| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** |
| 30 | * \file |
| 31 | * \brief Build code for DFA minimization. |
| 32 | */ |
| 33 | |
| 34 | /** |
| 35 | * /Summary of the Hopcroft minimisation algorithm/ |
| 36 | * |
| 37 | * partition := {F, Q \ F}; |
| 38 | * work_queue := {F}; |
| 39 | * while (work_queue is not empty) do |
| 40 | * choose and remove a set A from work_queue |
| 41 | * for each c in . do |
| 42 | * let X be the set of states for which a transition on c |
| 43 | * leads to a state in A |
| 44 | * for each set Y in partition for which X . Y is nonempty and |
| 45 | * Y \ X is nonempty do |
| 46 | * replace Y in partition by the two sets X . Y and Y \ X |
| 47 | * if Y is in work_queue |
| 48 | * replace Y in work_queue by the same two sets |
| 49 | * else |
| 50 | * if |X . Y| <= |Y \ X| |
| 51 | * add X . Y to work_queue |
| 52 | * else |
| 53 | * add Y \ X to work_queue |
| 54 | * end; |
| 55 | * end; |
| 56 | * end; |
| 57 | */ |
| 58 | |
| 59 | #include "dfa_min.h" |
| 60 | |
| 61 | #include "grey.h" |
| 62 | #include "mcclellancompile_util.h" |
| 63 | #include "rdfa.h" |
| 64 | #include "ue2common.h" |
| 65 | #include "util/container.h" |
| 66 | #include "util/flat_containers.h" |
| 67 | #include "util/noncopyable.h" |
| 68 | #include "util/partitioned_set.h" |
| 69 | |
| 70 | #include <algorithm> |
| 71 | #include <functional> |
| 72 | #include <iterator> |
| 73 | #include <map> |
| 74 | #include <queue> |
| 75 | #include <set> |
| 76 | #include <vector> |
| 77 | |
| 78 | using namespace std; |
| 79 | |
| 80 | namespace ue2 { |
| 81 | |
| 82 | namespace { |
| 83 | |
| 84 | struct hopcroft_state_info { |
| 85 | explicit hopcroft_state_info(size_t alpha_size) : prev(alpha_size) {} |
| 86 | |
| 87 | /** \brief Mapping from symbol to a list of predecessors that transition to |
| 88 | * this state on that symbol. */ |
| 89 | vector<vector<dstate_id_t>> prev; |
| 90 | }; |
| 91 | |
| 92 | struct HopcroftInfo : noncopyable { |
| 93 | size_t alpha_size; //!< Size of DFA alphabet. |
| 94 | queue<size_t> work_queue; //!< Hopcroft work queue of partition indices. |
| 95 | partitioned_set<dstate_id_t> partition; //!< Partition set of DFA states. |
| 96 | vector<hopcroft_state_info> states; //!< Pre-calculated state info (preds) |
| 97 | |
| 98 | explicit HopcroftInfo(const raw_dfa &rdfa); |
| 99 | }; |
| 100 | |
| 101 | } // namespace |
| 102 | |
| 103 | /** |
| 104 | * \brief Create an initial partitioning and work_queue. |
| 105 | * |
| 106 | * Initial partition contains {accepting states..., Non-accepting states} |
| 107 | * Initial work_queue contains accepting state subsets |
| 108 | * |
| 109 | * The initial partitioning needs to distinguish between the different |
| 110 | * reporting behaviours (unlike standard Hopcroft) --> more than one subset |
| 111 | * possible for the accepting states. |
| 112 | * |
| 113 | * Look for accepting states in both reports and reports_eod. |
| 114 | * Creates a map with a key(reports, reports_eod) and an id. |
| 115 | * Reports of each state are searched against the map and |
| 116 | * added to the corresponding id -> partition[id] and work_queue[id]. |
| 117 | * Non Accept states are added to partition[id+1]. |
| 118 | */ |
| 119 | static |
| 120 | vector<size_t> create_map(const raw_dfa &rdfa, queue<size_t> &work_queue) { |
| 121 | using ReportKey = pair<flat_set<ReportID>, flat_set<ReportID>>; |
| 122 | map<ReportKey, size_t> subset_map; |
| 123 | vector<size_t> state_to_subset(rdfa.states.size(), INVALID_SUBSET); |
| 124 | |
