| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | #pragma once |
| 23 | |
| 24 | #if defined(__GNUC__) && !KJ_HEADER_WARNINGS |
| 25 | #pragma GCC system_header |
| 26 | #endif |
| 27 | |
| 28 | #include "memory.h" |
| 29 | #include <string.h> |
| 30 | #include <initializer_list> |
| 31 | |
| 32 | namespace kj { |
| 33 | |
| 34 | // ======================================================================================= |
| 35 | // ArrayDisposer -- Implementation details. |
| 36 | |
| 37 | class ArrayDisposer { |
| 38 | // Much like Disposer from memory.h. |
| 39 | |
| 40 | protected: |
| 41 | // Do not declare a destructor, as doing so will force a global initializer for |
| 42 | // HeapArrayDisposer::instance. |
| 43 | |
| 44 | virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| 45 | size_t capacity, void (*destroyElement)(void*)) const = 0; |
| 46 | // Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr |
| 47 | // if the elements have trivial destructors. `capacity` is the amount of space that was |
| 48 | // allocated while `elementCount` is the number of elements that were actually constructed; |
| 49 | // these are always the same number for Array<T> but may be different when using ArrayBuilder<T>. |
| 50 | |
| 51 | public: |
| 52 | |
| 53 | template <typename T> |
| 54 | void dispose(T* firstElement, size_t elementCount, size_t capacity) const; |
| 55 | // Helper wrapper around disposeImpl(). |
| 56 | // |
| 57 | // Callers must not call dispose() on the same array twice, even if the first call throws |
| 58 | // an exception. |
| 59 | |
| 60 | private: |
| 61 | template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)> |
| 62 | struct Dispose_; |
| 63 | }; |
| 64 | |
| 65 | class ExceptionSafeArrayUtil { |
| 66 | // Utility class that assists in constructing or destroying elements of an array, where the |
| 67 | // constructor or destructor could throw exceptions. In case of an exception, |
| 68 | // ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been |
| 69 | // constructed but not destroyed. Remember that destructors that throw exceptions are required |
| 70 | // to use UnwindDetector to detect unwind and avoid exceptions in this case. Therefore, no more |
| 71 | // than one exception will be thrown (and the program will not terminate). |
| 72 | |
| 73 | public: |
| 74 | inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount, |
| 75 | void (*destroyElement)(void*)) |
| 76 | : pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount), |
| 77 | elementSize(elementSize), constructedElementCount(constructedElementCount), |
| 78 | destroyElement(destroyElement) {} |
| 79 | KJ_DISALLOW_COPY(ExceptionSafeArrayUtil); |
| 80 | |
| 81 | inline ~ExceptionSafeArrayUtil() noexcept(false) { |
| 82 | if (constructedElementCount > 0) destroyAll(); |
| 83 | } |
| 84 | |
| 85 | void construct(size_t count, void (*constructElement)(void*)); |
| 86 | // Construct the given number of elements. |
| 87 | |
| 88 | void destroyAll(); |
| 89 | // Destroy all elements. Call this immediately before ExceptionSafeArrayUtil goes out-of-scope |
| 90 | // to ensure that one element throwing an exception does not prevent the others from being |
| 91 | // destroyed. |
| 92 | |
| 93 | void release() { constructedElementCount = 0; } |
| 94 | // Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements. |
| 95 | // Call this after you've successfully finished constructing. |
| 96 | |
| 97 | private: |
| 98 | byte* pos; |
| 99 | size_t elementSize; |
| 100 | size_t constructedElementCount; |
| 101 | void (*destroyElement)(void*); |
| 102 | }; |
| 103 | |
| 104 | class DestructorOnlyArrayDisposer: public ArrayDisposer { |
| 105 | public: |
| 106 | static const DestructorOnlyArrayDisposer instance; |
| 107 | |
| 108 | void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| 109 | size_t capacity, void (*destroyElement)(void*)) const override; |
| 110 | }; |
| 111 | |
| 112 | class NullArrayDisposer: public ArrayDisposer { |
| 113 | // An ArrayDisposer that does nothing. Can be used to construct a fake Arrays that doesn't |
| 114 | // actually own its content. |
| 115 | |
| 116 | public: |
| 117 | static const NullArrayDisposer instance; |
| 118 | |
| 119 | void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| 120 | size_t capacity, void (*destroyElement)(void*)) const override; |
