| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | // This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows: |
| 23 | // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C. |
| 24 | // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves |
| 25 | // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`. |
| 26 | // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n. |
| 27 | // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples |
| 28 | // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`. |
| 29 | // |
| 30 | // Note that: |
| 31 | // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the |
| 32 | // type. |
| 33 | // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be |
| 34 | // flattened. |
| 35 | // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause |
| 36 | // with type inference and `tuple()`. |
| 37 | |
| 38 | #pragma once |
| 39 | |
| 40 | #if defined(__GNUC__) && !KJ_HEADER_WARNINGS |
| 41 | #pragma GCC system_header |
| 42 | #endif |
| 43 | |
| 44 | #include "common.h" |
| 45 | |
| 46 | namespace kj { |
| 47 | namespace _ { // private |
| 48 | |
| 49 | template <size_t index, typename... T> |
| 50 | struct TypeByIndex_; |
| 51 | template <typename First, typename... Rest> |
| 52 | struct TypeByIndex_<0, First, Rest...> { |
| 53 | typedef First Type; |
| 54 | }; |
| 55 | template <size_t index, typename First, typename... Rest> |
| 56 | struct TypeByIndex_<index, First, Rest...> |
| 57 | : public TypeByIndex_<index - 1, Rest...> {}; |
| 58 | template <size_t index> |
| 59 | struct TypeByIndex_<index> { |
| 60 | static_assert(index != index, "Index out-of-range." ); |
| 61 | }; |
| 62 | template <size_t index, typename... T> |
| 63 | using TypeByIndex = typename TypeByIndex_<index, T...>::Type; |
| 64 | // Chose a particular type out of a list of types, by index. |
| 65 | |
| 66 | template <size_t... s> |
| 67 | struct Indexes {}; |
| 68 | // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match |
| 69 | // templates against them and unpack them with '...'. |
| 70 | |
| 71 | template <size_t end, size_t... prefix> |
| 72 | struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {}; |
| 73 | template <size_t... prefix> |
| 74 | struct MakeIndexes_<0, prefix...> { |
| 75 | typedef Indexes<prefix...> Type; |
| 76 | }; |
| 77 | template <size_t end> |
| 78 | using MakeIndexes = typename MakeIndexes_<end>::Type; |
| 79 | // Equivalent to Indexes<0, 1, 2, ..., end>. |
| 80 | |
| 81 | template <typename... T> |
| 82 | class Tuple; |
| 83 | template <size_t index, typename... U> |
| 84 | inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); |
| 85 | template <size_t index, typename... U> |
| 86 | inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); |
| 87 | template <size_t index, typename... U> |
| 88 | inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); |
| 89 | |
| 90 | template <uint index, typename T> |
| 91 | struct TupleElement { |
| 92 | // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits |
| 93 | // from a TupleElement for each element, which is more efficient than a recursive definition. |
| 94 | |
| 95 | T value; |
| 96 | TupleElement() KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY |
| 97 | constexpr inline TupleElement(const T& value): value(value) {} |
| 98 | constexpr inline TupleElement(T&& value): value(kj::mv(value)) {} |
| 99 | }; |
| 100 | |
| 101 | template <uint index, typename T> |
| 102 | struct TupleElement<index, T&> { |
| 103 | // A tuple containing references can be constucted using refTuple(). |
| 104 | |
| 105 | T& value; |
| 106 | constexpr inline TupleElement(T& value): value(value) {} |
| 107 | }; |
| 108 | |
| 109 | template <uint index, typename... T> |
| 110 | struct TupleElement<index, Tuple<T...>> { |
| 111 | static_assert(sizeof(Tuple<T...>*) == 0, |
| 112 | "Tuples cannot contain other tuples -- they should be flattened." ); |
| 113 | }; |
| 114 | |
| 115 | template <typename Indexes, typename... Types> |
| 116 | struct TupleImpl; |
| 117 | |
| 118 | template <size_t... indexes, typename... Types> |
| 119 | struct TupleImpl<Indexes<indexes...>, Types...> |
| 120 | : public TupleElement<indexes, Types>... { |
| 121 | // Implementation of Tuple. The only reason we need this rather than rolling this into class |
| 122 | // Tuple (below) is so that we can get "indexes" as an unpackable list. |
| 123 | |
| 124 | static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl." ); |
| 125 | |
| 126 | TupleImpl() KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY |
| 127 | |
| 128 | template <typename... Params> |
| 129 | inline TupleImpl(Params&&... params) |
| 130 | : TupleElement<indexes, Types>(kj::fwd<Params>(params))... { |
