| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Bit-twiddling primitives (ctz, compress etc) |
| 31 | */ |
| 32 | |
| 33 | #ifndef BITUTILS_H |
| 34 | #define BITUTILS_H |
| 35 | |
| 36 | #include "ue2common.h" |
| 37 | #include "popcount.h" |
| 38 | #include "util/arch.h" |
| 39 | #include "util/intrinsics.h" |
| 40 | |
| 41 | #define CASE_BIT 0x20 |
| 42 | #define CASE_CLEAR 0xdf |
| 43 | #define DOUBLE_CASE_CLEAR 0xdfdf |
| 44 | #define OCTO_CASE_CLEAR 0xdfdfdfdfdfdfdfdfULL |
| 45 | |
| 46 | static really_inline |
| 47 | u32 clz32(u32 x) { |
| 48 | assert(x); // behaviour not defined for x == 0 |
| 49 | #if defined(_WIN32) |
| 50 | unsigned long r; |
| 51 | _BitScanReverse(&r, x); |
| 52 | return 31 - r; |
| 53 | #else |
| 54 | return (u32)__builtin_clz(x); |
| 55 | #endif |
| 56 | } |
| 57 | |
| 58 | static really_inline |
| 59 | u32 clz64(u64a x) { |
| 60 | assert(x); // behaviour not defined for x == 0 |
| 61 | #if defined(_WIN64) |
| 62 | unsigned long r; |
| 63 | _BitScanReverse64(&r, x); |
| 64 | return 63 - r; |
| 65 | #elif defined(_WIN32) |
| 66 | unsigned long x1 = (u32)x; |
| 67 | unsigned long x2 = (u32)(x >> 32); |
| 68 | unsigned long r; |
| 69 | if (x2) { |
| 70 | _BitScanReverse(&r, x2); |
| 71 | return (u32)(31 - r); |
| 72 | } |
| 73 | _BitScanReverse(&r, (u32)x1); |
| 74 | return (u32)(63 - r); |
| 75 | #else |
| 76 | return (u32)__builtin_clzll(x); |
| 77 | #endif |
| 78 | } |
| 79 | |
| 80 | // CTZ (count trailing zero) implementations. |
| 81 | static really_inline |
| 82 | u32 ctz32(u32 x) { |
| 83 | assert(x); // behaviour not defined for x == 0 |
| 84 | #if defined(_WIN32) |
| 85 | unsigned long r; |
| 86 | _BitScanForward(&r, x); |
| 87 | return r; |
| 88 | #else |
| 89 | return (u32)__builtin_ctz(x); |
| 90 | #endif |
| 91 | } |
| 92 | |
| 93 | static really_inline |
| 94 | u32 ctz64(u64a x) { |
| 95 | assert(x); // behaviour not defined for x == 0 |
| 96 | #if defined(_WIN64) |
| 97 | unsigned long r; |
| 98 | _BitScanForward64(&r, x); |
| 99 | return r; |
| 100 | #elif defined(_WIN32) |
| 101 | unsigned long r; |
| 102 | if (_BitScanForward(&r, (u32)x)) { |
| 103 | return (u32)r; |
| 104 | } |
| 105 | _BitScanForward(&r, x >> 32); |
| 106 | return (u32)(r + 32); |
| 107 | #else |
| 108 | return (u32)__builtin_ctzll(x); |
| 109 | #endif |
| 110 | } |
| 111 | |
| 112 | static really_inline |
| 113 | u32 lg2(u32 x) { |
| 114 | if (!x) { |
| 115 | return 0; |
| 116 | } |
| 117 | return 31 - clz32(x); |
| 118 | } |
| 119 | |
| 120 | static really_inline |
| 121 | u64a lg2_64(u64a x) { |
| 122 | if (!x) { |
| 123 | return 0; |
| 124 | } |
| 125 | return 63 - clz64(x); |
| 126 | } |
| 127 | |
| 128 | static really_inline |
| 129 | u32 findAndClearLSB_32(u32 *v) { |
| 130 | assert(*v != 0); // behaviour not defined in this case |
| 131 | #ifndef NO_ASM |
| 132 | u32 val = *v, offset; |
| 133 | __asm__ ("bsf %1, %0\n" |
| 134 | "btr %0, %1\n" |
| 135 | : "=r" (offset), "=r" (val) |
| 136 | : "1" (val)); |
| 137 | *v = val; |
| 138 | #else |
| 139 | u32 val = *v; |
| 140 | u32 offset = ctz32(val); |
| 141 | *v = val & (val - 1); |
| 142 | #endif |
| 143 | |
| 144 | assert(offset < 32); |
| 145 | return offset; |
| 146 | } |
| 147 | |
| 148 | static really_inline |
| 149 | u32 findAndClearLSB_64(u64a *v) { |
| 150 | assert(*v != 0); // behaviour not defined in this case |
