| 1 | /* |
| 2 | * Copyright (c) 2016-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Teddy literal matcher: common runtime procedures. |
| 31 | */ |
| 32 | |
| 33 | #ifndef TEDDY_RUNTIME_COMMON_H_ |
| 34 | #define TEDDY_RUNTIME_COMMON_H_ |
| 35 | |
| 36 | #include "fdr_confirm.h" |
| 37 | #include "fdr_confirm_runtime.h" |
| 38 | #include "ue2common.h" |
| 39 | #include "util/bitutils.h" |
| 40 | #include "util/simd_utils.h" |
| 41 | #include "util/uniform_ops.h" |
| 42 | |
| 43 | extern const u8 ALIGN_DIRECTIVE p_mask_arr[17][32]; |
| 44 | #if defined(HAVE_AVX2) |
| 45 | extern const u8 ALIGN_AVX_DIRECTIVE p_mask_arr256[33][64]; |
| 46 | #endif |
| 47 | |
| 48 | #ifdef ARCH_64_BIT |
| 49 | #define TEDDY_CONF_TYPE u64a |
| 50 | #define TEDDY_FIND_AND_CLEAR_LSB(conf) findAndClearLSB_64(conf) |
| 51 | #else |
| 52 | #define TEDDY_CONF_TYPE u32 |
| 53 | #define TEDDY_FIND_AND_CLEAR_LSB(conf) findAndClearLSB_32(conf) |
| 54 | #endif |
| 55 | |
| 56 | #define CHECK_HWLM_TERMINATE_MATCHING \ |
| 57 | do { \ |
| 58 | if (unlikely(control == HWLM_TERMINATE_MATCHING)) { \ |
| 59 | return HWLM_TERMINATED; \ |
| 60 | } \ |
| 61 | } while (0); |
| 62 | |
| 63 | #define CHECK_FLOOD \ |
| 64 | do { \ |
| 65 | if (unlikely(ptr > tryFloodDetect)) { \ |
| 66 | tryFloodDetect = floodDetect(fdr, a, &ptr, tryFloodDetect, \ |
| 67 | &floodBackoff, &control, iterBytes); \ |
| 68 | CHECK_HWLM_TERMINATE_MATCHING; \ |
| 69 | } \ |
| 70 | } while (0); |
| 71 | |
| 72 | /* |
| 73 | * \brief Copy a block of [0,15] bytes efficiently. |
| 74 | * |
| 75 | * This function is a workaround intended to stop some compilers from |
| 76 | * synthesizing a memcpy function call out of the copy of a small number of |
| 77 | * bytes that we do in vectoredLoad128. |
| 78 | */ |
| 79 | static really_inline |
| 80 | void copyRuntBlock128(u8 *dst, const u8 *src, size_t len) { |
| 81 | switch (len) { |
| 82 | case 0: |
| 83 | break; |
| 84 | case 1: |
| 85 | *dst = *src; |
| 86 | break; |
| 87 | case 2: |
| 88 | unaligned_store_u16(dst, unaligned_load_u16(src)); |
| 89 | break; |
| 90 | case 3: |
| 91 | unaligned_store_u16(dst, unaligned_load_u16(src)); |
| 92 | dst[2] = src[2]; |
| 93 | break; |
| 94 | case 4: |
| 95 | unaligned_store_u32(dst, unaligned_load_u32(src)); |
| 96 | break; |
| 97 | case 5: |
| 98 | case 6: |
| 99 | case 7: |
| 100 | /* Perform copy with two overlapping 4-byte chunks. */ |
| 101 | unaligned_store_u32(dst + len - 4, unaligned_load_u32(src + len - 4)); |
| 102 | unaligned_store_u32(dst, unaligned_load_u32(src)); |
| 103 | break; |
| 104 | case 8: |
| 105 | unaligned_store_u64a(dst, unaligned_load_u64a(src)); |
| 106 | break; |
| 107 | default: |
| 108 | /* Perform copy with two overlapping 8-byte chunks. */ |
| 109 | assert(len < 16); |
| 110 | unaligned_store_u64a(dst + len - 8, unaligned_load_u64a(src + len - 8)); |
| 111 | unaligned_store_u64a(dst, unaligned_load_u64a(src)); |
| 112 | break; |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | // Note: p_mask is an output param that initialises a poison mask. |
| 117 | // *p_mask = load128(p_mask_arr[n] + 16 - m) means: |
