| 1 | /* |
| 2 | * Copyright (c) 2016-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** |
| 30 | * \file |
| 31 | * \brief Rose build: code for analysing literal groups. |
| 32 | */ |
| 33 | |
| 34 | #include "rose_build_groups.h" |
| 35 | |
| 36 | #include "util/boundary_reports.h" |
| 37 | #include "util/compile_context.h" |
| 38 | #include "util/report_manager.h" |
| 39 | |
| 40 | #include <queue> |
| 41 | #include <vector> |
| 42 | |
| 43 | #include <boost/graph/topological_sort.hpp> |
| 44 | #include <boost/range/adaptor/map.hpp> |
| 45 | #include <boost/range/adaptor/reversed.hpp> |
| 46 | |
| 47 | using namespace std; |
| 48 | using boost::adaptors::map_keys; |
| 49 | |
| 50 | namespace ue2 { |
| 51 | |
| 52 | #define ROSE_LONG_LITERAL_LEN 8 |
| 53 | |
| 54 | static |
| 55 | bool superStrong(const rose_literal_id &lit) { |
| 56 | if (lit.s.length() < ROSE_LONG_LITERAL_LEN) { |
| 57 | return false; |
| 58 | } |
| 59 | |
| 60 | const u32 EXPECTED_FDR_BUCKET_LENGTH = 8; |
| 61 | |
| 62 | assert(lit.s.length() >= EXPECTED_FDR_BUCKET_LENGTH); |
| 63 | size_t len = lit.s.length(); |
| 64 | const string &s = lit.s.get_string(); |
| 65 | |
| 66 | for (size_t i = 1; i < EXPECTED_FDR_BUCKET_LENGTH; i++) { |
| 67 | if (s[len - 1 - i] != s[len - 1]) { |
| 68 | return true; /* we have at least some variation in the tail */ |
| 69 | } |
| 70 | } |
| 71 | DEBUG_PRINTF("lit '%s' is not superstrong due to tail\n" , |
| 72 | escapeString(s).c_str()); |
| 73 | return false; |
| 74 | } |
| 75 | |
| 76 | static |
| 77 | bool eligibleForAlwaysOnGroup(const RoseBuildImpl &build, u32 id) { |
| 78 | auto eligble = [&](RoseVertex v) { |
| 79 | return build.isRootSuccessor(v) |
| 80 | && (!build.g[v].left || !isAnchored(build.g[v].left)); |
| 81 | }; |
| 82 | |
| 83 | if (any_of_in(build.literal_info[id].vertices, eligble)) { |
| 84 | return true; |
| 85 | } |
| 86 | |
| 87 | for (u32 delayed_id : build.literal_info[id].delayed_ids) { |
| 88 | if (any_of_in(build.literal_info[delayed_id].vertices, eligble)) { |
| 89 | return true; |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | return false; |
| 94 | } |
| 95 | |
| 96 | static |
| 97 | bool requires_group_assignment(const rose_literal_id &lit, |
| 98 | const rose_literal_info &info) { |
| 99 | if (lit.delay) { /* we will check the shadow's master */ |
| 100 | return false; |
| 101 | } |
| 102 | |
| 103 | if (lit.table == ROSE_ANCHORED || lit.table == ROSE_EVENT) { |
| 104 | return false; |
| 105 | } |
| 106 | |
| 107 | // If we already have a group applied, skip. |
| 108 | if (info.group_mask) { |
| 109 | return false; |
| 110 | } |
| 111 | |
| 112 | if (info.vertices.empty() && info.delayed_ids.empty()) { |
| 113 | DEBUG_PRINTF("literal is good for nothing\n" ); |
| 114 | return false; |
| 115 | } |
| 116 | |
| 117 | return true; |
| 118 | } |
| 119 | |
| 120 | static |
| 121 | rose_group calcLocalGroup(const RoseVertex v, const RoseGraph &g, |
| 122 | const deque<rose_literal_info> &literal_info, |
| 123 | const bool small_literal_count) { |
| 124 | rose_group local_group = 0; |
| 125 | |