| 151 | |
| 152 | #ifdef ARCH_64_BIT |
| 153 | #if defined(ARCH_X86_64) && !defined(NO_ASM) |
| 154 | u64a val = *v, offset; |
| 155 | __asm__ ("bsfq %1, %0\n" |
| 156 | "btrq %0, %1\n" |
| 157 | : "=r" (offset), "=r" (val) |
| 158 | : "1" (val)); |
| 159 | *v = val; |
| 160 | #else |
| 161 | // generic variant using gcc's builtin on 64-bit |
| 162 | u64a val = *v, offset; |
| 163 | offset = ctz64(val); |
| 164 | *v = val & (val - 1); |
| 165 | #endif // ARCH_X86_64 |
| 166 | #else |
| 167 | // fall back to doing things with two 32-bit cases, since gcc-4.1 doesn't |
| 168 | // inline calls to __builtin_ctzll |
| 169 | u32 v1 = (u32)*v; |
| 170 | u32 v2 = (u32)(*v >> 32); |
| 171 | u32 offset; |
| 172 | if (v1) { |
| 173 | offset = findAndClearLSB_32(&v1); |
| 174 | *v = (u64a)v1 | ((u64a)v2 << 32); |
| 175 | } else { |
| 176 | offset = findAndClearLSB_32(&v2) + 32; |
| 177 | *v = (u64a)v2 << 32; |
| 178 | } |
| 179 | #endif |
| 180 | |
| 181 | assert(offset < 64); |
| 182 | return (u32)offset; |
| 183 | } |
| 184 | |
| 185 | static really_inline |
| 186 | u32 findAndClearMSB_32(u32 *v) { |
| 187 | assert(*v != 0); // behaviour not defined in this case |
| 188 | #ifndef NO_ASM |
| 189 | u32 val = *v, offset; |
| 190 | __asm__ ("bsr %1, %0\n" |
| 191 | "btr %0, %1\n" |
| 192 | : "=r" (offset), "=r" (val) |
| 193 | : "1" (val)); |
| 194 | *v = val; |
| 195 | #else |
| 196 | u32 val = *v; |
| 197 | u32 offset = 31 - clz32(val); |
| 198 | *v = val & ~(1 << offset); |
| 199 | #endif |
| 200 | assert(offset < 32); |
| 201 | return offset; |
| 202 | } |
| 203 | |
| 204 | static really_inline |
| 205 | u32 findAndClearMSB_64(u64a *v) { |
| 206 | assert(*v != 0); // behaviour not defined in this case |
| 207 | |
| 208 | #ifdef ARCH_64_BIT |
| 209 | #if defined(ARCH_X86_64) && !defined(NO_ASM) |
| 210 | u64a val = *v, offset; |
| 211 | __asm__ ("bsrq %1, %0\n" |
| 212 | "btrq %0, %1\n" |
| 213 | : "=r" (offset), "=r" (val) |
| 214 | : "1" (val)); |
| 215 | *v = val; |
| 216 | #else |
| 217 | // generic variant using gcc's builtin on 64-bit |
| 218 | u64a val = *v, offset; |
| 219 | offset = 63 - clz64(val); |
| 220 | *v = val & ~(1ULL << offset); |
| 221 | #endif // ARCH_X86_64 |
| 222 | #else |
| 223 | // fall back to doing things with two 32-bit cases, since gcc-4.1 doesn't |
| 224 | // inline calls to __builtin_ctzll |
| 225 | u32 v1 = (u32)*v; |
| 226 | u32 v2 = (*v >> 32); |
| 227 | u32 offset; |
| 228 | if (v2) { |
| 229 | offset = findAndClearMSB_32(&v2) + 32; |
| 230 | *v = ((u64a)v2 << 32) | (u64a)v1; |
| 231 | } else { |
| 232 | offset = findAndClearMSB_32(&v1); |
| 233 | *v = (u64a)v1; |
| 234 | } |
| 235 | #endif |
| 236 | |
| 237 | assert(offset < 64); |
| 238 | return (u32)offset; |
| 239 | } |
| 240 | |
| 241 | static really_inline |
| 242 | u32 compress32(u32 x, u32 m) { |
| 243 | #if defined(HAVE_BMI2) |
| 244 | // BMI2 has a single instruction for this operation. |
| 245 | return _pext_u32(x, m); |
| 246 | #else |
| 247 | |
| 248 | // Return zero quickly on trivial cases |
| 249 | if ((x & m) == 0) { |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | u32 mk, mp, mv, t; |
| 254 | |
| 255 | x &= m; // clear irrelevant bits |
| 256 | |
| 257 | mk = ~m << 1; // we will count 0's to right |
| 258 | for (u32 i = 0; i < 5; i++) { |
| 259 | mp = mk ^ (mk << 1); |
| 260 | mp ^= mp << 2; |
