| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | #pragma once |
| 23 | |
| 24 | #if defined(__GNUC__) && !KJ_HEADER_WARNINGS |
| 25 | #pragma GCC system_header |
| 26 | #endif |
| 27 | |
| 28 | #include "common.h" |
| 29 | |
| 30 | namespace kj { |
| 31 | |
| 32 | namespace _ { // private |
| 33 | |
| 34 | template <typename T> struct RefOrVoid_ { typedef T& Type; }; |
| 35 | template <> struct RefOrVoid_<void> { typedef void Type; }; |
| 36 | template <> struct RefOrVoid_<const void> { typedef void Type; }; |
| 37 | |
| 38 | template <typename T> |
| 39 | using RefOrVoid = typename RefOrVoid_<T>::Type; |
| 40 | // Evaluates to T&, unless T is `void`, in which case evaluates to `void`. |
| 41 | // |
| 42 | // This is a hack needed to avoid defining Own<void> as a totally separate class. |
| 43 | |
| 44 | template <typename T, bool isPolymorphic = __is_polymorphic(T)> |
| 45 | struct CastToVoid_; |
| 46 | |
| 47 | template <typename T> |
| 48 | struct CastToVoid_<T, false> { |
| 49 | static void* apply(T* ptr) { |
| 50 | return static_cast<void*>(ptr); |
| 51 | } |
| 52 | static const void* applyConst(T* ptr) { |
| 53 | const T* cptr = ptr; |
| 54 | return static_cast<const void*>(cptr); |
| 55 | } |
| 56 | }; |
| 57 | |
| 58 | template <typename T> |
| 59 | struct CastToVoid_<T, true> { |
| 60 | static void* apply(T* ptr) { |
| 61 | return dynamic_cast<void*>(ptr); |
| 62 | } |
| 63 | static const void* applyConst(T* ptr) { |
| 64 | const T* cptr = ptr; |
| 65 | return dynamic_cast<const void*>(cptr); |
| 66 | } |
| 67 | }; |
| 68 | |
| 69 | template <typename T> |
| 70 | void* castToVoid(T* ptr) { |
| 71 | return CastToVoid_<T>::apply(ptr); |
| 72 | } |
| 73 | |
| 74 | template <typename T> |
| 75 | const void* castToConstVoid(T* ptr) { |
| 76 | return CastToVoid_<T>::applyConst(ptr); |
| 77 | } |
| 78 | |
| 79 | } // namespace _ (private) |
| 80 | |
| 81 | // ======================================================================================= |
| 82 | // Disposer -- Implementation details. |
| 83 | |
| 84 | class Disposer { |
| 85 | // Abstract interface for a thing that "disposes" of objects, where "disposing" usually means |
| 86 | // calling the destructor followed by freeing the underlying memory. `Own<T>` encapsulates an |
| 87 | // object pointer with corresponding Disposer. |
| 88 | // |
| 89 | // Few developers will ever touch this interface. It is primarily useful for those implementing |
| 90 | // custom memory allocators. |
| 91 | |
| 92 | protected: |
| 93 | // Do not declare a destructor, as doing so will force a global initializer for each HeapDisposer |
| 94 | // instance. Eww! |
| 95 | |
| 96 | virtual void disposeImpl(void* pointer) const = 0; |
| 97 | // Disposes of the object, given a pointer to the beginning of the object. If the object is |
| 98 | // polymorphic, this pointer is determined by dynamic_cast<void*>(). For non-polymorphic types, |
| 99 | // Own<T> does not allow any casting, so the pointer exactly matches the original one given to |
| 100 | // Own<T>. |
| 101 | |
| 102 | public: |
| 103 | |
| 104 | template <typename T> |
| 105 | void dispose(T* object) const; |
| 106 | // Helper wrapper around disposeImpl(). |
| 107 | // |
| 108 | // If T is polymorphic, calls `disposeImpl(dynamic_cast<void*>(object))`, otherwise calls |
| 109 | // `disposeImpl(implicitCast<void*>(object))`. |