| 121 | }; |
| 122 | |
| 123 | // ======================================================================================= |
| 124 | // Array |
| 125 | |
| 126 | template <typename T> |
| 127 | class Array { |
| 128 | // An owned array which will automatically be disposed of (using an ArrayDisposer) in the |
| 129 | // destructor. Can be moved, but not copied. Much like Own<T>, but for arrays rather than |
| 130 | // single objects. |
| 131 | |
| 132 | public: |
| 133 | inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {} |
| 134 | inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {} |
| 135 | inline Array(Array&& other) noexcept |
| 136 | : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { |
| 137 | other.ptr = nullptr; |
| 138 | other.size_ = 0; |
| 139 | } |
| 140 | inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept |
| 141 | : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { |
| 142 | other.ptr = nullptr; |
| 143 | other.size_ = 0; |
| 144 | } |
| 145 | inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer) |
| 146 | : ptr(firstElement), size_(size), disposer(&disposer) {} |
| 147 | |
| 148 | KJ_DISALLOW_COPY(Array); |
| 149 | inline ~Array() noexcept { dispose(); } |
| 150 | |
| 151 | inline operator ArrayPtr<T>() { |
| 152 | return ArrayPtr<T>(ptr, size_); |
| 153 | } |
| 154 | inline operator ArrayPtr<const T>() const { |
| 155 | return ArrayPtr<T>(ptr, size_); |
| 156 | } |
| 157 | inline ArrayPtr<T> asPtr() { |
| 158 | return ArrayPtr<T>(ptr, size_); |
| 159 | } |
| 160 | inline ArrayPtr<const T> asPtr() const { |
| 161 | return ArrayPtr<T>(ptr, size_); |
| 162 | } |
| 163 | |
| 164 | inline size_t size() const { return size_; } |
| 165 | inline T& operator[](size_t index) const { |
| 166 | KJ_IREQUIRE(index < size_, "Out-of-bounds Array access." ); |
| 167 | return ptr[index]; |
| 168 | } |
| 169 | |
| 170 | inline const T* begin() const { return ptr; } |
| 171 | inline const T* end() const { return ptr + size_; } |
| 172 | inline const T& front() const { return *ptr; } |
| 173 | inline const T& back() const { return *(ptr + size_ - 1); } |
| 174 | inline T* begin() { return ptr; } |
| 175 | inline T* end() { return ptr + size_; } |
| 176 | inline T& front() { return *ptr; } |
| 177 | inline T& back() { return *(ptr + size_ - 1); } |
| 178 | |
| 179 | template <typename U> |
| 180 | inline bool operator==(const U& other) const { return asPtr() == other; } |
| 181 | template <typename U> |
| 182 | inline bool operator!=(const U& other) const { return asPtr() != other; } |
| 183 | |
| 184 | inline ArrayPtr<T> slice(size_t start, size_t end) { |
| 185 | KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()." ); |
| 186 | return ArrayPtr<T>(ptr + start, end - start); |
| 187 | } |
| 188 | inline ArrayPtr<const T> slice(size_t start, size_t end) const { |
| 189 | KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()." ); |
| 190 | return ArrayPtr<const T>(ptr + start, end - start); |
| 191 | } |
| 192 | |
| 193 | inline ArrayPtr<const byte> asBytes() const { return asPtr().asBytes(); } |
| 194 | inline ArrayPtr<PropagateConst<T, byte>> asBytes() { return asPtr().asBytes(); } |
| 195 | inline ArrayPtr<const char> asChars() const { return asPtr().asChars(); } |
| 196 | inline ArrayPtr<PropagateConst<T, char>> asChars() { return asPtr().asChars(); } |
| 197 | |
| 198 | inline Array<PropagateConst<T, byte>> releaseAsBytes() { |
| 199 | // Like asBytes() but transfers ownership. |
| 200 | static_assert(sizeof(T) == sizeof(byte), |
| 201 | "releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars)." ); |
| 202 | Array<PropagateConst<T, byte>> result( |
| 203 | reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_, *disposer); |
| 204 | ptr = nullptr; |
| 205 | size_ = 0; |
| 206 | return result; |
| 207 | } |
| 208 | inline Array<PropagateConst<T, char>> releaseAsChars() { |
| 209 | // Like asChars() but transfers ownership. |
| 210 | static_assert(sizeof(T) == sizeof(PropagateConst<T, char>), |
| 211 | "releaseAsChars() only possible on arrays with char-size elements (e.g. bytes)." ); |
| 212 | Array<PropagateConst<T, char>> result( |
| 213 | reinterpret_cast<PropagateConst<T, char>*>(ptr), size_, *disposer); |
| 214 | ptr = nullptr; |
| 215 | size_ = 0; |