| 131 | // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes |
| 132 | // segfaults instead.) |
| 133 | static_assert(sizeof...(params) == sizeof...(indexes), |
| 134 | "Wrong number of parameters to Tuple constructor." ); |
| 135 | } |
| 136 | |
| 137 | template <typename... U> |
| 138 | constexpr inline TupleImpl(Tuple<U...>&& other) |
| 139 | : TupleElement<indexes, Types>(kj::fwd<U>(getImpl<indexes>(other)))... {} |
| 140 | template <typename... U> |
| 141 | constexpr inline TupleImpl(Tuple<U...>& other) |
| 142 | : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} |
| 143 | template <typename... U> |
| 144 | constexpr inline TupleImpl(const Tuple<U...>& other) |
| 145 | : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} |
| 146 | }; |
| 147 | |
| 148 | struct MakeTupleFunc; |
| 149 | struct MakeRefTupleFunc; |
| 150 | |
| 151 | template <typename... T> |
| 152 | class Tuple { |
| 153 | // The actual Tuple class (used for tuples of size other than 1). |
| 154 | |
| 155 | public: |
| 156 | Tuple() KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY |
| 157 | |
| 158 | template <typename... U> |
| 159 | constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {} |
| 160 | template <typename... U> |
| 161 | constexpr inline Tuple(Tuple<U...>& other): impl(other) {} |
| 162 | template <typename... U> |
| 163 | constexpr inline Tuple(const Tuple<U...>& other): impl(other) {} |
| 164 | |
| 165 | private: |
| 166 | template <typename... Params> |
| 167 | constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {} |
| 168 | |
| 169 | TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl; |
| 170 | |
| 171 | template <size_t index, typename... U> |
| 172 | friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); |
| 173 | template <size_t index, typename... U> |
| 174 | friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); |
| 175 | template <size_t index, typename... U> |
| 176 | friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); |
| 177 | friend struct MakeTupleFunc; |
| 178 | friend struct MakeRefTupleFunc; |
| 179 | }; |
| 180 | |
| 181 | template <> |
| 182 | class Tuple<> { |
| 183 | // Simplified zero-member version of Tuple. In particular this is important to make sure that |
| 184 | // Tuple<>() is constexpr. |
| 185 | }; |
| 186 | |
| 187 | template <typename T> |
| 188 | class Tuple<T>; |
| 189 | // Single-element tuple should never be used. The public API should ensure this. |
| 190 | |
| 191 | template <size_t index, typename... T> |
| 192 | inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) { |
| 193 | // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. |
| 194 | static_assert(index < sizeof...(T), "Tuple element index out-of-bounds." ); |
| 195 | return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; |
| 196 | } |
| 197 | template <size_t index, typename... T> |
| 198 | inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) { |
| 199 | // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. |
| 200 | static_assert(index < sizeof...(T), "Tuple element index out-of-bounds." ); |
| 201 | return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value); |
| 202 | } |
| 203 | template <size_t index, typename... T> |
| 204 | inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) { |
| 205 | // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. |
| 206 | static_assert(index < sizeof...(T), "Tuple element index out-of-bounds." ); |
| 207 | return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; |
| 208 | } |
| 209 | template <size_t index, typename T> |
| 210 | inline T&& getImpl(T&& value) { |
| 211 | // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`. |
| 212 | |
| 213 | // Non-tuples are equivalent to one-element tuples. |
| 214 | static_assert(index == 0, "Tuple element index out-of-bounds." ); |
| 215 | return kj::fwd<T>(value); |
| 216 | } |
| 217 | |
| 218 | |
| 219 | template <typename Func, typename SoFar, typename... T> |
| 220 | struct ExpandAndApplyResult_; |
| 221 | // Template which computes the return type of applying Func to T... after flattening tuples. |
| 222 | // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template |
| 223 | // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters. |
| 224 | |
| 225 | template <typename Func, typename First, typename... Rest, typename... T> |
| 226 | struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...> |
| 227 | : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {}; |
| 228 | template <typename Func, typename... FirstTypes, typename... Rest, typename... T> |
| 229 | struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...> |
| 230 | : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {}; |
| 231 | template <typename Func, typename... FirstTypes, typename... Rest, typename... T> |