| 110 | // |
| 111 | // Callers must not call dispose() on the same pointer twice, even if the first call throws |
| 112 | // an exception. |
| 113 | |
| 114 | private: |
| 115 | template <typename T, bool polymorphic = __is_polymorphic(T)> |
| 116 | struct Dispose_; |
| 117 | }; |
| 118 | |
| 119 | template <typename T> |
| 120 | class DestructorOnlyDisposer: public Disposer { |
| 121 | // A disposer that merely calls the type's destructor and nothing else. |
| 122 | |
| 123 | public: |
| 124 | static const DestructorOnlyDisposer instance; |
| 125 | |
| 126 | void disposeImpl(void* pointer) const override { |
| 127 | reinterpret_cast<T*>(pointer)->~T(); |
| 128 | } |
| 129 | }; |
| 130 | |
| 131 | template <typename T> |
| 132 | const DestructorOnlyDisposer<T> DestructorOnlyDisposer<T>::instance = DestructorOnlyDisposer<T>(); |
| 133 | |
| 134 | class NullDisposer: public Disposer { |
| 135 | // A disposer that does nothing. |
| 136 | |
| 137 | public: |
| 138 | static const NullDisposer instance; |
| 139 | |
| 140 | void disposeImpl(void* pointer) const override {} |
| 141 | }; |
| 142 | |
| 143 | // ======================================================================================= |
| 144 | // Own<T> -- An owned pointer. |
| 145 | |
| 146 | template <typename T> |
| 147 | class Own { |
| 148 | // A transferrable title to a T. When an Own<T> goes out of scope, the object's Disposer is |
| 149 | // called to dispose of it. An Own<T> can be efficiently passed by move, without relocating the |
| 150 | // underlying object; this transfers ownership. |
| 151 | // |
| 152 | // This is much like std::unique_ptr, except: |
| 153 | // - You cannot release(). An owned object is not necessarily allocated with new (see next |
| 154 | // point), so it would be hard to use release() correctly. |
| 155 | // - The deleter is made polymorphic by virtual call rather than by template. This is much |
| 156 | // more powerful -- it allows the use of custom allocators, freelists, etc. This could |
| 157 | // _almost_ be accomplished with unique_ptr by forcing everyone to use something like |
| 158 | // std::unique_ptr<T, kj::Deleter>, except that things get hairy in the presence of multiple |
| 159 | // inheritance and upcasting, and anyway if you force everyone to use a custom deleter |
| 160 | // then you've lost any benefit to interoperating with the "standard" unique_ptr. |
| 161 | |
| 162 | public: |
| 163 | KJ_DISALLOW_COPY(Own); |
| 164 | inline Own(): disposer(nullptr), ptr(nullptr) {} |
| 165 | inline Own(Own&& other) noexcept |
| 166 | : disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; } |
| 167 | inline Own(Own<RemoveConstOrDisable<T>>&& other) noexcept |
| 168 | : disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; } |
| 169 | template <typename U, typename = EnableIf<canConvert<U*, T*>()>> |
| 170 | inline Own(Own<U>&& other) noexcept |
| 171 | : disposer(other.disposer), ptr(cast(other.ptr)) { |
| 172 | other.ptr = nullptr; |
| 173 | } |
| 174 | inline Own(T* ptr, const Disposer& disposer) noexcept: disposer(&disposer), ptr(ptr) {} |
| 175 | |
| 176 | ~Own() noexcept(false) { dispose(); } |
| 177 | |
| 178 | inline Own& operator=(Own&& other) { |
| 179 | // Move-assingnment operator. |
| 180 | |
| 181 | // Careful, this might own `other`. Therefore we have to transfer the pointers first, then |
