1 | /* |
2 | * Copyright 2018 Uber Technologies, Inc. |
3 | * |
4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | * you may not use this file except in compliance with the License. |
6 | * You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | */ |
16 | /** @file localij.c |
17 | * @brief Local IJ coordinate space functions |
18 | * |
19 | * These functions try to provide a useful coordinate space in the vicinity of |
20 | * an origin index. |
21 | */ |
22 | #include <faceijk.h> |
23 | #include <inttypes.h> |
24 | #include <math.h> |
25 | #include <stdlib.h> |
26 | #include <string.h> |
27 | #include "baseCells.h" |
28 | #include "faceijk.h" |
29 | #include "h3Index.h" |
30 | #include "mathExtensions.h" |
31 | #include "stackAlloc.h" |
32 | |
33 | /** |
34 | * Origin leading digit -> index leading digit -> rotations 60 cw |
35 | * Either being 1 (K axis) is invalid. |
36 | * No good default at 0. |
37 | */ |
38 | const int PENTAGON_ROTATIONS[7][7] = { |
39 | {0, -1, 0, 0, 0, 0, 0}, // 0 |
40 | {-1, -1, -1, -1, -1, -1, -1}, // 1 |
41 | {0, -1, 0, 0, 0, 1, 0}, // 2 |
42 | {0, -1, 0, 0, 1, 1, 0}, // 3 |
43 | {0, -1, 0, 5, 0, 0, 0}, // 4 |
44 | {0, -1, 5, 5, 0, 0, 0}, // 5 |
45 | {0, -1, 0, 0, 0, 0, 0}, // 6 |
46 | }; |
47 | /** |
48 | * Reverse base cell direction -> leading index digit -> rotations 60 ccw. |
49 | * For reversing the rotation introduced in PENTAGON_ROTATIONS when |
50 | * the origin is on a pentagon (regardless of the base cell of the index.) |
51 | */ |
52 | const int PENTAGON_ROTATIONS_REVERSE[7][7] = { |
53 | {0, 0, 0, 0, 0, 0, 0}, // 0 |
54 | {-1, -1, -1, -1, -1, -1, -1}, // 1 |
55 | {0, 1, 0, 0, 0, 0, 0}, // 2 |
56 | {0, 1, 0, 0, 0, 1, 0}, // 3 |
57 | {0, 5, 0, 0, 0, 0, 0}, // 4 |
58 | {0, 5, 0, 5, 0, 0, 0}, // 5 |
59 | {0, 0, 0, 0, 0, 0, 0}, // 6 |
60 | }; |
61 | /** |
62 | * Reverse base cell direction -> leading index digit -> rotations 60 ccw. |
63 | * For reversing the rotation introduced in PENTAGON_ROTATIONS when the index is |
64 | * on a pentagon and the origin is not. |
65 | */ |
66 | const int PENTAGON_ROTATIONS_REVERSE_NONPOLAR[7][7] = { |
67 | {0, 0, 0, 0, 0, 0, 0}, // 0 |
68 | {-1, -1, -1, -1, -1, -1, -1}, // 1 |
69 | {0, 1, 0, 0, 0, 0, 0}, // 2 |
70 | {0, 1, 0, 0, 0, 1, 0}, // 3 |
71 | {0, 5, 0, 0, 0, 0, 0}, // 4 |
72 | {0, 1, 0, 5, 1, 1, 0}, // 5 |
73 | {0, 0, 0, 0, 0, 0, 0}, // 6 |
74 | }; |
75 | /** |
76 | * Reverse base cell direction -> leading index digit -> rotations 60 ccw. |
77 | * For reversing the rotation introduced in PENTAGON_ROTATIONS when the index is |
78 | * on a polar pentagon and the origin is not. |
79 | */ |
80 | const int PENTAGON_ROTATIONS_REVERSE_POLAR[7][7] = { |
81 | {0, 0, 0, 0, 0, 0, 0}, // 0 |
82 | {-1, -1, -1, -1, -1, -1, -1}, // 1 |
83 | {0, 1, 1, 1, 1, 1, 1}, // 2 |
84 | {0, 1, 0, 0, 0, 1, 0}, // 3 |
85 | {0, 1, 0, 0, 1, 1, 1}, // 4 |
86 | {0, 1, 0, 5, 1, 1, 0}, // 5 |
87 | {0, 1, 1, 0, 1, 1, 1}, // 6 |
88 | }; |
89 | |
90 | // Simply prohibit many pentagon distortion cases rather than handling them. |
91 | const bool FAILED_DIRECTIONS_II[7][7] = { |
92 | {false, false, false, false, false, false, false}, // 0 |
93 | {false, false, false, false, false, false, false}, // 1 |
94 | {false, false, false, false, true, false, false}, // 2 |
95 | {false, false, false, false, false, false, true}, // 3 |
96 | {false, false, false, true, false, false, false}, // 4 |
97 | {false, false, true, false, false, false, false}, // 5 |
98 | {false, false, false, false, false, true, false}, // 6 |
99 | }; |
100 | const bool FAILED_DIRECTIONS_III[7][7] = { |