| 232 | struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...> |
| 233 | : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {}; |
| 234 | template <typename Func, typename... FirstTypes, typename... Rest, typename... T> |
| 235 | struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...> |
| 236 | : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {}; |
| 237 | template <typename Func, typename... T> |
| 238 | struct ExpandAndApplyResult_<Func, Tuple<T...>> { |
| 239 | typedef decltype(instance<Func>()(instance<T&&>()...)) Type; |
| 240 | }; |
| 241 | template <typename Func, typename... T> |
| 242 | using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type; |
| 243 | // Computes the expected return type of `expandAndApply()`. |
| 244 | |
| 245 | template <typename Func> |
| 246 | inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> { |
| 247 | return func(); |
| 248 | } |
| 249 | |
| 250 | template <typename Func, typename First, typename... Rest> |
| 251 | struct ExpandAndApplyFunc { |
| 252 | Func&& func; |
| 253 | First&& first; |
| 254 | ExpandAndApplyFunc(Func&& func, First&& first) |
| 255 | : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {} |
| 256 | template <typename... T> |
| 257 | auto operator()(T&&... params) |
| 258 | -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) { |
| 259 | return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...); |
| 260 | } |
| 261 | }; |
| 262 | |
| 263 | template <typename Func, typename First, typename... Rest> |
| 264 | inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest) |
| 265 | -> ExpandAndApplyResult<Func, First, Rest...> { |
| 266 | |
| 267 | return expandAndApply( |
| 268 | ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)), |
| 269 | kj::fwd<Rest>(rest)...); |
| 270 | } |
| 271 | |
| 272 | template <typename Func, typename... FirstTypes, typename... Rest> |
| 273 | inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) |
| 274 | -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { |
| 275 | return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), |
| 276 | kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...); |
| 277 | } |
| 278 | |
| 279 | template <typename Func, typename... FirstTypes, typename... Rest> |
| 280 | inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest) |
| 281 | -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { |
| 282 | return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), |
| 283 | kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); |
| 284 | } |
| 285 | |
| 286 | template <typename Func, typename... FirstTypes, typename... Rest> |
| 287 | inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) |
| 288 | -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { |
| 289 | return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), |
| 290 | kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); |
| 291 | } |
| 292 | |
| 293 | template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> |
| 294 | inline auto expandAndApplyWithIndexes( |
| 295 | Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) |
| 296 | -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { |
| 297 | return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))..., |
| 298 | kj::fwd<Rest>(rest)...); |
| 299 | } |
| 300 | |
| 301 | template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> |
| 302 | inline auto expandAndApplyWithIndexes( |
| 303 | Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) |
| 304 | -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { |
| 305 | return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)..., |
| 306 | kj::fwd<Rest>(rest)...); |
| 307 | } |
| 308 | |
| 309 | struct MakeTupleFunc { |
| 310 | template <typename... Params> |
| 311 | Tuple<Decay<Params>...> operator()(Params&&... params) { |
| 312 | return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...); |
| 313 | } |
| 314 | template <typename Param> |
| 315 | Decay<Param> operator()(Param&& param) { |
| 316 | return kj::fwd<Param>(param); |
| 317 | } |
| 318 | }; |
| 319 | |
| 320 | struct MakeRefTupleFunc { |
| 321 | template <typename... Params> |
| 322 | Tuple<Params...> operator()(Params&&... params) { |
| 323 | return Tuple<Params...>(kj::fwd<Params>(params)...); |
| 324 | } |
| 325 | template <typename Param> |
| 326 | Param operator()(Param&& param) { |
| 327 | return kj::fwd<Param>(param); |
| 328 | } |
| 329 | }; |
| 330 | |
| 331 | } // namespace _ (private) |
| 332 | |
| 333 | template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; }; |
| 334 | template <typename T> struct Tuple_<T> { typedef T Type; }; |
| 335 | |
| 336 | template <typename... T> using Tuple = typename Tuple_<T...>::Type; |