| 118 | // m byte 0xff in the beginning, followed by n byte 0x00, |
| 119 | // then followed by the rest bytes 0xff. |
| 120 | // ptr >= lo: |
| 121 | // no history. |
| 122 | // for end/short zone, ptr==lo and start_offset==0 |
| 123 | // for start zone, see below |
| 124 | // lo ptr hi hi |
| 125 | // |----------|-------|----------------|............| |
| 126 | // -start 0 -start+offset MIN(avail,16) |
| 127 | // p_mask ffff..ff0000...........00ffff.......... |
| 128 | // ptr < lo: |
| 129 | // only start zone. |
| 130 | // history |
| 131 | // ptr lo hi hi |
| 132 | // |----------|-------|----------------|............| |
| 133 | // 0 start start+offset end(<=16) |
| 134 | // p_mask ffff.....ffffff..ff0000...........00ffff.......... |
| 135 | static really_inline |
| 136 | m128 vectoredLoad128(m128 *p_mask, const u8 *ptr, const size_t start_offset, |
| 137 | const u8 *lo, const u8 *hi, |
| 138 | const u8 *buf_history, size_t len_history, |
| 139 | const u32 nMasks) { |
| 140 | union { |
| 141 | u8 val8[16]; |
| 142 | m128 val128; |
| 143 | } u; |
| 144 | u.val128 = zeroes128(); |
| 145 | |
| 146 | uintptr_t copy_start; |
| 147 | uintptr_t copy_len; |
| 148 | |
| 149 | if (ptr >= lo) { // short/end/start zone |
| 150 | uintptr_t start = (uintptr_t)(ptr - lo); |
| 151 | uintptr_t avail = (uintptr_t)(hi - ptr); |
| 152 | if (avail >= 16) { |
| 153 | assert(start_offset - start <= 16); |
| 154 | *p_mask = loadu128(p_mask_arr[16 - start_offset + start] |
| 155 | + 16 - start_offset + start); |
| 156 | return loadu128(ptr); |
| 157 | } |
| 158 | assert(start_offset - start <= avail); |
| 159 | *p_mask = loadu128(p_mask_arr[avail - start_offset + start] |
| 160 | + 16 - start_offset + start); |
| 161 | copy_start = 0; |
| 162 | copy_len = avail; |
| 163 | } else { // start zone |
| 164 | uintptr_t need = MIN((uintptr_t)(lo - ptr), |
| 165 | MIN(len_history, nMasks - 1)); |
| 166 | uintptr_t start = (uintptr_t)(lo - ptr); |
| 167 | uintptr_t i; |
| 168 | for (i = start - need; i < start; i++) { |
| 169 | u.val8[i] = buf_history[len_history - (start - i)]; |
| 170 | } |
| 171 | uintptr_t end = MIN(16, (uintptr_t)(hi - ptr)); |
| 172 | assert(start + start_offset <= end); |
| 173 | *p_mask = loadu128(p_mask_arr[end - start - start_offset] |
| 174 | + 16 - start - start_offset); |
| 175 | copy_start = start; |
| 176 | copy_len = end - start; |
| 177 | } |
| 178 | |
| 179 | // Runt block from the buffer. |
| 180 | copyRuntBlock128(&u.val8[copy_start], &ptr[copy_start], copy_len); |
| 181 | |
| 182 | return u.val128; |
| 183 | } |
| 184 | |
| 185 | #if defined(HAVE_AVX2) |
| 186 | /* |
| 187 | * \brief Copy a block of [0,31] bytes efficiently. |
| 188 | * |
| 189 | * This function is a workaround intended to stop some compilers from |
| 190 | * synthesizing a memcpy function call out of the copy of a small number of |
| 191 | * bytes that we do in vectoredLoad256. |
| 192 | */ |
| 193 | static really_inline |
| 194 | void copyRuntBlock256(u8 *dst, const u8 *src, size_t len) { |
| 195 | switch (len) { |
| 196 | case 0: |
| 197 | break; |
| 198 | case 1: |
| 199 | *dst = *src; |
| 200 | break; |
| 201 | case 2: |