101 | {false, false, false, false, false, false, false}, // 0 |
102 | {false, false, false, false, false, false, false}, // 1 |
103 | {false, false, false, false, false, true, false}, // 2 |
104 | {false, false, false, false, true, false, false}, // 3 |
105 | {false, false, true, false, false, false, false}, // 4 |
106 | {false, false, false, false, false, false, true}, // 5 |
107 | {false, false, false, true, false, false, false}, // 6 |
108 | }; |
109 | |
110 | /** |
111 | * Produces ijk+ coordinates for an index anchored by an origin. |
112 | * |
113 | * The coordinate space used by this function may have deleted |
114 | * regions or warping due to pentagonal distortion. |
115 | * |
116 | * Coordinates are only comparable if they come from the same |
117 | * origin index. |
118 | * |
119 | * Failure may occur if the index is too far away from the origin |
120 | * or if the index is on the other side of a pentagon. |
121 | * |
122 | * @param origin An anchoring index for the ijk+ coordinate system. |
123 | * @param index Index to find the coordinates of |
124 | * @param out ijk+ coordinates of the index will be placed here on success |
125 | * @return 0 on success, or another value on failure. |
126 | */ |
127 | int h3ToLocalIjk(H3Index origin, H3Index h3, CoordIJK* out) { |
128 | int res = H3_GET_RESOLUTION(origin); |
129 | |
130 | if (res != H3_GET_RESOLUTION(h3)) { |
131 | return 1; |
132 | } |
133 | |
134 | int originBaseCell = H3_GET_BASE_CELL(origin); |
135 | int baseCell = H3_GET_BASE_CELL(h3); |
136 | |
137 | // Direction from origin base cell to index base cell |
138 | Direction dir = 0; |
139 | Direction revDir = 0; |
140 | if (originBaseCell != baseCell) { |
141 | dir = _getBaseCellDirection(originBaseCell, baseCell); |
142 | if (dir == INVALID_DIGIT) { |
143 | // Base cells are not neighbors, can't unfold. |
144 | return 2; |
145 | } |
146 | revDir = _getBaseCellDirection(baseCell, originBaseCell); |
147 | assert(revDir != INVALID_DIGIT); |
148 | } |
149 | |
150 | int originOnPent = _isBaseCellPentagon(originBaseCell); |
151 | int indexOnPent = _isBaseCellPentagon(baseCell); |
152 | |
153 | FaceIJK indexFijk = {0}; |
154 | if (dir != CENTER_DIGIT) { |
155 | // Rotate index into the orientation of the origin base cell. |
156 | // cw because we are undoing the rotation into that base cell. |
157 | int baseCellRotations = baseCellNeighbor60CCWRots[originBaseCell][dir]; |
158 | if (indexOnPent) { |
159 | for (int i = 0; i < baseCellRotations; i++) { |
160 | h3 = _h3RotatePent60cw(h3); |
161 | |
162 | revDir = _rotate60cw(revDir); |
163 | if (revDir == K_AXES_DIGIT) revDir = _rotate60cw(revDir); |
164 | } |
165 | } else { |
166 | for (int i = 0; i < baseCellRotations; i++) { |
167 | h3 = _h3Rotate60cw(h3); |
168 | |
169 | revDir = _rotate60cw(revDir); |
170 | } |
171 | } |
172 | } |
173 | // Face is unused. This produces coordinates in base cell coordinate space. |
174 | _h3ToFaceIjkWithInitializedFijk(h3, &indexFijk); |
175 | |
176 | if (dir != CENTER_DIGIT) { |
177 | assert(baseCell != originBaseCell); |
178 | assert(!(originOnPent && indexOnPent)); |
179 | |
180 | int pentagonRotations = 0; |
181 | int directionRotations = 0; |
182 | |
183 | if (originOnPent) { |
184 | int originLeadingDigit = _h3LeadingNonZeroDigit(origin); |
185 | |
186 | // TODO: This previously included the Class III-based checks |
187 | // as in the index-on-pentagon case below, but these were |
188 | // removed due to some failure cases. It is possible that we |
189 | // could restrict this error to a narrower set of cases. |