| 261 | mp ^= mp << 4; |
| 262 | mp ^= mp << 8; |
| 263 | mp ^= mp << 16; |
| 264 | |
| 265 | mv = mp & m; // bits to move |
| 266 | m = (m ^ mv) | (mv >> (1 << i)); // compress m |
| 267 | t = x & mv; |
| 268 | x = (x ^ t) | (t >> (1 << i)); // compress x |
| 269 | mk = mk & ~mp; |
| 270 | } |
| 271 | |
| 272 | return x; |
| 273 | #endif |
| 274 | } |
| 275 | |
| 276 | static really_inline |
| 277 | u64a compress64(u64a x, u64a m) { |
| 278 | #if defined(ARCH_X86_64) && defined(HAVE_BMI2) |
| 279 | // BMI2 has a single instruction for this operation. |
| 280 | return _pext_u64(x, m); |
| 281 | #else |
| 282 | |
| 283 | // Return zero quickly on trivial cases |
| 284 | if ((x & m) == 0) { |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | u64a mk, mp, mv, t; |
| 289 | |
| 290 | x &= m; // clear irrelevant bits |
| 291 | |
| 292 | mk = ~m << 1; // we will count 0's to right |
| 293 | for (u32 i = 0; i < 6; i++) { |
| 294 | mp = mk ^ (mk << 1); |
| 295 | mp ^= mp << 2; |
| 296 | mp ^= mp << 4; |
| 297 | mp ^= mp << 8; |
| 298 | mp ^= mp << 16; |
| 299 | mp ^= mp << 32; |
| 300 | |
| 301 | mv = mp & m; // bits to move |
| 302 | m = (m ^ mv) | (mv >> (1 << i)); // compress m |
| 303 | t = x & mv; |
| 304 | x = (x ^ t) | (t >> (1 << i)); // compress x |
| 305 | mk = mk & ~mp; |
| 306 | } |
| 307 | |
| 308 | return x; |
| 309 | #endif |
| 310 | } |
| 311 | |
| 312 | static really_inline |
| 313 | u32 expand32(u32 x, u32 m) { |
| 314 | #if defined(HAVE_BMI2) |
| 315 | // BMI2 has a single instruction for this operation. |
| 316 | return _pdep_u32(x, m); |
| 317 | #else |
| 318 | |
| 319 | // Return zero quickly on trivial cases |
| 320 | if (!x || !m) { |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | u32 m0, mk, mp, mv, t; |
| 325 | u32 array[5]; |
| 326 | |
| 327 | m0 = m; // save original mask |
| 328 | mk = ~m << 1; // we will count 0's to right |
| 329 | |
| 330 | for (int i = 0; i < 5; i++) { |
| 331 | mp = mk ^ (mk << 1); // parallel suffix |
| 332 | mp = mp ^ (mp << 2); |
| 333 | mp = mp ^ (mp << 4); |
| 334 | mp = mp ^ (mp << 8); |
| 335 | mp = mp ^ (mp << 16); |
| 336 | mv = mp & m; // bits to move |
| 337 | array[i] = mv; |
| 338 | m = (m ^ mv) | (mv >> (1 << i)); // compress m |
| 339 | mk = mk & ~mp; |
| 340 | } |
| 341 | |
| 342 | for (int i = 4; i >= 0; i--) { |
| 343 | mv = array[i]; |
| 344 | t = x << (1 << i); |
| 345 | x = (x & ~mv) | (t & mv); |
| 346 | } |
| 347 | |
| 348 | return x & m0; // clear out extraneous bits |
| 349 | #endif |
| 350 | } |
| 351 | |
| 352 | static really_inline |
| 353 | u64a expand64(u64a x, u64a m) { |
| 354 | #if defined(ARCH_X86_64) && defined(HAVE_BMI2) |
| 355 | // BMI2 has a single instruction for this operation. |
| 356 | return _pdep_u64(x, m); |
| 357 | #else |
| 358 | |
| 359 | // Return zero quickly on trivial cases |
| 360 | if (!x || !m) { |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | u64a m0, mk, mp, mv, t; |
| 365 | u64a array[6]; |
| 366 | |
| 367 | m0 = m; // save original mask |
| 368 | mk = ~m << 1; // we will count 0's to right |
| 369 | |
| 370 | for (int i = 0; i < 6; i++) { |
| 371 | mp = mk ^ (mk << 1); // parallel suffix |
| 372 | mp = mp ^ (mp << 2); |
| 373 | mp = mp ^ (mp << 4); |
| 374 | mp = mp ^ (mp << 8); |
| 375 | mp = mp ^ (mp << 16); |
| 376 | mp = mp ^ (mp << 32); |
| 377 | mv = mp & m; // bits to move |
