_RTTI | 
|---|
| 1414 | return nullptr; | 
|---|
| 1415 | #else | 
|---|
| 1416 | return dynamic_cast<To*>(&from); | 
|---|
| 1417 | #endif | 
|---|
| 1418 | } | 
|---|
| 1419 |  | 
|---|
| 1420 | template <typename To, typename From> | 
|---|
| 1421 | To& downcast(From& from) { | 
|---|
| 1422 | // Down-cast a value to a sub-type, asserting that the cast is valid.  In opt mode this is a | 
|---|
| 1423 | // static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify | 
|---|
| 1424 | // that the value really has the requested type. | 
|---|
| 1425 |  | 
|---|
| 1426 | // Force a compile error if To is not a subtype of From. | 
|---|
| 1427 | if (false) { | 
|---|
| 1428 | kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr)); | 
|---|
| 1429 | } | 
|---|
| 1430 |  | 
|---|
| 1431 | #if !KJ_NO_RTTI | 
|---|
| 1432 | KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type."); | 
|---|
| 1433 | #endif | 
|---|
| 1434 |  | 
|---|
| 1435 | return static_cast<To&>(from); | 
|---|
| 1436 | } | 
|---|
| 1437 |  | 
|---|
| 1438 | // ======================================================================================= | 
|---|
| 1439 | // Defer | 
|---|
| 1440 |  | 
|---|
| 1441 | namespace _ {  // private | 
|---|
| 1442 |  | 
|---|
| 1443 | template <typename Func> | 
|---|
| 1444 | class Deferred { | 
|---|
| 1445 | public: | 
|---|
| 1446 | inline Deferred(Func&& func): func(kj::fwd<Func>(func)), canceled(false) {} | 
|---|
| 1447 | inline ~Deferred() noexcept(false) { if (!canceled) func(); } | 
|---|
| 1448 | KJ_DISALLOW_COPY(Deferred); | 
|---|
| 1449 |  | 
|---|
| 1450 | // This move constructor is usually optimized away by the compiler. | 
|---|
| 1451 | inline Deferred(Deferred&& other): func(kj::mv(other.func)), canceled(false) { | 
|---|
| 1452 | other.canceled = true; | 
|---|
| 1453 | } | 
|---|
| 1454 | private: | 
|---|
| 1455 | Func func; | 
|---|
| 1456 | bool canceled; | 
|---|
| 1457 | }; | 
|---|
| 1458 |  | 
|---|
| 1459 | }  // namespace _ (private) | 
|---|
| 1460 |  | 
|---|
| 1461 | template <typename Func> | 
|---|
| 1462 | _::Deferred<Func> defer(Func&& func) { | 
|---|
| 1463 | // Returns an object which will invoke the given functor in its destructor.  The object is not | 
|---|
| 1464 | // copyable but is movable with the semantics you'd expect.  Since the return type is private, | 
|---|
| 1465 | // you need to assign to an `auto` variable. | 
|---|
| 1466 | // | 
|---|
| 1467 | // The KJ_DEFER macro provides slightly more convenient syntax for the common case where you | 
|---|
| 1468 | // want some code to run at current scope exit. | 
|---|
| 1469 |  | 
|---|
| 1470 | return _::Deferred<Func>(kj::fwd<Func>(func)); | 
|---|
| 1471 | } | 
|---|
| 1472 |  | 
|---|
| 1473 | #define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;}) | 
|---|
| 1474 | // Run the given code when the function exits, whether by return or exception. | 
|---|
| 1475 |  | 
|---|
| 1476 | }  // namespace kj | 
|---|
| 1477 |  | 
|---|