| 202 | unaligned_store_u16(dst, unaligned_load_u16(src)); |
| 203 | break; |
| 204 | case 3: |
| 205 | unaligned_store_u16(dst, unaligned_load_u16(src)); |
| 206 | dst[2] = src[2]; |
| 207 | break; |
| 208 | case 4: |
| 209 | unaligned_store_u32(dst, unaligned_load_u32(src)); |
| 210 | break; |
| 211 | case 5: |
| 212 | case 6: |
| 213 | case 7: |
| 214 | /* Perform copy with two overlapping 4-byte chunks. */ |
| 215 | unaligned_store_u32(dst + len - 4, unaligned_load_u32(src + len - 4)); |
| 216 | unaligned_store_u32(dst, unaligned_load_u32(src)); |
| 217 | break; |
| 218 | case 8: |
| 219 | unaligned_store_u64a(dst, unaligned_load_u64a(src)); |
| 220 | break; |
| 221 | case 9: |
| 222 | case 10: |
| 223 | case 11: |
| 224 | case 12: |
| 225 | case 13: |
| 226 | case 14: |
| 227 | case 15: |
| 228 | /* Perform copy with two overlapping 8-byte chunks. */ |
| 229 | unaligned_store_u64a(dst + len - 8, unaligned_load_u64a(src + len - 8)); |
| 230 | unaligned_store_u64a(dst, unaligned_load_u64a(src)); |
| 231 | break; |
| 232 | case 16: |
| 233 | storeu128(dst, loadu128(src)); |
| 234 | break; |
| 235 | default: |
| 236 | /* Perform copy with two overlapping 16-byte chunks. */ |
| 237 | assert(len < 32); |
| 238 | storeu128(dst + len - 16, loadu128(src + len - 16)); |
| 239 | storeu128(dst, loadu128(src)); |
| 240 | break; |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | // Note: p_mask is an output param that initialises a poison mask. |
| 245 | // *p_mask = load256(p_mask_arr256[n] + 32 - m) means: |
| 246 | // m byte 0xff in the beginning, followed by n byte 0x00, |
| 247 | // then followed by the rest bytes 0xff. |
| 248 | // ptr >= lo: |
| 249 | // no history. |
| 250 | // for end/short zone, ptr==lo and start_offset==0 |
| 251 | // for start zone, see below |
| 252 | // lo ptr hi hi |
| 253 | // |----------|-------|----------------|............| |
| 254 | // -start 0 -start+offset MIN(avail,32) |
| 255 | // p_mask ffff..ff0000...........00ffff.......... |
| 256 | // ptr < lo: |
| 257 | // only start zone. |
| 258 | // history |
| 259 | // ptr lo hi hi |
| 260 | // |----------|-------|----------------|............| |
| 261 | // 0 start start+offset end(<=32) |
| 262 | // p_mask ffff.....ffffff..ff0000...........00ffff.......... |
| 263 | static really_inline |
| 264 | m256 vectoredLoad256(m256 *p_mask, const u8 *ptr, const size_t start_offset, |
| 265 | const u8 *lo, const u8 *hi, |
| 266 | const u8 *buf_history, size_t len_history, |
| 267 | const u32 nMasks) { |
| 268 | union { |
| 269 | u8 val8[32]; |
| 270 | m256 val256; |
| 271 | } u; |
| 272 | u.val256 = zeroes256(); |
| 273 | |
| 274 | uintptr_t copy_start; |
| 275 | uintptr_t copy_len; |
| 276 | |
| 277 | if (ptr >= lo) { // short/end/start zone |
| 278 | uintptr_t start = (uintptr_t)(ptr - lo); |
| 279 | uintptr_t avail = (uintptr_t)(hi - ptr); |
| 280 | if (avail >= 32) { |
| 281 | assert(start_offset - start <= 32); |
| 282 | *p_mask = loadu256(p_mask_arr256[32 - start_offset + start] |
| 283 | + 32 - start_offset + start); |
| 284 | return loadu256(ptr); |
| 285 | } |
| 286 | assert(start_offset - start <= avail); |