| 216 | return result; |
| 217 | } |
| 218 | |
| 219 | inline bool operator==(decltype(nullptr)) const { return size_ == 0; } |
| 220 | inline bool operator!=(decltype(nullptr)) const { return size_ != 0; } |
| 221 | |
| 222 | inline Array& operator=(decltype(nullptr)) { |
| 223 | dispose(); |
| 224 | return *this; |
| 225 | } |
| 226 | |
| 227 | inline Array& operator=(Array&& other) { |
| 228 | dispose(); |
| 229 | ptr = other.ptr; |
| 230 | size_ = other.size_; |
| 231 | disposer = other.disposer; |
| 232 | other.ptr = nullptr; |
| 233 | other.size_ = 0; |
| 234 | return *this; |
| 235 | } |
| 236 | |
| 237 | template <typename... Attachments> |
| 238 | Array<T> attach(Attachments&&... attachments) KJ_WARN_UNUSED_RESULT; |
| 239 | // Like Own<T>::attach(), but attaches to an Array. |
| 240 | |
| 241 | private: |
| 242 | T* ptr; |
| 243 | size_t size_; |
| 244 | const ArrayDisposer* disposer; |
| 245 | |
| 246 | inline void dispose() { |
| 247 | // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly |
| 248 | // dispose again. |
| 249 | T* ptrCopy = ptr; |
| 250 | size_t sizeCopy = size_; |
| 251 | if (ptrCopy != nullptr) { |
| 252 | ptr = nullptr; |
| 253 | size_ = 0; |
| 254 | disposer->dispose(ptrCopy, sizeCopy, sizeCopy); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | template <typename U> |
| 259 | friend class Array; |
| 260 | template <typename U> |
| 261 | friend class ArrayBuilder; |
| 262 | }; |
| 263 | |
| 264 | static_assert(!canMemcpy<Array<char>>(), "canMemcpy<>() is broken" ); |
| 265 | |
| 266 | namespace _ { // private |
| 267 | |
| 268 | class HeapArrayDisposer final: public ArrayDisposer { |
| 269 | public: |
| 270 | template <typename T> |
| 271 | static T* allocate(size_t count); |
| 272 | template <typename T> |
| 273 | static T* allocateUninitialized(size_t count); |
| 274 | |
| 275 | static const HeapArrayDisposer instance; |
| 276 | |
| 277 | private: |
| 278 | static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity, |
| 279 | void (*constructElement)(void*), void (*destroyElement)(void*)); |
| 280 | // Allocates and constructs the array. Both function pointers are null if the constructor is |
| 281 | // trivial, otherwise destroyElement is null if the constructor doesn't throw. |
| 282 | |
| 283 | virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| 284 | size_t capacity, void (*destroyElement)(void*)) const override; |
| 285 | |
| 286 | template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T), |
| 287 | bool hasNothrowConstructor = __has_nothrow_constructor(T)> |
| 288 | struct Allocate_; |
| 289 | }; |
| 290 | |
| 291 | } // namespace _ (private) |
| 292 | |
| 293 | template <typename T> |
| 294 | inline Array<T> heapArray(size_t size) { |
| 295 | // Much like `heap<T>()` from memory.h, allocates a new array on the heap. |
| 296 | |
| 297 | return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size, |
| 298 | _::HeapArrayDisposer::instance); |
| 299 | } |
| 300 | |
| 301 | template <typename T> Array<T> heapArray(const T* content, size_t size); |
| 302 | template <typename T> Array<T> heapArray(ArrayPtr<T> content); |
| 303 | template <typename T> Array<T> heapArray(ArrayPtr<const T> content); |
| 304 | template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end); |
| 305 | template <typename T> Array<T> heapArray(std::initializer_list<T> init); |
| 306 | // Allocate a heap array containing a copy of the given content. |
| 307 | |
| 308 | template <typename T, typename Container> |
| 309 | Array<T> heapArrayFromIterable(Container&& a) { return heapArray<T>(a.begin(), a.end()); } |
| 310 | template <typename T> |
| 311 | Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); } |
| 312 | |
| 313 | // ======================================================================================= |
| 314 | // ArrayBuilder |
| 315 | |
| 316 | template <typename T> |
| 317 | class ArrayBuilder { |
| 318 | // Class which lets you build an Array<T> specifying the exact constructor arguments for each |
| 319 | // element, rather than starting by default-constructing them. |
| 320 | |
| 321 | public: |
| 322 | ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} |
| 323 | ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} |
| 324 | explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity, |