190 | // https://github.com/uber/h3/issues/163 |
191 | if (FAILED_DIRECTIONS_III[originLeadingDigit][dir] || |
192 | FAILED_DIRECTIONS_II[originLeadingDigit][dir]) { |
193 | // TODO this part of the pentagon might not be unfolded |
194 | // correctly. |
195 | return 3; |
196 | } |
197 | |
198 | directionRotations = PENTAGON_ROTATIONS[originLeadingDigit][dir]; |
199 | pentagonRotations = directionRotations; |
200 | } else if (indexOnPent) { |
201 | int indexLeadingDigit = _h3LeadingNonZeroDigit(h3); |
202 | |
203 | if ((isResClassIII(res) && |
204 | FAILED_DIRECTIONS_III[indexLeadingDigit][revDir]) || |
205 | (!isResClassIII(res) && |
206 | FAILED_DIRECTIONS_II[indexLeadingDigit][revDir])) { |
207 | // TODO this part of the pentagon might not be unfolded |
208 | // correctly. |
209 | return 4; |
210 | } |
211 | |
212 | pentagonRotations = PENTAGON_ROTATIONS[revDir][indexLeadingDigit]; |
213 | } |
214 | |
215 | assert(pentagonRotations >= 0); |
216 | assert(directionRotations >= 0); |
217 | |
218 | for (int i = 0; i < pentagonRotations; i++) { |
219 | _ijkRotate60cw(&indexFijk.coord); |
220 | } |
221 | |
222 | CoordIJK offset = {0}; |
223 | _neighbor(&offset, dir); |
224 | // Scale offset based on resolution |
225 | for (int r = res - 1; r >= 0; r--) { |
226 | if (isResClassIII(r + 1)) { |
227 | // rotate ccw |
228 | _downAp7(&offset); |
229 | } else { |
230 | // rotate cw |
231 | _downAp7r(&offset); |
232 | } |
233 | } |
234 | |
235 | for (int i = 0; i < directionRotations; i++) { |
236 | _ijkRotate60cw(&offset); |
237 | } |
238 | |
239 | // Perform necessary translation |
240 | _ijkAdd(&indexFijk.coord, &offset, &indexFijk.coord); |
241 | _ijkNormalize(&indexFijk.coord); |
242 | } else if (originOnPent && indexOnPent) { |
243 | // If the origin and index are on pentagon, and we checked that the base |
244 | // cells are the same or neighboring, then they must be the same base |
245 | // cell. |
246 | assert(baseCell == originBaseCell); |
247 | |
248 | int originLeadingDigit = _h3LeadingNonZeroDigit(origin); |
249 | int indexLeadingDigit = _h3LeadingNonZeroDigit(h3); |
250 | |
251 | if (FAILED_DIRECTIONS_III[originLeadingDigit][indexLeadingDigit] || |
252 | FAILED_DIRECTIONS_II[originLeadingDigit][indexLeadingDigit]) { |
253 | // TODO this part of the pentagon might not be unfolded |
254 | // correctly. |
255 | return 5; |
256 | } |
257 | |
258 | int withinPentagonRotations = |
259 | PENTAGON_ROTATIONS[originLeadingDigit][indexLeadingDigit]; |
260 | |
261 | for (int i = 0; i < withinPentagonRotations; i++) { |
262 | _ijkRotate60cw(&indexFijk.coord); |
263 | } |
264 | } |
265 | |
266 | *out = indexFijk.coord; |
267 | return 0; |
268 | } |
269 | |
270 | /** |
271 | * Produces an index for ijk+ coordinates anchored by an origin. |
272 | * |
273 | * The coordinate space used by this function may have deleted |
274 | * regions or warping due to pentagonal distortion. |
275 | * |
276 | * Failure may occur if the coordinates are too far away from the origin |
277 | * or if the index is on the other side of a pentagon. |
278 | * |
279 | * @param origin An anchoring index for the ijk+ coordinate system. |
280 | * @param ijk IJK+ Coordinates to find the index of |
281 | * @param out The index will be placed here on success |
282 | * @return 0 on success, or another value on failure. |
283 | */ |
284 | int localIjkToH3(H3Index origin, const CoordIJK* ijk, H3Index* out) { |
285 | int res = H3_GET_RESOLUTION(origin); |
286 | int originBaseCell = H3_GET_BASE_CELL(origin); |
287 | int originOnPent = _isBaseCellPentagon(originBaseCell); |