| 378 | array[i] = mv; |
| 379 | m = (m ^ mv) | (mv >> (1 << i)); // compress m |
| 380 | mk = mk & ~mp; |
| 381 | } |
| 382 | |
| 383 | for (int i = 5; i >= 0; i--) { |
| 384 | mv = array[i]; |
| 385 | t = x << (1 << i); |
| 386 | x = (x & ~mv) | (t & mv); |
| 387 | } |
| 388 | |
| 389 | return x & m0; // clear out extraneous bits |
| 390 | #endif |
| 391 | } |
| 392 | |
| 393 | |
| 394 | /* returns the first set bit after begin (if not ~0U). If no bit is set after |
| 395 | * begin returns ~0U |
| 396 | */ |
| 397 | static really_inline |
| 398 | u32 bf64_iterate(u64a bitfield, u32 begin) { |
| 399 | if (begin != ~0U) { |
| 400 | /* switch off all bits at or below begin. Note: not legal to shift by |
| 401 | * by size of the datatype or larger. */ |
| 402 | assert(begin <= 63); |
| 403 | bitfield &= ~((2ULL << begin) - 1); |
| 404 | } |
| 405 | |
| 406 | if (!bitfield) { |
| 407 | return ~0U; |
| 408 | } |
| 409 | |
| 410 | return ctz64(bitfield); |
| 411 | } |
| 412 | |
| 413 | static really_inline |
| 414 | char bf64_set(u64a *bitfield, u32 i) { |
| 415 | assert(i < 64); |
| 416 | u64a mask = 1ULL << i; |
| 417 | char was_set = !!(*bitfield & mask); |
| 418 | *bitfield |= mask; |
| 419 | |
| 420 | return was_set; |
| 421 | } |
| 422 | |
| 423 | static really_inline |
| 424 | void bf64_unset(u64a *bitfield, u32 i) { |
| 425 | assert(i < 64); |
| 426 | *bitfield &= ~(1ULL << i); |
| 427 | } |
| 428 | |
| 429 | static really_inline |
| 430 | u32 rank_in_mask32(u32 mask, u32 bit) { |
| 431 | assert(bit < sizeof(u32) * 8); |
| 432 | assert(mask & (u32)(1U << bit)); |
| 433 | mask &= (u32)(1U << bit) - 1; |
| 434 | return popcount32(mask); |
| 435 | } |
| 436 | |
| 437 | static really_inline |
| 438 | u32 rank_in_mask64(u64a mask, u32 bit) { |
| 439 | assert(bit < sizeof(u64a) * 8); |
| 440 | assert(mask & (u64a)(1ULL << bit)); |
| 441 | mask &= (u64a)(1ULL << bit) - 1; |
| 442 | return popcount64(mask); |
| 443 | } |
| 444 | |
| 445 | static really_inline |
| 446 | u32 pext32(u32 x, u32 mask) { |
| 447 | #if defined(HAVE_BMI2) |
| 448 | // Intel BMI2 can do this operation in one instruction. |
| 449 | return _pext_u32(x, mask); |
| 450 | #else |
| 451 | |
| 452 | u32 result = 0, num = 1; |
| 453 | while (mask != 0) { |
| 454 | u32 bit = findAndClearLSB_32(&mask); |
| 455 | if (x & (1U << bit)) { |
| 456 | assert(num != 0); // more than 32 bits! |
| 457 | result |= num; |
| 458 | } |
| 459 | num <<= 1; |
| 460 | } |
| 461 | return result; |
| 462 | #endif |
| 463 | } |
| 464 | |
| 465 | static really_inline |
| 466 | u64a pext64(u64a x, u64a mask) { |
| 467 | #if defined(HAVE_BMI2) && defined(ARCH_64_BIT) |
| 468 | // Intel BMI2 can do this operation in one instruction. |
| 469 | return _pext_u64(x, mask); |
| 470 | #else |
| 471 | |
| 472 | u32 result = 0, num = 1; |
| 473 | while (mask != 0) { |
| 474 | u32 bit = findAndClearLSB_64(&mask); |
| 475 | if (x & (1ULL << bit)) { |
| 476 | assert(num != 0); // more than 32 bits! |
| 477 | result |= num; |
| 478 | } |
| 479 | num <<= 1; |
| 480 | } |
| 481 | return result; |
| 482 | #endif |
| 483 | } |
| 484 | |
| 485 | #if defined(HAVE_BMI2) && defined(ARCH_64_BIT) |
| 486 | static really_inline |
| 487 | u64a pdep64(u64a x, u64a mask) { |
| 488 | return _pdep_u64(x, mask); |
| 489 | } |
| 490 | #endif |
| 491 | |
| 492 | #endif // BITUTILS_H |
| 493 | |