| 325 | const ArrayDisposer& disposer) |
| 326 | : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity), |
| 327 | disposer(&disposer) {} |
| 328 | ArrayBuilder(ArrayBuilder&& other) |
| 329 | : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) { |
| 330 | other.ptr = nullptr; |
| 331 | other.pos = nullptr; |
| 332 | other.endPtr = nullptr; |
| 333 | } |
| 334 | ArrayBuilder(Array<T>&& other) |
| 335 | : ptr(other.ptr), pos(other.ptr + other.size_), endPtr(pos), disposer(other.disposer) { |
| 336 | // Create an already-full ArrayBuilder from an Array of the same type. This constructor |
| 337 | // primarily exists to enable Vector<T> to be constructed from Array<T>. |
| 338 | other.ptr = nullptr; |
| 339 | other.size_ = 0; |
| 340 | } |
| 341 | KJ_DISALLOW_COPY(ArrayBuilder); |
| 342 | inline ~ArrayBuilder() noexcept(false) { dispose(); } |
| 343 | |
| 344 | inline operator ArrayPtr<T>() { |
| 345 | return arrayPtr(ptr, pos); |
| 346 | } |
| 347 | inline operator ArrayPtr<const T>() const { |
| 348 | return arrayPtr(ptr, pos); |
| 349 | } |
| 350 | inline ArrayPtr<T> asPtr() { |
| 351 | return arrayPtr(ptr, pos); |
| 352 | } |
| 353 | inline ArrayPtr<const T> asPtr() const { |
| 354 | return arrayPtr(ptr, pos); |
| 355 | } |
| 356 | |
| 357 | inline size_t size() const { return pos - ptr; } |
| 358 | inline size_t capacity() const { return endPtr - ptr; } |
| 359 | inline T& operator[](size_t index) const { |
| 360 | KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access." ); |
| 361 | return ptr[index]; |
| 362 | } |
| 363 | |
| 364 | inline const T* begin() const { return ptr; } |
| 365 | inline const T* end() const { return pos; } |
| 366 | inline const T& front() const { return *ptr; } |
| 367 | inline const T& back() const { return *(pos - 1); } |
| 368 | inline T* begin() { return ptr; } |
| 369 | inline T* end() { return pos; } |
| 370 | inline T& front() { return *ptr; } |
| 371 | inline T& back() { return *(pos - 1); } |
| 372 | |
| 373 | ArrayBuilder& operator=(ArrayBuilder&& other) { |
| 374 | dispose(); |
| 375 | ptr = other.ptr; |
| 376 | pos = other.pos; |
| 377 | endPtr = other.endPtr; |
| 378 | disposer = other.disposer; |
| 379 | other.ptr = nullptr; |
| 380 | other.pos = nullptr; |
| 381 | other.endPtr = nullptr; |
| 382 | return *this; |
| 383 | } |
| 384 | ArrayBuilder& operator=(decltype(nullptr)) { |
| 385 | dispose(); |
| 386 | return *this; |
| 387 | } |
| 388 | |
| 389 | template <typename... Params> |
| 390 | T& add(Params&&... params) { |
| 391 | KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder." ); |
| 392 | ctor(*pos, kj::fwd<Params>(params)...); |
| 393 | return *pos++; |
| 394 | } |
| 395 | |
| 396 | template <typename Container> |
| 397 | void addAll(Container&& container) { |
| 398 | addAll<decltype(container.begin()), !isReference<Container>()>( |
| 399 | container.begin(), container.end()); |
| 400 | } |
| 401 | |
| 402 | template <typename Iterator, bool move = false> |
| 403 | void addAll(Iterator start, Iterator end); |
| 404 | |
| 405 | void removeLast() { |
| 406 | KJ_IREQUIRE(pos > ptr, "No elements present to remove." ); |
| 407 | kj::dtor(*--pos); |
| 408 | } |
| 409 | |
| 410 | void truncate(size_t size) { |
| 411 | KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand" ); |
| 412 | |
| 413 | T* target = ptr + size; |
| 414 | if (__has_trivial_destructor(T)) { |
| 415 | pos = target; |
| 416 | } else { |
| 417 | while (pos > target) { |
| 418 | kj::dtor(*--pos); |
| 419 | } |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | void clear() { |
| 424 | if (__has_trivial_destructor(T)) { |
| 425 | pos = ptr; |
| 426 | } else { |
| 427 | while (pos > ptr) { |
| 428 | kj::dtor(*--pos); |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | void resize(size_t size) { |
| 434 | KJ_IREQUIRE(size <= capacity(), "can't resize past capacity" ); |
| 435 | |
| 436 | T* target = ptr + size; |
| 437 | if (target > pos) { |
| 438 | // expand |
| 439 | if (__has_trivial_constructor(T)) { |
| 440 | pos = target; |
| 441 | } else { |
| 442 | while (pos < target) { |
| 443 | kj::ctor(*pos++); |
| 444 | } |
| 445 | } |
| 446 | } else { |
| 447 | // truncate |
| 448 | if (__has_trivial_destructor(T)) { |
| 449 | pos = target; |
| 450 | } else { |
| 451 | while (pos > target) { |