288 | |
289 | // This logic is very similar to faceIjkToH3 |
290 | // initialize the index |
291 | *out = H3_INIT; |
292 | H3_SET_MODE(*out, H3_HEXAGON_MODE); |
293 | H3_SET_RESOLUTION(*out, res); |
294 | |
295 | // check for res 0/base cell |
296 | if (res == 0) { |
297 | if (ijk->i > 1 || ijk->i > 1 || ijk->i > 1) { |
298 | // out of range input |
299 | return 1; |
300 | } |
301 | |
302 | const Direction dir = _unitIjkToDigit(ijk); |
303 | const int newBaseCell = _getBaseCellNeighbor(originBaseCell, dir); |
304 | if (newBaseCell == INVALID_BASE_CELL) { |
305 | // Moving in an invalid direction off a pentagon. |
306 | return 1; |
307 | } |
308 | H3_SET_BASE_CELL(*out, newBaseCell); |
309 | return 0; |
310 | } |
311 | |
312 | // we need to find the correct base cell offset (if any) for this H3 index; |
313 | // start with the passed in base cell and resolution res ijk coordinates |
314 | // in that base cell's coordinate system |
315 | CoordIJK ijkCopy = *ijk; |
316 | |
317 | // build the H3Index from finest res up |
318 | // adjust r for the fact that the res 0 base cell offsets the indexing |
319 | // digits |
320 | for (int r = res - 1; r >= 0; r--) { |
321 | CoordIJK lastIJK = ijkCopy; |
322 | CoordIJK lastCenter; |
323 | if (isResClassIII(r + 1)) { |
324 | // rotate ccw |
325 | _upAp7(&ijkCopy); |
326 | lastCenter = ijkCopy; |
327 | _downAp7(&lastCenter); |
328 | } else { |
329 | // rotate cw |
330 | _upAp7r(&ijkCopy); |
331 | lastCenter = ijkCopy; |
332 | _downAp7r(&lastCenter); |
333 | } |
334 | |
335 | CoordIJK diff; |
336 | _ijkSub(&lastIJK, &lastCenter, &diff); |
337 | _ijkNormalize(&diff); |
338 | |
339 | H3_SET_INDEX_DIGIT(*out, r + 1, _unitIjkToDigit(&diff)); |
340 | } |
341 | |
342 | // ijkCopy should now hold the IJK of the base cell in the |
343 | // coordinate system of the current base cell |
344 | |
345 | if (ijkCopy.i > 1 || ijkCopy.j > 1 || ijkCopy.k > 1) { |
346 | // out of range input |
347 | return 2; |
348 | } |
349 | |
350 | // lookup the correct base cell |
351 | Direction dir = _unitIjkToDigit(&ijkCopy); |
352 | int baseCell = _getBaseCellNeighbor(originBaseCell, dir); |
353 | // If baseCell is invalid, it must be because the origin base cell is a |
354 | // pentagon, and because pentagon base cells do not border each other, |
355 | // baseCell must not be a pentagon. |
356 | int indexOnPent = |
357 | (baseCell == INVALID_BASE_CELL ? 0 : _isBaseCellPentagon(baseCell)); |
358 | |
359 | if (dir != CENTER_DIGIT) { |
360 | // If the index is in a warped direction, we need to unwarp the base |
361 | // cell direction. There may be further need to rotate the index digits. |
362 | int pentagonRotations = 0; |
363 | if (originOnPent) { |
364 | const Direction originLeadingDigit = _h3LeadingNonZeroDigit(origin); |
365 | pentagonRotations = |
366 | PENTAGON_ROTATIONS_REVERSE[originLeadingDigit][dir]; |
367 | for (int i = 0; i < pentagonRotations; i++) { |
368 | dir = _rotate60ccw(dir); |
369 | } |
370 | // The pentagon rotations are being chosen so that dir is not the |
371 | // deleted direction. If it still happens, it means we're moving |
372 | // into a deleted subsequence, so there is no index here. |
373 | if (dir == K_AXES_DIGIT) { |
374 | return 3; |
375 | } |
376 | baseCell = _getBaseCellNeighbor(originBaseCell, dir); |
377 | |
378 | // indexOnPent does not need to be checked again since no pentagon |
379 | // base cells border each other. |
380 | assert(baseCell != INVALID_BASE_CELL); |
381 | assert(!_isBaseCellPentagon(baseCell)); |
382 | } |
383 | |