| 126 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 127 | /* In small cases, ensure that siblings have the same rose parentage to |
| 128 | * allow rose squashing. In larger cases, don't do this as groups are |
| 129 | * probably too scarce. */ |
| 130 | for (auto w : adjacent_vertices_range(u, g)) { |
| 131 | if (!small_literal_count || g[v].left == g[w].left) { |
| 132 | for (u32 lit_id : g[w].literals) { |
| 133 | local_group |= literal_info[lit_id].group_mask; |
| 134 | } |
| 135 | } else { |
| 136 | DEBUG_PRINTF("not sibling different mother %zu %zu\n" , |
| 137 | g[v].index, g[w].index); |
| 138 | } |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | return local_group; |
| 143 | } |
| 144 | |
| 145 | /* group constants */ |
| 146 | #define MAX_LIGHT_LITERAL_CASE 200 /* allow rose to affect group decisions below |
| 147 | * this */ |
| 148 | |
| 149 | static |
| 150 | flat_set<RoseVertex> getAssociatedVertices(const RoseBuildImpl &build, u32 id) { |
| 151 | flat_set<RoseVertex> out; |
| 152 | const auto &info = build.literal_info[id]; |
| 153 | insert(&out, info.vertices); |
| 154 | for (const auto &delayed : info.delayed_ids) { |
| 155 | insert(&out, build.literal_info[delayed].vertices); |
| 156 | } |
| 157 | return out; |
| 158 | } |
| 159 | |
| 160 | static |
| 161 | u32 next_available_group(u32 counter, u32 min_start_group) { |
| 162 | counter++; |
| 163 | if (counter == ROSE_GROUPS_MAX) { |
| 164 | DEBUG_PRINTF("resetting groups\n" ); |
| 165 | counter = min_start_group; |
| 166 | } |
| 167 | |
| 168 | return counter; |
| 169 | } |
| 170 | |
| 171 | static |
| 172 | void allocateGroupForBoundary(RoseBuildImpl &build, u32 group_always_on, |
| 173 | map<u8, u32> &groupCount) { |
| 174 | /* Boundary reports at zero will always fired and forgotten, no need to |
| 175 | * worry about preventing the stream being marked as exhausted */ |
| 176 | if (build.boundary.report_at_eod.empty()) { |
| 177 | return; |
| 178 | } |
| 179 | |
| 180 | /* Group based stream exhaustion is only done at stream boundaries */ |
| 181 | if (!build.cc.streaming) { |
| 182 | return; |
| 183 | } |
| 184 | |
| 185 | DEBUG_PRINTF("allocating %u as boundary group id\n" , group_always_on); |
| 186 | |
| 187 | build.boundary_group_mask = 1ULL << group_always_on; |
| 188 | groupCount[group_always_on]++; |
| 189 | } |
| 190 | |
| 191 | static |
| 192 | void allocateGroupForEvent(RoseBuildImpl &build, u32 group_always_on, |
| 193 | map<u8, u32> &groupCount, u32 *counter) { |
| 194 | if (build.eod_event_literal_id == MO_INVALID_IDX) { |
| 195 | return; |
| 196 | } |
| 197 | |
| 198 | /* Group based stream exhaustion is only done at stream boundaries */ |
| 199 | if (!build.cc.streaming) { |
| 200 | return; |
| 201 | } |
| 202 | |
| 203 | rose_literal_info &info = build.literal_info[build.eod_event_literal_id]; |
| 204 | |
| 205 | if (info.vertices.empty()) { |
| 206 | return; |
| 207 | } |
| 208 | |
| 209 | bool new_group = !groupCount[group_always_on]; |
| 210 | for (RoseVertex v : info.vertices) { |
| 211 | if (build.g[v].left && !isAnchored(build.g[v].left)) { |