| 452 | kj::dtor(*--pos); |
| 453 | } |
| 454 | } |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | Array<T> finish() { |
| 459 | // We could safely remove this check if we assume that the disposer implementation doesn't |
| 460 | // need to know the original capacity, as is thes case with HeapArrayDisposer since it uses |
| 461 | // operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity |
| 462 | // in a prefix. But that would make it hard to write cleverer heap allocators, and anyway this |
| 463 | // check might catch bugs. Probably people should use Vector if they want to build arrays |
| 464 | // without knowing the final size in advance. |
| 465 | KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely." ); |
| 466 | Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer); |
| 467 | ptr = nullptr; |
| 468 | pos = nullptr; |
| 469 | endPtr = nullptr; |
| 470 | return result; |
| 471 | } |
| 472 | |
| 473 | inline bool isFull() const { |
| 474 | return pos == endPtr; |
| 475 | } |
| 476 | |
| 477 | private: |
| 478 | T* ptr; |
| 479 | RemoveConst<T>* pos; |
| 480 | T* endPtr; |
| 481 | const ArrayDisposer* disposer; |
| 482 | |
| 483 | inline void dispose() { |
| 484 | // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly |
| 485 | // dispose again. |
| 486 | T* ptrCopy = ptr; |
| 487 | T* posCopy = pos; |
| 488 | T* endCopy = endPtr; |
| 489 | if (ptrCopy != nullptr) { |
| 490 | ptr = nullptr; |
| 491 | pos = nullptr; |
| 492 | endPtr = nullptr; |
| 493 | disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy); |
| 494 | } |
| 495 | } |
| 496 | }; |
| 497 | |
| 498 | template <typename T> |
| 499 | inline ArrayBuilder<T> heapArrayBuilder(size_t size) { |
| 500 | // Like `heapArray<T>()` but does not default-construct the elements. You must construct them |
| 501 | // manually by calling `add()`. |
| 502 | |
| 503 | return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size), |
| 504 | size, _::HeapArrayDisposer::instance); |
| 505 | } |
| 506 | |
| 507 | // ======================================================================================= |
| 508 | // Inline Arrays |
| 509 | |
| 510 | template <typename T, size_t fixedSize> |
| 511 | class FixedArray { |
| 512 | // A fixed-width array whose storage is allocated inline rather than on the heap. |
| 513 | |
| 514 | public: |
| 515 | inline size_t size() const { return fixedSize; } |
| 516 | inline T* begin() { return content; } |
| 517 | inline T* end() { return content + fixedSize; } |
| 518 | inline const T* begin() const { return content; } |
| 519 | inline const T* end() const { return content + fixedSize; } |
| 520 | |
| 521 | inline operator ArrayPtr<T>() { |
| 522 | return arrayPtr(content, fixedSize); |
| 523 | } |
| 524 | inline operator ArrayPtr<const T>() const { |
| 525 | return arrayPtr(content, fixedSize); |
| 526 | } |
| 527 | |
| 528 | inline T& operator[](size_t index) { return content[index]; } |
| 529 | inline const T& operator[](size_t index) const { return content[index]; } |
| 530 | |
| 531 | private: |
| 532 | T content[fixedSize]; |
| 533 | }; |
| 534 | |
| 535 | template <typename T, size_t fixedSize> |
| 536 | class CappedArray { |
| 537 | // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit |
| 538 | // specified by the template parameter. |
| 539 | // |
| 540 | // TODO(someday): Don't construct elements past currentSize? |
| 541 | |
| 542 | public: |
| 543 | inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {} |
| 544 | inline explicit constexpr CappedArray(size_t s): currentSize(s) {} |
| 545 | |
| 546 | inline size_t size() const { return currentSize; } |
| 547 | inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; } |
| 548 | inline T* begin() { return content; } |
| 549 | inline T* end() { return content + currentSize; } |
| 550 | inline const T* begin() const { return content; } |
| 551 | inline const T* end() const { return content + currentSize; } |
| 552 | |
| 553 | inline operator ArrayPtr<T>() { |
| 554 | return arrayPtr(content, currentSize); |
| 555 | } |
| 556 | inline operator ArrayPtr<const T>() const { |
| 557 | return arrayPtr(content, currentSize); |
| 558 | } |
| 559 | |
| 560 | inline T& operator[](size_t index) { return content[index]; } |
| 561 | inline const T& operator[](size_t index) const { return content[index]; } |