384 | // Now we can determine the relation between the origin and target base |
385 | // cell. |
386 | const int baseCellRotations = |
387 | baseCellNeighbor60CCWRots[originBaseCell][dir]; |
388 | assert(baseCellRotations >= 0); |
389 | |
390 | // Adjust for pentagon warping within the base cell. The base cell |
391 | // should be in the right location, so now we need to rotate the index |
392 | // back. We might not need to check for errors since we would just be |
393 | // double mapping. |
394 | if (indexOnPent) { |
395 | const Direction revDir = |
396 | _getBaseCellDirection(baseCell, originBaseCell); |
397 | assert(revDir != INVALID_DIGIT); |
398 | |
399 | // Adjust for the different coordinate space in the two base cells. |
400 | // This is done first because we need to do the pentagon rotations |
401 | // based on the leading digit in the pentagon's coordinate system. |
402 | for (int i = 0; i < baseCellRotations; i++) { |
403 | *out = _h3Rotate60ccw(*out); |
404 | } |
405 | |
406 | const Direction indexLeadingDigit = _h3LeadingNonZeroDigit(*out); |
407 | if (_isBaseCellPolarPentagon(baseCell)) { |
408 | pentagonRotations = |
409 | PENTAGON_ROTATIONS_REVERSE_POLAR[revDir][indexLeadingDigit]; |
410 | } else { |
411 | pentagonRotations = |
412 | PENTAGON_ROTATIONS_REVERSE_NONPOLAR[revDir] |
413 | [indexLeadingDigit]; |
414 | } |
415 | |
416 | assert(pentagonRotations >= 0); |
417 | for (int i = 0; i < pentagonRotations; i++) { |
418 | *out = _h3RotatePent60ccw(*out); |
419 | } |
420 | } else { |
421 | assert(pentagonRotations >= 0); |
422 | for (int i = 0; i < pentagonRotations; i++) { |
423 | *out = _h3Rotate60ccw(*out); |
424 | } |
425 | |
426 | // Adjust for the different coordinate space in the two base cells. |
427 | for (int i = 0; i < baseCellRotations; i++) { |
428 | *out = _h3Rotate60ccw(*out); |
429 | } |
430 | } |
431 | } else if (originOnPent && indexOnPent) { |
432 | const int originLeadingDigit = _h3LeadingNonZeroDigit(origin); |
433 | const int indexLeadingDigit = _h3LeadingNonZeroDigit(*out); |
434 | |
435 | const int withinPentagonRotations = |
436 | PENTAGON_ROTATIONS_REVERSE[originLeadingDigit][indexLeadingDigit]; |
437 | assert(withinPentagonRotations >= 0); |
438 | |
439 | for (int i = 0; i < withinPentagonRotations; i++) { |
440 | *out = _h3Rotate60ccw(*out); |
441 | } |
442 | } |
443 | |
444 | if (indexOnPent) { |
445 | // TODO: There are cases in h3ToLocalIjk which are failed but not |
446 | // accounted for here - instead just fail if the recovered index is |
447 | // invalid. |
448 | if (_h3LeadingNonZeroDigit(*out) == K_AXES_DIGIT) { |
449 | return 4; |
450 | } |
451 | } |
452 | |
453 | H3_SET_BASE_CELL(*out, baseCell); |
454 | return 0; |
455 | } |
456 | |
457 | /** |
458 | * Produces ij coordinates for an index anchored by an origin. |
459 | * |
460 | * The coordinate space used by this function may have deleted |
461 | * regions or warping due to pentagonal distortion. |
462 | * |
463 | * Coordinates are only comparable if they come from the same |
464 | * origin index. |
465 | * |
466 | * Failure may occur if the index is too far away from the origin |
467 | * or if the index is on the other side of a pentagon. |
468 | * |
469 | * This function is experimental, and its output is not guaranteed |
470 | * to be compatible across different versions of H3. |
471 | * |
472 | * @param origin An anchoring index for the ij coordinate system. |
473 | * @param index Index to find the coordinates of |
474 | * @param out ij coordinates of the index will be placed here on success |