| 182 | // dispose. |
| 183 | const Disposer* disposerCopy = disposer; |
| 184 | T* ptrCopy = ptr; |
| 185 | disposer = other.disposer; |
| 186 | ptr = other.ptr; |
| 187 | other.ptr = nullptr; |
| 188 | if (ptrCopy != nullptr) { |
| 189 | disposerCopy->dispose(const_cast<RemoveConst<T>*>(ptrCopy)); |
| 190 | } |
| 191 | return *this; |
| 192 | } |
| 193 | |
| 194 | inline Own& operator=(decltype(nullptr)) { |
| 195 | dispose(); |
| 196 | return *this; |
| 197 | } |
| 198 | |
| 199 | template <typename... Attachments> |
| 200 | Own<T> attach(Attachments&&... attachments) KJ_WARN_UNUSED_RESULT; |
| 201 | // Returns an Own<T> which points to the same object but which also ensures that all values |
| 202 | // passed to `attachments` remain alive until after this object is destroyed. Normally |
| 203 | // `attachments` are other Own<?>s pointing to objects that this one depends on. |
| 204 | // |
| 205 | // Note that attachments will eventually be destroyed in the order they are listed. Hence, |
| 206 | // foo.attach(bar, baz) is equivalent to (but more efficient than) foo.attach(bar).attach(baz). |
| 207 | |
| 208 | template <typename U> |
| 209 | Own<U> downcast() { |
| 210 | // Downcast the pointer to Own<U>, destroying the original pointer. If this pointer does not |
| 211 | // actually point at an instance of U, the results are undefined (throws an exception in debug |
| 212 | // mode if RTTI is enabled, otherwise you're on your own). |
| 213 | |
| 214 | Own<U> result; |
| 215 | if (ptr != nullptr) { |
| 216 | result.ptr = &kj::downcast<U>(*ptr); |
| 217 | result.disposer = disposer; |
| 218 | ptr = nullptr; |
| 219 | } |
| 220 | return result; |
| 221 | } |
| 222 | |
| 223 | #define NULLCHECK KJ_IREQUIRE(ptr != nullptr, "null Own<> dereference") |
| 224 | inline T* operator->() { NULLCHECK; return ptr; } |
| 225 | inline const T* operator->() const { NULLCHECK; return ptr; } |
| 226 | inline _::RefOrVoid<T> operator*() { NULLCHECK; return *ptr; } |
| 227 | inline _::RefOrVoid<const T> operator*() const { NULLCHECK; return *ptr; } |
| 228 | #undef NULLCHECK |
| 229 | inline T* get() { return ptr; } |
| 230 | inline const T* get() const { return ptr; } |
| 231 | inline operator T*() { return ptr; } |
| 232 | inline operator const T*() const { return ptr; } |
| 233 | |
| 234 | private: |
| 235 | const Disposer* disposer; // Only valid if ptr != nullptr. |
| 236 | T* ptr; |
| 237 | |
| 238 | inline explicit Own(decltype(nullptr)): disposer(nullptr), ptr(nullptr) {} |
| 239 | |
| 240 | inline bool operator==(decltype(nullptr)) { return ptr == nullptr; } |
| 241 | inline bool operator!=(decltype(nullptr)) { return ptr != nullptr; } |
| 242 | // Only called by Maybe<Own<T>>. |
| 243 | |
| 244 | inline void dispose() { |
| 245 | // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly |
| 246 | // dispose again. |
| 247 | T* ptrCopy = ptr; |
| 248 | if (ptrCopy != nullptr) { |
| 249 | ptr = nullptr; |
| 250 | disposer->dispose(const_cast<RemoveConst<T>*>(ptrCopy)); |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | template <typename U> |
| 255 | static inline T* cast(U* ptr) { |
| 256 | static_assert(__is_polymorphic(T), |
| 257 | "Casting owned pointers requires that the target type is polymorphic." ); |
| 258 | return ptr; |
| 259 | } |
| 260 | |
| 261 | template <typename U> |