| 562 | |
| 563 | private: |
| 564 | size_t currentSize; |
| 565 | T content[fixedSize]; |
| 566 | }; |
| 567 | |
| 568 | // ======================================================================================= |
| 569 | // KJ_MAP |
| 570 | |
| 571 | #define KJ_MAP(elementName, array) \ |
| 572 | ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>(array) * \ |
| 573 | [&](typename ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>::Element elementName) |
| 574 | // Applies some function to every element of an array, returning an Array of the results, with |
| 575 | // nice syntax. Example: |
| 576 | // |
| 577 | // StringPtr foo = "abcd"; |
| 578 | // Array<char> bar = KJ_MAP(c, foo) -> char { return c + 1; }; |
| 579 | // KJ_ASSERT(str(bar) == "bcde"); |
| 580 | |
| 581 | namespace _ { // private |
| 582 | |
| 583 | template <typename T> |
| 584 | struct Mapper { |
| 585 | T array; |
| 586 | Mapper(T&& array): array(kj::fwd<T>(array)) {} |
| 587 | template <typename Func> |
| 588 | auto operator*(Func&& func) -> Array<decltype(func(*array.begin()))> { |
| 589 | auto builder = heapArrayBuilder<decltype(func(*array.begin()))>(array.size()); |
| 590 | for (auto iter = array.begin(); iter != array.end(); ++iter) { |
| 591 | builder.add(func(*iter)); |
| 592 | } |
| 593 | return builder.finish(); |
| 594 | } |
| 595 | typedef decltype(*kj::instance<T>().begin()) Element; |
| 596 | }; |
| 597 | |
| 598 | template <typename T, size_t s> |
| 599 | struct Mapper<T(&)[s]> { |
| 600 | T* array; |
| 601 | Mapper(T* array): array(array) {} |
| 602 | template <typename Func> |
| 603 | auto operator*(Func&& func) -> Array<decltype(func(*array))> { |
| 604 | auto builder = heapArrayBuilder<decltype(func(*array))>(s); |
| 605 | for (size_t i = 0; i < s; i++) { |
| 606 | builder.add(func(array[i])); |
| 607 | } |
| 608 | return builder.finish(); |
| 609 | } |
| 610 | typedef decltype(*array)& Element; |
| 611 | }; |
| 612 | |
| 613 | } // namespace _ (private) |
| 614 | |
| 615 | // ======================================================================================= |
| 616 | // Inline implementation details |
| 617 | |
| 618 | template <typename T> |
| 619 | struct ArrayDisposer::Dispose_<T, true> { |
| 620 | static void dispose(T* firstElement, size_t elementCount, size_t capacity, |
| 621 | const ArrayDisposer& disposer) { |
| 622 | disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement), |
| 623 | sizeof(T), elementCount, capacity, nullptr); |
| 624 | } |
| 625 | }; |
| 626 | template <typename T> |
| 627 | struct ArrayDisposer::Dispose_<T, false> { |
| 628 | static void destruct(void* ptr) { |
| 629 | kj::dtor(*reinterpret_cast<T*>(ptr)); |
| 630 | } |
| 631 | |
| 632 | static void dispose(T* firstElement, size_t elementCount, size_t capacity, |
| 633 | const ArrayDisposer& disposer) { |
| 634 | disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct); |
| 635 | } |
| 636 | }; |
| 637 | |
| 638 | template <typename T> |
| 639 | void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const { |
| 640 | Dispose_<T>::dispose(firstElement, elementCount, capacity, *this); |
| 641 | } |
| 642 | |
| 643 | namespace _ { // private |
| 644 | |
| 645 | template <typename T> |
| 646 | struct HeapArrayDisposer::Allocate_<T, true, true> { |
| 647 | static T* allocate(size_t elementCount, size_t capacity) { |
| 648 | return reinterpret_cast<T*>(allocateImpl( |
| 649 | sizeof(T), elementCount, capacity, nullptr, nullptr)); |
| 650 | } |
| 651 | }; |
| 652 | template <typename T> |
| 653 | struct HeapArrayDisposer::Allocate_<T, false, true> { |
| 654 | static void construct(void* ptr) { |
| 655 | kj::ctor(*reinterpret_cast<T*>(ptr)); |
| 656 | } |
| 657 | static T* allocate(size_t elementCount, size_t capacity) { |
| 658 | return reinterpret_cast<T*>(allocateImpl( |
| 659 | sizeof(T), elementCount, capacity, &construct, nullptr)); |
| 660 | } |
| 661 | }; |
| 662 | template <typename T> |
| 663 | struct HeapArrayDisposer::Allocate_<T, false, false> { |
| 664 | static void construct(void* ptr) { |
| 665 | kj::ctor(*reinterpret_cast<T*>(ptr)); |
| 666 | } |
| 667 | static void destruct(void* ptr) { |
| 668 | kj::dtor(*reinterpret_cast<T*>(ptr)); |
| 669 | } |
| 670 | static T* allocate(size_t elementCount, size_t capacity) { |