475 | * @return 0 on success, or another value on failure. |
476 | */ |
477 | int H3_EXPORT(experimentalH3ToLocalIj)(H3Index origin, H3Index h3, |
478 | CoordIJ* out) { |
479 | // This function is currently experimental. Once ready to be part of the |
480 | // non-experimental API, this function (with the experimental prefix) will |
481 | // be marked as deprecated and to be removed in the next major version. It |
482 | // will be replaced with a non-prefixed function name. |
483 | CoordIJK ijk; |
484 | int failed = h3ToLocalIjk(origin, h3, &ijk); |
485 | if (failed) { |
486 | return failed; |
487 | } |
488 | |
489 | ijkToIj(&ijk, out); |
490 | |
491 | return 0; |
492 | } |
493 | |
494 | /** |
495 | * Produces an index for ij coordinates anchored by an origin. |
496 | * |
497 | * The coordinate space used by this function may have deleted |
498 | * regions or warping due to pentagonal distortion. |
499 | * |
500 | * Failure may occur if the index is too far away from the origin |
501 | * or if the index is on the other side of a pentagon. |
502 | * |
503 | * This function is experimental, and its output is not guaranteed |
504 | * to be compatible across different versions of H3. |
505 | * |
506 | * @param origin An anchoring index for the ij coordinate system. |
507 | * @param out ij coordinates to index. |
508 | * @param index Index will be placed here on success. |
509 | * @return 0 on success, or another value on failure. |
510 | */ |
511 | int H3_EXPORT(experimentalLocalIjToH3)(H3Index origin, const CoordIJ* ij, |
512 | H3Index* out) { |
513 | // This function is currently experimental. Once ready to be part of the |
514 | // non-experimental API, this function (with the experimental prefix) will |
515 | // be marked as deprecated and to be removed in the next major version. It |
516 | // will be replaced with a non-prefixed function name. |
517 | CoordIJK ijk; |
518 | ijToIjk(ij, &ijk); |
519 | |
520 | return localIjkToH3(origin, &ijk, out); |
521 | } |
522 | |
523 | /** |
524 | * Produces the grid distance between the two indexes. |
525 | * |
526 | * This function may fail to find the distance between two indexes, for |
527 | * example if they are very far apart. It may also fail when finding |
528 | * distances for indexes on opposite sides of a pentagon. |
529 | * |
530 | * @param origin Index to find the distance from. |
531 | * @param index Index to find the distance to. |
532 | * @return The distance, or a negative number if the library could not |
533 | * compute the distance. |
534 | */ |
535 | int H3_EXPORT(h3Distance)(H3Index origin, H3Index h3) { |
536 | CoordIJK originIjk, h3Ijk; |
537 | if (h3ToLocalIjk(origin, origin, &originIjk)) { |
538 | // Currently there are no tests that would cause getting the coordinates |
539 | // for an index the same as the origin to fail. |
540 | return -1; // LCOV_EXCL_LINE |
541 | } |
542 | if (h3ToLocalIjk(origin, h3, &h3Ijk)) { |
543 | return -1; |
544 | } |
545 | |
546 | return ijkDistance(&originIjk, &h3Ijk); |
547 | } |
548 | |
549 | /** |
550 | * Number of indexes in a line from the start index to the end index, |
551 | * to be used for allocating memory. Returns a negative number if the |
552 | * line cannot be computed. |
553 | * |
554 | * @param start Start index of the line |
555 | * @param end End index of the line |
556 | * @return Size of the line, or a negative number if the line cannot |
557 | * be computed. |
558 | */ |
559 | int H3_EXPORT(h3LineSize)(H3Index start, H3Index end) { |
560 | int distance = H3_EXPORT(h3Distance)(start, end); |