| 262 | friend class Own; |
| 263 | friend class Maybe<Own<T>>; |
| 264 | }; |
| 265 | |
| 266 | template <> |
| 267 | template <typename U> |
| 268 | inline void* Own<void>::cast(U* ptr) { |
| 269 | return _::castToVoid(ptr); |
| 270 | } |
| 271 | |
| 272 | template <> |
| 273 | template <typename U> |
| 274 | inline const void* Own<const void>::cast(U* ptr) { |
| 275 | return _::castToConstVoid(ptr); |
| 276 | } |
| 277 | |
| 278 | namespace _ { // private |
| 279 | |
| 280 | template <typename T> |
| 281 | class OwnOwn { |
| 282 | public: |
| 283 | inline OwnOwn(Own<T>&& value) noexcept: value(kj::mv(value)) {} |
| 284 | |
| 285 | inline Own<T>& operator*() & { return value; } |
| 286 | inline const Own<T>& operator*() const & { return value; } |
| 287 | inline Own<T>&& operator*() && { return kj::mv(value); } |
| 288 | inline const Own<T>&& operator*() const && { return kj::mv(value); } |
| 289 | inline Own<T>* operator->() { return &value; } |
| 290 | inline const Own<T>* operator->() const { return &value; } |
| 291 | inline operator Own<T>*() { return value ? &value : nullptr; } |
| 292 | inline operator const Own<T>*() const { return value ? &value : nullptr; } |
| 293 | |
| 294 | private: |
| 295 | Own<T> value; |
| 296 | }; |
| 297 | |
| 298 | template <typename T> |
| 299 | OwnOwn<T> readMaybe(Maybe<Own<T>>&& maybe) { return OwnOwn<T>(kj::mv(maybe.ptr)); } |
| 300 | template <typename T> |
| 301 | Own<T>* readMaybe(Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; } |
| 302 | template <typename T> |
| 303 | const Own<T>* readMaybe(const Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; } |
| 304 | |
| 305 | } // namespace _ (private) |
| 306 | |
| 307 | template <typename T> |
| 308 | class Maybe<Own<T>> { |
| 309 | public: |
| 310 | inline Maybe(): ptr(nullptr) {} |
| 311 | inline Maybe(Own<T>&& t) noexcept: ptr(kj::mv(t)) {} |
| 312 | inline Maybe(Maybe&& other) noexcept: ptr(kj::mv(other.ptr)) {} |
| 313 | |
| 314 | template <typename U> |
| 315 | inline Maybe(Maybe<Own<U>>&& other): ptr(mv(other.ptr)) {} |
| 316 | template <typename U> |
| 317 | inline Maybe(Own<U>&& other): ptr(mv(other)) {} |
| 318 | |
| 319 | inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {} |
| 320 | |
| 321 | inline operator Maybe<T&>() { return ptr.get(); } |
| 322 | inline operator Maybe<const T&>() const { return ptr.get(); } |
| 323 | |
| 324 | inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; } |
| 325 | |
| 326 | inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; } |
| 327 | inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; } |
| 328 | |
| 329 | Own<T>& orDefault(Own<T>& defaultValue) { |
| 330 | if (ptr == nullptr) { |
| 331 | return defaultValue; |
| 332 | } else { |
| 333 | return ptr; |
| 334 | } |
| 335 | } |
| 336 | const Own<T>& orDefault(const Own<T>& defaultValue) const { |
| 337 | if (ptr == nullptr) { |
| 338 | return defaultValue; |
| 339 | } else { |
| 340 | return ptr; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | template <typename Func> |
| 345 | auto map(Func&& f) & -> Maybe<decltype(f(instance<Own<T>&>()))> { |
| 346 | if (ptr == nullptr) { |
| 347 | return nullptr; |
| 348 | } else { |
| 349 | return f(ptr); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | template <typename Func> |
| 354 | auto map(Func&& f) const & -> Maybe<decltype(f(instance<const Own<T>&>()))> { |