| 287 | *p_mask = loadu256(p_mask_arr256[avail - start_offset + start] |
| 288 | + 32 - start_offset + start); |
| 289 | copy_start = 0; |
| 290 | copy_len = avail; |
| 291 | } else { //start zone |
| 292 | uintptr_t need = MIN((uintptr_t)(lo - ptr), |
| 293 | MIN(len_history, nMasks - 1)); |
| 294 | uintptr_t start = (uintptr_t)(lo - ptr); |
| 295 | uintptr_t i; |
| 296 | for (i = start - need; i < start; i++) { |
| 297 | u.val8[i] = buf_history[len_history - (start - i)]; |
| 298 | } |
| 299 | uintptr_t end = MIN(32, (uintptr_t)(hi - ptr)); |
| 300 | assert(start + start_offset <= end); |
| 301 | *p_mask = loadu256(p_mask_arr256[end - start - start_offset] |
| 302 | + 32 - start - start_offset); |
| 303 | copy_start = start; |
| 304 | copy_len = end - start; |
| 305 | } |
| 306 | |
| 307 | // Runt block from the buffer. |
| 308 | copyRuntBlock256(&u.val8[copy_start], &ptr[copy_start], copy_len); |
| 309 | |
| 310 | return u.val256; |
| 311 | } |
| 312 | #endif // HAVE_AVX2 |
| 313 | |
| 314 | #if defined(HAVE_AVX512) |
| 315 | // Note: p_mask is an output param that initialises a poison mask. |
| 316 | // u64a k = ones_u64a << n' >> m'; // m' < n' |
| 317 | // *p_mask = set_mask_m512(~k); |
| 318 | // means p_mask is consist of: |
| 319 | // (n' - m') poison bytes "0xff" at the beginning, |
| 320 | // followed by (64 - n') valid bytes "0x00", |
| 321 | // then followed by the rest m' poison bytes "0xff". |
| 322 | // ptr >= lo: |
| 323 | // no history. |
| 324 | // for end/short zone, ptr==lo and start_offset==0 |
| 325 | // for start zone, see below |
| 326 | // lo ptr hi hi |
| 327 | // |----------|-------|----------------|............| |
| 328 | // -start 0 -start+offset MIN(avail,64) |
| 329 | // p_mask ffff..ff0000...........00ffff.......... |
| 330 | // ptr < lo: |
| 331 | // only start zone. |
| 332 | // history |
| 333 | // ptr lo hi hi |
| 334 | // |----------|-------|----------------|............| |
| 335 | // 0 start start+offset end(<=64) |
| 336 | // p_mask ffff.....ffffff..ff0000...........00ffff.......... |
| 337 | static really_inline |
| 338 | m512 vectoredLoad512(m512 *p_mask, const u8 *ptr, const size_t start_offset, |
| 339 | const u8 *lo, const u8 *hi, const u8 *hbuf, size_t hlen, |
| 340 | const u32 nMasks) { |
| 341 | m512 val; |
| 342 | |
| 343 | uintptr_t copy_start; |
| 344 | uintptr_t copy_len; |
| 345 | |
| 346 | if (ptr >= lo) { // short/end/start zone |
| 347 | uintptr_t start = (uintptr_t)(ptr - lo); |
| 348 | uintptr_t avail = (uintptr_t)(hi - ptr); |
| 349 | if (avail >= 64) { |
| 350 | assert(start_offset - start <= 64); |
| 351 | u64a k = ones_u64a << (start_offset - start); |
| 352 | *p_mask = set_mask_m512(~k); |
| 353 | return loadu512(ptr); |
| 354 | } |
| 355 | assert(start_offset - start <= avail); |
| 356 | u64a k = ones_u64a << (64 - avail + start_offset - start) |
| 357 | >> (64 - avail); |
| 358 | *p_mask = set_mask_m512(~k); |
| 359 | copy_start = 0; |
| 360 | copy_len = avail; |
| 361 | } else { //start zone |
| 362 | uintptr_t need = MIN((uintptr_t)(lo - ptr), |
| 363 | MIN(hlen, nMasks - 1)); |
| 364 | uintptr_t start = (uintptr_t)(lo - ptr); |