561 | return distance >= 0 ? distance + 1 : distance; |
562 | } |
563 | |
564 | /** |
565 | * Given cube coords as doubles, round to valid integer coordinates. Algorithm |
566 | * from https://www.redblobgames.com/grids/hexagons/#rounding |
567 | * @param i Floating-point I coord |
568 | * @param j Floating-point J coord |
569 | * @param k Floating-point K coord |
570 | * @param ijk IJK coord struct, modified in place |
571 | */ |
572 | static void cubeRound(double i, double j, double k, CoordIJK* ijk) { |
573 | int ri = round(i); |
574 | int rj = round(j); |
575 | int rk = round(k); |
576 | |
577 | double iDiff = fabs((double)ri - i); |
578 | double jDiff = fabs((double)rj - j); |
579 | double kDiff = fabs((double)rk - k); |
580 | |
581 | // Round, maintaining valid cube coords |
582 | if (iDiff > jDiff && iDiff > kDiff) { |
583 | ri = -rj - rk; |
584 | } else if (jDiff > kDiff) { |
585 | rj = -ri - rk; |
586 | } else { |
587 | rk = -ri - rj; |
588 | } |
589 | |
590 | ijk->i = ri; |
591 | ijk->j = rj; |
592 | ijk->k = rk; |
593 | } |
594 | |
595 | /** |
596 | * Given two H3 indexes, return the line of indexes between them (inclusive). |
597 | * |
598 | * This function may fail to find the line between two indexes, for |
599 | * example if they are very far apart. It may also fail when finding |
600 | * distances for indexes on opposite sides of a pentagon. |
601 | * |
602 | * Notes: |
603 | * |
604 | * - The specific output of this function should not be considered stable |
605 | * across library versions. The only guarantees the library provides are |
606 | * that the line length will be `h3Distance(start, end) + 1` and that |
607 | * every index in the line will be a neighbor of the preceding index. |
608 | * - Lines are drawn in grid space, and may not correspond exactly to either |
609 | * Cartesian lines or great arcs. |
610 | * |
611 | * @param start Start index of the line |
612 | * @param end End index of the line |
613 | * @param out Output array, which must be of size h3LineSize(start, end) |
614 | * @return 0 on success, or another value on failure. |
615 | */ |
616 | int H3_EXPORT(h3Line)(H3Index start, H3Index end, H3Index* out) { |
617 | int distance = H3_EXPORT(h3Distance)(start, end); |
618 | // Early exit if we can't calculate the line |
619 | if (distance < 0) { |
620 | return distance; |
621 | } |
622 | |
623 | // Get IJK coords for the start and end. We've already confirmed |
624 | // that these can be calculated with the distance check above. |
625 | CoordIJK startIjk = {0}; |
626 | CoordIJK endIjk = {0}; |
627 | |
628 | // Convert H3 addresses to IJK coords |
629 | h3ToLocalIjk(start, start, &startIjk); |
630 | h3ToLocalIjk(start, end, &endIjk); |
631 | |
632 | // Convert IJK to cube coordinates suitable for linear interpolation |
633 | ijkToCube(&startIjk); |
634 | ijkToCube(&endIjk); |
635 | |
636 | double iStep = |
637 | distance ? (double)(endIjk.i - startIjk.i) / (double)distance : 0; |
638 | double jStep = |
639 | distance ? (double)(endIjk.j - startIjk.j) / (double)distance : 0; |
640 | double kStep = |
641 | distance ? (double)(endIjk.k - startIjk.k) / (double)distance : 0; |
642 | |
643 | CoordIJK currentIjk = {startIjk.i, startIjk.j, startIjk.k}; |
644 | for (int n = 0; n <= distance; n++) { |
645 | cubeRound((double)startIjk.i + iStep * n, |
646 | (double)startIjk.j + jStep * n, |
647 | (double)startIjk.k + kStep * n, ¤tIjk); |
648 | // Convert cube -> ijk -> h3 index |
649 | cubeToIjk(¤tIjk); |
650 | localIjkToH3(start, ¤tIjk, &out[n]); |
651 | } |
652 | |
653 | return 0; |
654 | } |
655 | |