| 671 | return reinterpret_cast<T*>(allocateImpl( |
| 672 | sizeof(T), elementCount, capacity, &construct, &destruct)); |
| 673 | } |
| 674 | }; |
| 675 | |
| 676 | template <typename T> |
| 677 | T* HeapArrayDisposer::allocate(size_t count) { |
| 678 | return Allocate_<T>::allocate(count, count); |
| 679 | } |
| 680 | |
| 681 | template <typename T> |
| 682 | T* HeapArrayDisposer::allocateUninitialized(size_t count) { |
| 683 | return Allocate_<T, true, true>::allocate(0, count); |
| 684 | } |
| 685 | |
| 686 | template <typename Element, typename Iterator, bool move, bool = canMemcpy<Element>()> |
| 687 | struct CopyConstructArray_; |
| 688 | |
| 689 | template <typename T, bool move> |
| 690 | struct CopyConstructArray_<T, T*, move, true> { |
| 691 | static inline T* apply(T* __restrict__ pos, T* start, T* end) { |
| 692 | if (end != start) { |
| 693 | memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start)); |
| 694 | } |
| 695 | return pos + (end - start); |
| 696 | } |
| 697 | }; |
| 698 | |
| 699 | template <typename T> |
| 700 | struct CopyConstructArray_<T, const T*, false, true> { |
| 701 | static inline T* apply(T* __restrict__ pos, const T* start, const T* end) { |
| 702 | if (end != start) { |
| 703 | memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start)); |
| 704 | } |
| 705 | return pos + (end - start); |
| 706 | } |
| 707 | }; |
| 708 | |
| 709 | template <typename T, typename Iterator, bool move> |
| 710 | struct CopyConstructArray_<T, Iterator, move, true> { |
| 711 | static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) { |
| 712 | // Since both the copy constructor and assignment operator are trivial, we know that assignment |
| 713 | // is equivalent to copy-constructing. So we can make this case somewhat easier for the |
| 714 | // compiler to optimize. |
| 715 | while (start != end) { |
| 716 | *pos++ = *start++; |
| 717 | } |
| 718 | return pos; |
| 719 | } |
| 720 | }; |
| 721 | |
| 722 | template <typename T, typename Iterator> |
| 723 | struct CopyConstructArray_<T, Iterator, false, false> { |
| 724 | struct ExceptionGuard { |
| 725 | T* start; |
| 726 | T* pos; |
| 727 | inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {} |
| 728 | ~ExceptionGuard() noexcept(false) { |
| 729 | while (pos > start) { |
| 730 | dtor(*--pos); |
| 731 | } |
| 732 | } |
| 733 | }; |
| 734 | |
| 735 | static T* apply(T* __restrict__ pos, Iterator start, Iterator end) { |
| 736 | // Verify that T can be *implicitly* constructed from the source values. |
| 737 | if (false) implicitCast<T>(*start); |
| 738 | |
| 739 | if (noexcept(T(*start))) { |
| 740 | while (start != end) { |
| 741 | ctor(*pos++, *start++); |
| 742 | } |
| 743 | return pos; |
| 744 | } else { |
| 745 | // Crap. This is complicated. |
| 746 | ExceptionGuard guard(pos); |
| 747 | while (start != end) { |
| 748 | ctor(*guard.pos, *start++); |
| 749 | ++guard.pos; |
| 750 | } |
| 751 | guard.start = guard.pos; |
| 752 | return guard.pos; |
| 753 | } |
| 754 | } |
| 755 | }; |
| 756 | |
| 757 | template <typename T, typename Iterator> |
| 758 | struct CopyConstructArray_<T, Iterator, true, false> { |
| 759 | // Actually move-construct. |
| 760 | |
| 761 | struct ExceptionGuard { |
| 762 | T* start; |
| 763 | T* pos; |
| 764 | inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {} |
| 765 | ~ExceptionGuard() noexcept(false) { |
| 766 | while (pos > start) { |
| 767 | dtor(*--pos); |
| 768 | } |
| 769 | } |
| 770 | }; |
| 771 | |
| 772 | static T* apply(T* __restrict__ pos, Iterator start, Iterator end) { |
| 773 | // Verify that T can be *implicitly* constructed from the source values. |
| 774 | if (false) implicitCast<T>(kj::mv(*start)); |
| 775 | |
| 776 | if (noexcept(T(kj::mv(*start)))) { |
| 777 | while (start != end) { |
| 778 | ctor(*pos++, kj::mv(*start++)); |
| 779 | } |
| 780 | return pos; |
| 781 | } else { |
| 782 | // Crap. This is complicated. |
| 783 | ExceptionGuard guard(pos); |
| 784 | while (start != end) { |
| 785 | ctor(*guard.pos, kj::mv(*start++)); |
| 786 | ++guard.pos; |
| 787 | } |
| 788 | guard.start = guard.pos; |
| 789 | return guard.pos; |
| 790 | } |
| 791 | } |
| 792 | }; |
| 793 | |
| 794 | } // namespace _ (private) |
| 795 | |
| 796 | template <typename T> |
| 797 | template <typename Iterator, bool move> |