| 337 | // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size |
| 338 | // other than 1 expand to an internal type. Either way, you can construct a Tuple using |
| 339 | // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple |
| 340 | // as arguments to a function using `kj::apply(func, myTuple)`. |
| 341 | // |
| 342 | // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you |
| 343 | // construct a tuple from other tuples, the elements are flattened and concatenated. |
| 344 | |
| 345 | template <typename... Params> |
| 346 | inline auto tuple(Params&&... params) |
| 347 | -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) { |
| 348 | // Construct a new tuple from the given values. Any tuples in the argument list will be |
| 349 | // flattened into the result. |
| 350 | return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...); |
| 351 | } |
| 352 | |
| 353 | template <typename... Params> |
| 354 | inline auto refTuple(Params&&... params) |
| 355 | -> decltype(_::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...)) { |
| 356 | // Like tuple(), but if the params include lvalue references, they will be captured as |
| 357 | // references. rvalue references will still be captured as whole values (moved). |
| 358 | return _::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...); |
| 359 | } |
| 360 | |
| 361 | template <size_t index, typename Tuple> |
| 362 | inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) { |
| 363 | // Unpack and return the tuple element at the given index. The index is specified as a template |
| 364 | // parameter, e.g. `kj::get<3>(myTuple)`. |
| 365 | return _::getImpl<index>(kj::fwd<Tuple>(tuple)); |
| 366 | } |
| 367 | |
| 368 | template <typename Func, typename... Params> |
| 369 | inline auto apply(Func&& func, Params&&... params) |
| 370 | -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) { |
| 371 | // Apply a function to some arguments, expanding tuples into separate arguments. |
| 372 | return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...); |
| 373 | } |
| 374 | |
| 375 | template <typename T> struct TupleSize_ { static constexpr size_t size = 1; }; |
| 376 | template <typename... T> struct TupleSize_<_::Tuple<T...>> { |
| 377 | static constexpr size_t size = sizeof...(T); |
| 378 | }; |
| 379 | |
| 380 | template <typename T> |
| 381 | constexpr size_t tupleSize() { return TupleSize_<T>::size; } |
| 382 | // Returns size of the tuple T. |
| 383 | |
| 384 | template <typename T, typename Tuple> |
| 385 | struct IndexOfType_; |
| 386 | template <typename T, typename Tuple> |
| 387 | struct HasType_ { |
| 388 | static constexpr bool value = false; |
| 389 | }; |
| 390 | |
| 391 | template <typename T> |
| 392 | struct IndexOfType_<T, T> { |
| 393 | static constexpr size_t value = 0; |
| 394 | }; |
| 395 | template <typename T> |
| 396 | struct HasType_<T, T> { |
| 397 | static constexpr bool value = true; |
| 398 | }; |
| 399 | |
| 400 | template <typename T, typename... U> |
| 401 | struct IndexOfType_<T, _::Tuple<T, U...>> { |
| 402 | static constexpr size_t value = 0; |
| 403 | static_assert(!HasType_<T, _::Tuple<U...>>::value, |
| 404 | "requested type appears multiple times in tuple" ); |
| 405 | }; |
| 406 | template <typename T, typename... U> |
| 407 | struct HasType_<T, _::Tuple<T, U...>> { |
| 408 | static constexpr bool value = true; |
| 409 | }; |
| 410 | |
| 411 | template <typename T, typename U, typename... V> |
| 412 | struct IndexOfType_<T, _::Tuple<U, V...>> { |
| 413 | static constexpr size_t value = IndexOfType_<T, _::Tuple<V...>>::value + 1; |
| 414 | }; |
| 415 | template <typename T, typename U, typename... V> |
| 416 | struct HasType_<T, _::Tuple<U, V...>> { |
| 417 | static constexpr bool value = HasType_<T, _::Tuple<V...>>::value; |
| 418 | }; |
| 419 | |
| 420 | template <typename T, typename U> |
| 421 | inline constexpr size_t indexOfType() { |
| 422 | static_assert(HasType_<T, U>::value, "type not present" ); |
| 423 | return IndexOfType_<T, U>::value; |
| 424 | } |
| 425 | |
| 426 | template <size_t i, typename T> |
| 427 | struct TypeOfIndex_; |
| 428 | template <typename T> |
| 429 | struct TypeOfIndex_<0, T> { |
| 430 | typedef T Type; |
| 431 | }; |
| 432 | template <size_t i, typename T, typename... U> |
| 433 | struct TypeOfIndex_<i, _::Tuple<T, U...>> |
| 434 | : public TypeOfIndex_<i - 1, _::Tuple<U...>> {}; |
| 435 | template <typename T, typename... U> |
| 436 | struct TypeOfIndex_<0, _::Tuple<T, U...>> { |
| 437 | typedef T Type; |
| 438 | }; |
| 439 | |
| 440 | template <size_t i, typename Tuple> |
| 441 | using TypeOfIndex = typename TypeOfIndex_<i, Tuple>::Type; |
| 442 | |
| 443 | } // namespace kj |
| 444 | |