| 125 | for (size_t i = 0; i < rdfa.states.size(); i++) { |
| 126 | const auto &ds = rdfa.states[i]; |
| 127 | if (!ds.reports.empty() || !ds.reports_eod.empty()) { |
| 128 | ReportKey key(ds.reports, ds.reports_eod); |
| 129 | if (contains(subset_map, key)) { |
| 130 | state_to_subset[i] = subset_map[key]; |
| 131 | } else { |
| 132 | size_t sub = subset_map.size(); |
| 133 | subset_map.emplace(std::move(key), sub); |
| 134 | state_to_subset[i] = sub; |
| 135 | work_queue.push(sub); |
| 136 | } |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | /* Give non-accept states their own subset. */ |
| 141 | size_t non_accept_sub = subset_map.size(); |
| 142 | replace(state_to_subset.begin(), state_to_subset.end(), INVALID_SUBSET, |
| 143 | non_accept_sub); |
| 144 | |
| 145 | return state_to_subset; |
| 146 | } |
| 147 | |
| 148 | HopcroftInfo::HopcroftInfo(const raw_dfa &rdfa) |
| 149 | : alpha_size(rdfa.alpha_size), partition(create_map(rdfa, work_queue)), |
| 150 | states(rdfa.states.size(), hopcroft_state_info(alpha_size)) { |
| 151 | /* Construct predecessor lists for each state, indexed by symbol. */ |
| 152 | for (size_t i = 0; i < states.size(); i++) { // i is the previous state |
| 153 | for (size_t sym = 0; sym < alpha_size; sym++) { |
| 154 | dstate_id_t present_state = rdfa.states[i].next[sym]; |
| 155 | states[present_state].prev[sym].push_back(i); |
| 156 | } |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | /** |
| 161 | * For a split set X, each subset S (given by part_index) in the partition, two |
| 162 | * sets are created: v_inter (X intersection S) and v_sub (S - X). |
| 163 | * |
| 164 | * For each subset S in the partition that could be split (v_inter is nonempty |
| 165 | * and v_sub is nonempty): |
| 166 | * - replace S in partition by the two sets v_inter and v_sub. |
| 167 | * - if S is in work_queue: |
| 168 | * - replace S in work_queue by the two subsets. |
| 169 | * - else: |
| 170 | * - replace S in work_queue by the smaller of the two sets. |
| 171 | */ |
| 172 | static |
| 173 | void split_and_replace_set(const size_t part_index, HopcroftInfo &info, |
| 174 | const flat_set<dstate_id_t> &splitter) { |
| 175 | /* singleton sets cannot be split */ |
| 176 | if (info.partition[part_index].size() == 1) { |
| 177 | return; |
| 178 | } |
| 179 | |
| 180 | size_t small_index = info.partition.split(part_index, splitter); |
| 181 | |
| 182 | if (small_index == INVALID_SUBSET) { |
| 183 | /* the set could not be split */ |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | /* larger subset remains at the input subset index, if the input subset was |
| 188 | * already in the work queue then the larger subset will remain there. */ |
| 189 | |
| 190 | info.work_queue.push(small_index); |
| 191 | } |
| 192 | |
| 193 | /** |
| 194 | * \brief Core of the Hopcroft minimisation algorithm. |
| 195 | */ |
| 196 | static |
| 197 | void dfa_min(HopcroftInfo &info) { |
| 198 | flat_set<dstate_id_t> curr, sym_preds; |
| 199 | vector<size_t> cand_subsets; |
| 200 | |
| 201 | while (!info.work_queue.empty()) { |
| 202 | /* Choose and remove a set of states (curr, or A in the description |
| 203 | * above) from the work queue. Note that we copy the set because the |
| 204 | * partition may be split by the loop below. */ |
| 205 | curr.clear(); |
| 206 | insert(&curr, info.partition[info.work_queue.front()]); |
| 207 | info.work_queue.pop(); |
| 208 | |
| 209 | for (size_t sym = 0; sym < info.alpha_size; sym++) { |
| 210 | /* Find the set of states sym_preds for which a transition on the |