| 355 | if (ptr == nullptr) { |
| 356 | return nullptr; |
| 357 | } else { |
| 358 | return f(ptr); |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | template <typename Func> |
| 363 | auto map(Func&& f) && -> Maybe<decltype(f(instance<Own<T>&&>()))> { |
| 364 | if (ptr == nullptr) { |
| 365 | return nullptr; |
| 366 | } else { |
| 367 | return f(kj::mv(ptr)); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | template <typename Func> |
| 372 | auto map(Func&& f) const && -> Maybe<decltype(f(instance<const Own<T>&&>()))> { |
| 373 | if (ptr == nullptr) { |
| 374 | return nullptr; |
| 375 | } else { |
| 376 | return f(kj::mv(ptr)); |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | private: |
| 381 | Own<T> ptr; |
| 382 | |
| 383 | template <typename U> |
| 384 | friend class Maybe; |
| 385 | template <typename U> |
| 386 | friend _::OwnOwn<U> _::readMaybe(Maybe<Own<U>>&& maybe); |
| 387 | template <typename U> |
| 388 | friend Own<U>* _::readMaybe(Maybe<Own<U>>& maybe); |
| 389 | template <typename U> |
| 390 | friend const Own<U>* _::readMaybe(const Maybe<Own<U>>& maybe); |
| 391 | }; |
| 392 | |
| 393 | namespace _ { // private |
| 394 | |
| 395 | template <typename T> |
| 396 | class HeapDisposer final: public Disposer { |
| 397 | public: |
| 398 | virtual void disposeImpl(void* pointer) const override { delete reinterpret_cast<T*>(pointer); } |
| 399 | |
| 400 | static const HeapDisposer instance; |
| 401 | }; |
| 402 | |
| 403 | template <typename T> |
| 404 | const HeapDisposer<T> HeapDisposer<T>::instance = HeapDisposer<T>(); |
| 405 | |
| 406 | } // namespace _ (private) |
| 407 | |
| 408 | template <typename T, typename... Params> |
| 409 | Own<T> heap(Params&&... params) { |
| 410 | // heap<T>(...) allocates a T on the heap, forwarding the parameters to its constructor. The |
| 411 | // exact heap implementation is unspecified -- for now it is operator new, but you should not |
| 412 | // assume this. (Since we know the object size at delete time, we could actually implement an |
| 413 | // allocator that is more efficient than operator new.) |
| 414 | |
| 415 | return Own<T>(new T(kj::fwd<Params>(params)...), _::HeapDisposer<T>::instance); |
| 416 | } |
| 417 | |
| 418 | template <typename T> |
| 419 | Own<Decay<T>> heap(T&& orig) { |
| 420 | // Allocate a copy (or move) of the argument on the heap. |
| 421 | // |
| 422 | // The purpose of this overload is to allow you to omit the template parameter as there is only |
| 423 | // one argument and the purpose is to copy it. |
| 424 | |
| 425 | typedef Decay<T> T2; |
| 426 | return Own<T2>(new T2(kj::fwd<T>(orig)), _::HeapDisposer<T2>::instance); |
| 427 | } |
| 428 | |
| 429 | // ======================================================================================= |
| 430 | // SpaceFor<T> -- assists in manual allocation |
| 431 | |
| 432 | template <typename T> |
| 433 | class SpaceFor { |
| 434 | // A class which has the same size and alignment as T but does not call its constructor or |
| 435 | // destructor automatically. Instead, call construct() to construct a T in the space, which |
| 436 | // returns an Own<T> which will take care of calling T's destructor later. |
| 437 | |
| 438 | public: |
| 439 | inline SpaceFor() {} |
| 440 | inline ~SpaceFor() {} |
| 441 | |
| 442 | template <typename... Params> |