| 365 | u64a j = 0x7fffffffffffffffULL >> (63 - need) << (start - need); |
| 366 | val = loadu_maskz_m512(j, &hbuf[hlen - start]); |
| 367 | uintptr_t end = MIN(64, (uintptr_t)(hi - ptr)); |
| 368 | assert(start + start_offset <= end); |
| 369 | u64a k = ones_u64a << (64 - end + start + start_offset) >> (64 - end); |
| 370 | *p_mask = set_mask_m512(~k); |
| 371 | copy_start = start; |
| 372 | copy_len = end - start; |
| 373 | } |
| 374 | |
| 375 | assert(copy_len < 64); |
| 376 | assert(copy_len > 0); |
| 377 | u64a j = ones_u64a >> (64 - copy_len) << copy_start; |
| 378 | val = loadu_mask_m512(val, j, ptr); |
| 379 | |
| 380 | return val; |
| 381 | } |
| 382 | #endif // HAVE_AVX512 |
| 383 | |
| 384 | static really_inline |
| 385 | u64a getConfVal(const struct FDR_Runtime_Args *a, const u8 *ptr, u32 byte, |
| 386 | CautionReason reason) { |
| 387 | u64a confVal = 0; |
| 388 | const u8 *buf = a->buf; |
| 389 | size_t len = a->len; |
| 390 | const u8 *confirm_loc = ptr + byte - 7; |
| 391 | if (likely(reason == NOT_CAUTIOUS || confirm_loc >= buf)) { |
| 392 | confVal = lv_u64a(confirm_loc, buf, buf + len); |
| 393 | } else { // r == VECTORING, confirm_loc < buf |
| 394 | u64a histBytes = a->histBytes; |
| 395 | confVal = lv_u64a_ce(confirm_loc, buf, buf + len); |
| 396 | // stitch together confVal and history |
| 397 | u32 overhang = buf - confirm_loc; |
| 398 | histBytes >>= 64 - (overhang * 8); |
| 399 | confVal |= histBytes; |
| 400 | } |
| 401 | return confVal; |
| 402 | } |
| 403 | |
| 404 | static really_inline |
| 405 | void do_confWithBit_teddy(TEDDY_CONF_TYPE *conf, u8 bucket, u8 offset, |
| 406 | const u32 *confBase, CautionReason reason, |
| 407 | const struct FDR_Runtime_Args *a, const u8 *ptr, |
| 408 | hwlmcb_rv_t *control, u32 *last_match) { |
| 409 | do { |
| 410 | u32 bit = TEDDY_FIND_AND_CLEAR_LSB(conf); |
| 411 | u32 byte = bit / bucket + offset; |
| 412 | u32 idx = bit % bucket; |
| 413 | u32 cf = confBase[idx]; |
| 414 | if (!cf) { |
| 415 | continue; |
| 416 | } |
| 417 | const struct FDRConfirm *fdrc = (const struct FDRConfirm *) |
| 418 | ((const u8 *)confBase + cf); |
| 419 | if (!(fdrc->groups & *control)) { |
| 420 | continue; |
| 421 | } |
| 422 | u64a tmp = 0; |
| 423 | u64a confVal = getConfVal(a, ptr, byte, reason); |
| 424 | confWithBit(fdrc, a, ptr - a->buf + byte, control, |
| 425 | last_match, confVal, &tmp, 0); |
| 426 | } while (unlikely(*conf)); |
| 427 | } |
| 428 | |
| 429 | static really_inline |
| 430 | const m128 *getMaskBase(const struct Teddy *teddy) { |
| 431 | return (const m128 *)((const u8 *)teddy + ROUNDUP_CL(sizeof(struct Teddy))); |
| 432 | } |
| 433 | |
| 434 | static really_inline |
| 435 | const u64a *getReinforcedMaskBase(const struct Teddy *teddy, u8 numMask) { |
| 436 | return (const u64a *)((const u8 *)getMaskBase(teddy) |
| 437 | + ROUNDUP_CL(2 * numMask * sizeof(m128))); |
| 438 | } |
| 439 | |
| 440 | static really_inline |
| 441 | const u32 *getConfBase(const struct Teddy *teddy) { |
| 442 | return (const u32 *)((const u8 *)teddy + teddy->confOffset); |
| 443 | } |
| 444 | |
| 445 | #endif /* TEDDY_RUNTIME_COMMON_H_ */ |
| 446 | |