| 211 | * given symbol leads to a state in curr. */ |
| 212 | sym_preds.clear(); |
| 213 | for (dstate_id_t s : curr) { |
| 214 | insert(&sym_preds, info.states[s].prev[sym]); |
| 215 | } |
| 216 | |
| 217 | if (sym_preds.empty()) { |
| 218 | continue; |
| 219 | } |
| 220 | |
| 221 | /* we only need to consider subsets with at least one member in |
| 222 | * sym_preds for splitting */ |
| 223 | cand_subsets.clear(); |
| 224 | info.partition.find_overlapping(sym_preds, &cand_subsets); |
| 225 | |
| 226 | for (size_t sub : cand_subsets) { |
| 227 | split_and_replace_set(sub, info, sym_preds); |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | /** |
| 234 | * \brief Build the new DFA state table. |
| 235 | */ |
| 236 | static |
| 237 | void mapping_new_states(const HopcroftInfo &info, |
| 238 | vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) { |
| 239 | const size_t num_partitions = info.partition.size(); |
| 240 | |
| 241 | // Mapping from equiv class's first state to equiv class index. |
| 242 | map<dstate_id_t, size_t> ordering; |
| 243 | |
| 244 | // New state id for each equiv class. |
| 245 | vector<dstate_id_t> eq_state(num_partitions); |
| 246 | |
| 247 | for (size_t i = 0; i < num_partitions; i++) { |
| 248 | ordering[*info.partition[i].begin()] = i; |
| 249 | } |
| 250 | |
| 251 | dstate_id_t new_id = 0; |
| 252 | for (const auto &m : ordering) { |
| 253 | eq_state[m.second] = new_id++; |
| 254 | } |
| 255 | |
| 256 | for (size_t t = 0; t < info.partition.size(); t++) { |
| 257 | for (dstate_id_t id : info.partition[t]) { |
| 258 | old_to_new[id] = eq_state[t]; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | vector<dstate> new_states; |
| 263 | new_states.reserve(num_partitions); |
| 264 | |
| 265 | for (const auto &m : ordering) { |
| 266 | new_states.push_back(rdfa.states[m.first]); |
| 267 | } |
| 268 | rdfa.states = std::move(new_states); |
| 269 | } |
| 270 | |
| 271 | static |
| 272 | void renumber_new_states(const HopcroftInfo &info, |
| 273 | const vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) { |
| 274 | for (size_t i = 0; i < info.partition.size(); i++) { |
| 275 | for (size_t sym = 0; sym < info.alpha_size; sym++) { |
| 276 | dstate_id_t output = rdfa.states[i].next[sym]; |
| 277 | rdfa.states[i].next[sym] = old_to_new[output]; |
| 278 | } |
| 279 | dstate_id_t dad = rdfa.states[i].daddy; |
| 280 | rdfa.states[i].daddy = old_to_new[dad]; |
| 281 | } |
| 282 | |
| 283 | rdfa.start_floating = old_to_new[rdfa.start_floating]; |
| 284 | rdfa.start_anchored = old_to_new[rdfa.start_anchored]; |
| 285 | } |
| 286 | |
| 287 | static |
| 288 | void new_dfa(raw_dfa &rdfa, const HopcroftInfo &info) { |
| 289 | if (info.partition.size() == info.states.size()) { |
| 290 | return; |
| 291 | } |
| 292 | |
| 293 | vector<dstate_id_t> old_to_new(info.states.size()); |
| 294 | mapping_new_states(info, old_to_new, rdfa); |
| 295 | renumber_new_states(info, old_to_new, rdfa); |
| 296 | } |
| 297 | |
| 298 | void minimize_hopcroft(raw_dfa &rdfa, const Grey &grey) { |
| 299 | if (!grey.minimizeDFA) { |
| 300 | return; |
| 301 | } |
| 302 | |
| 303 | if (is_dead(rdfa)) { |
| 304 | DEBUG_PRINTF("dfa is empty\n" ); |
| 305 | } |
| 306 | |
| 307 | UNUSED const size_t states_before = rdfa.states.size(); |
| 308 | |
| 309 | HopcroftInfo info(rdfa); |
| 310 | |
| 311 | dfa_min(info); |
| 312 | new_dfa(rdfa, info); |
| 313 | |
| 314 | DEBUG_PRINTF("reduced from %zu to %zu states\n" , states_before, |
| 315 | rdfa.states.size()); |
| 316 | } |
| 317 | |
| 318 | } // namespace ue2 |
| 319 | |