| 443 | Own<T> construct(Params&&... params) { |
| 444 | ctor(value, kj::fwd<Params>(params)...); |
| 445 | return Own<T>(&value, DestructorOnlyDisposer<T>::instance); |
| 446 | } |
| 447 | |
| 448 | private: |
| 449 | union { |
| 450 | T value; |
| 451 | }; |
| 452 | }; |
| 453 | |
| 454 | // ======================================================================================= |
| 455 | // Inline implementation details |
| 456 | |
| 457 | template <typename T> |
| 458 | struct Disposer::Dispose_<T, true> { |
| 459 | static void dispose(T* object, const Disposer& disposer) { |
| 460 | // Note that dynamic_cast<void*> does not require RTTI to be enabled, because the offset to |
| 461 | // the top of the object is in the vtable -- as it obviously needs to be to correctly implement |
| 462 | // operator delete. |
| 463 | disposer.disposeImpl(dynamic_cast<void*>(object)); |
| 464 | } |
| 465 | }; |
| 466 | template <typename T> |
| 467 | struct Disposer::Dispose_<T, false> { |
| 468 | static void dispose(T* object, const Disposer& disposer) { |
| 469 | disposer.disposeImpl(static_cast<void*>(object)); |
| 470 | } |
| 471 | }; |
| 472 | |
| 473 | template <typename T> |
| 474 | void Disposer::dispose(T* object) const { |
| 475 | Dispose_<T>::dispose(object, *this); |
| 476 | } |
| 477 | |
| 478 | namespace _ { // private |
| 479 | |
| 480 | template <typename... T> |
| 481 | struct OwnedBundle; |
| 482 | |
| 483 | template <> |
| 484 | struct OwnedBundle<> {}; |
| 485 | |
| 486 | template <typename First, typename... Rest> |
| 487 | struct OwnedBundle<First, Rest...>: public OwnedBundle<Rest...> { |
| 488 | OwnedBundle(First&& first, Rest&&... rest) |
| 489 | : OwnedBundle<Rest...>(kj::fwd<Rest>(rest)...), first(kj::fwd<First>(first)) {} |
| 490 | |
| 491 | // Note that it's intentional that `first` is destroyed before `rest`. This way, doing |
| 492 | // ptr.attach(foo, bar, baz) is equivalent to ptr.attach(foo).attach(bar).attach(baz) in terms |
| 493 | // of destruction order (although the former does fewer allocations). |
| 494 | Decay<First> first; |
| 495 | }; |
| 496 | |
| 497 | template <typename... T> |
| 498 | struct DisposableOwnedBundle final: public Disposer, public OwnedBundle<T...> { |
| 499 | DisposableOwnedBundle(T&&... values): OwnedBundle<T...>(kj::fwd<T>(values)...) {} |
| 500 | void disposeImpl(void* pointer) const override { delete this; } |
| 501 | }; |
| 502 | |
| 503 | } // namespace _ (private) |
| 504 | |
| 505 | template <typename T> |
| 506 | template <typename... Attachments> |
| 507 | Own<T> Own<T>::attach(Attachments&&... attachments) { |
| 508 | T* ptrCopy = ptr; |
| 509 | |
| 510 | KJ_IREQUIRE(ptrCopy != nullptr, "cannot attach to null pointer" ); |
| 511 | |
| 512 | // HACK: If someone accidentally calls .attach() on a null pointer in opt mode, try our best to |
| 513 | // accomplish reasonable behavior: We turn the pointer non-null but still invalid, so that the |
| 514 | // disposer will still be called when the pointer goes out of scope. |
| 515 | if (ptrCopy == nullptr) ptrCopy = reinterpret_cast<T*>(1); |
| 516 | |
| 517 | auto bundle = new _::DisposableOwnedBundle<Own<T>, Attachments...>( |
| 518 | kj::mv(*this), kj::fwd<Attachments>(attachments)...); |
| 519 | return Own<T>(ptrCopy, *bundle); |
| 520 | } |
| 521 | |
| 522 | } // namespace kj |
| 523 | |