| 798 | void ArrayBuilder<T>::addAll(Iterator start, Iterator end) { |
| 799 | pos = _::CopyConstructArray_<RemoveConst<T>, Decay<Iterator>, move>::apply(pos, start, end); |
| 800 | } |
| 801 | |
| 802 | template <typename T> |
| 803 | Array<T> heapArray(const T* content, size_t size) { |
| 804 | ArrayBuilder<T> builder = heapArrayBuilder<T>(size); |
| 805 | builder.addAll(content, content + size); |
| 806 | return builder.finish(); |
| 807 | } |
| 808 | |
| 809 | template <typename T> |
| 810 | Array<T> heapArray(T* content, size_t size) { |
| 811 | ArrayBuilder<T> builder = heapArrayBuilder<T>(size); |
| 812 | builder.addAll(content, content + size); |
| 813 | return builder.finish(); |
| 814 | } |
| 815 | |
| 816 | template <typename T> |
| 817 | Array<T> heapArray(ArrayPtr<T> content) { |
| 818 | ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size()); |
| 819 | builder.addAll(content); |
| 820 | return builder.finish(); |
| 821 | } |
| 822 | |
| 823 | template <typename T> |
| 824 | Array<T> heapArray(ArrayPtr<const T> content) { |
| 825 | ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size()); |
| 826 | builder.addAll(content); |
| 827 | return builder.finish(); |
| 828 | } |
| 829 | |
| 830 | template <typename T, typename Iterator> Array<T> |
| 831 | heapArray(Iterator begin, Iterator end) { |
| 832 | ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin); |
| 833 | builder.addAll(begin, end); |
| 834 | return builder.finish(); |
| 835 | } |
| 836 | |
| 837 | template <typename T> |
| 838 | inline Array<T> heapArray(std::initializer_list<T> init) { |
| 839 | return heapArray<T>(init.begin(), init.end()); |
| 840 | } |
| 841 | |
| 842 | #if __cplusplus > 201402L |
| 843 | template <typename T, typename... Params> |
| 844 | inline Array<Decay<T>> arr(T&& param1, Params&&... params) { |
| 845 | ArrayBuilder<Decay<T>> builder = heapArrayBuilder<Decay<T>>(sizeof...(params) + 1); |
| 846 | (builder.add(kj::fwd<T>(param1)), ... , builder.add(kj::fwd<Params>(params))); |
| 847 | return builder.finish(); |
| 848 | } |
| 849 | #endif |
| 850 | |
| 851 | namespace _ { // private |
| 852 | |
| 853 | template <typename... T> |
| 854 | struct ArrayDisposableOwnedBundle final: public ArrayDisposer, public OwnedBundle<T...> { |
| 855 | ArrayDisposableOwnedBundle(T&&... values): OwnedBundle<T...>(kj::fwd<T>(values)...) {} |
| 856 | void disposeImpl(void*, size_t, size_t, size_t, void (*)(void*)) const override { delete this; } |
| 857 | }; |
| 858 | |
| 859 | } // namespace _ (private) |
| 860 | |
| 861 | template <typename T> |
| 862 | template <typename... Attachments> |
| 863 | Array<T> Array<T>::attach(Attachments&&... attachments) { |
| 864 | T* ptrCopy = ptr; |
| 865 | auto sizeCopy = size_; |
| 866 | |
| 867 | KJ_IREQUIRE(ptrCopy != nullptr, "cannot attach to null pointer" ); |
| 868 | |
| 869 | // HACK: If someone accidentally calls .attach() on a null pointer in opt mode, try our best to |
| 870 | // accomplish reasonable behavior: We turn the pointer non-null but still invalid, so that the |
| 871 | // disposer will still be called when the pointer goes out of scope. |
| 872 | if (ptrCopy == nullptr) ptrCopy = reinterpret_cast<T*>(1); |
| 873 | |
| 874 | auto bundle = new _::ArrayDisposableOwnedBundle<Array<T>, Attachments...>( |
| 875 | kj::mv(*this), kj::fwd<Attachments>(attachments)...); |
| 876 | return Array<T>(ptrCopy, sizeCopy, *bundle); |
| 877 | } |
| 878 | |
| 879 | template <typename T> |
| 880 | template <typename... Attachments> |
| 881 | Array<T> ArrayPtr<T>::attach(Attachments&&... attachments) const { |
| 882 | T* ptrCopy = ptr; |
| 883 | |
| 884 | KJ_IREQUIRE(ptrCopy != nullptr, "cannot attach to null pointer" ); |
| 885 | |
| 886 | // HACK: If someone accidentally calls .attach() on a null pointer in opt mode, try our best to |
| 887 | // accomplish reasonable behavior: We turn the pointer non-null but still invalid, so that the |
| 888 | // disposer will still be called when the pointer goes out of scope. |
| 889 | if (ptrCopy == nullptr) ptrCopy = reinterpret_cast<T*>(1); |
| 890 | |
| 891 | auto bundle = new _::ArrayDisposableOwnedBundle<Attachments...>( |
| 892 | kj::fwd<Attachments>(attachments)...); |
| 893 | return Array<T>(ptrCopy, size_, *bundle); |
| 894 | } |
| 895 | |
| 896 | } // namespace kj |
| 897 | |