| 212 | new_group = false; |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | u32 group; |
| 217 | if (!new_group) { |
| 218 | group = group_always_on; |
| 219 | } else { |
| 220 | group = *counter; |
| 221 | *counter += 1; |
| 222 | } |
| 223 | |
| 224 | DEBUG_PRINTF("allocating %u as eod event group id\n" , *counter); |
| 225 | info.group_mask = 1ULL << group; |
| 226 | groupCount[group]++; |
| 227 | } |
| 228 | |
| 229 | void assignGroupsToLiterals(RoseBuildImpl &build) { |
| 230 | auto &literals = build.literals; |
| 231 | auto &literal_info = build.literal_info; |
| 232 | |
| 233 | bool small_literal_count = literal_info.size() <= MAX_LIGHT_LITERAL_CASE; |
| 234 | |
| 235 | map<u8, u32> groupCount; /* group index to number of members */ |
| 236 | |
| 237 | u32 counter = 0; |
| 238 | u32 group_always_on = 0; |
| 239 | |
| 240 | // First pass: handle always on literals. |
| 241 | for (u32 id = 0; id < literals.size(); id++) { |
| 242 | const rose_literal_id &lit = literals.at(id); |
| 243 | rose_literal_info &info = literal_info[id]; |
| 244 | |
| 245 | if (!requires_group_assignment(lit, info)) { |
| 246 | continue; |
| 247 | } |
| 248 | |
| 249 | // If this literal has a root role, we always have to search for it |
| 250 | // anyway, so it goes in the always-on group. |
| 251 | /* We could end up squashing it if it is followed by a .* */ |
| 252 | if (eligibleForAlwaysOnGroup(build, id)) { |
| 253 | info.group_mask = 1ULL << group_always_on; |
| 254 | groupCount[group_always_on]++; |
| 255 | continue; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | u32 group_long_lit; |
| 260 | if (groupCount[group_always_on]) { |
| 261 | DEBUG_PRINTF("%u always on literals\n" , groupCount[group_always_on]); |
| 262 | group_long_lit = group_always_on; |
| 263 | counter++; |
| 264 | } else { |
| 265 | group_long_lit = counter; |
| 266 | counter++; |
| 267 | } |
| 268 | |
| 269 | allocateGroupForBoundary(build, group_always_on, groupCount); |
| 270 | allocateGroupForEvent(build, group_always_on, groupCount, &counter); |
| 271 | |
| 272 | u32 min_start_group = counter; |
| 273 | priority_queue<tuple<s32, s32, u32>> pq; |
| 274 | |
| 275 | // Second pass: the other literals. |
| 276 | for (u32 id = 0; id < literals.size(); id++) { |
| 277 | const rose_literal_id &lit = literals.at(id); |
| 278 | rose_literal_info &info = literal_info[id]; |
| 279 | |
| 280 | if (!requires_group_assignment(lit, info)) { |
| 281 | continue; |
| 282 | } |
| 283 | |
| 284 | assert(!eligibleForAlwaysOnGroup(build, id)); |
| 285 | pq.emplace(-(s32)info.vertices.size(), -(s32)lit.s.length(), id); |
| 286 | } |
| 287 | vector<u32> long_lits; |
| 288 | while (!pq.empty()) { |
| 289 | u32 id = get<2>(pq.top()); |
| 290 | pq.pop(); |
| 291 | UNUSED const rose_literal_id &lit = literals.at(id); |
| 292 | DEBUG_PRINTF("assigning groups to lit %u (v %zu l %zu)\n" , id, |
| 293 | literal_info[id].vertices.size(), lit.s.length()); |
| 294 | |
| 295 | u8 group_id = 0; |
| 296 | rose_group group = ~0ULL; |
| 297 | for (auto v : getAssociatedVertices(build, id)) { |
| 298 | rose_group local_group = calcLocalGroup(v, build.g, literal_info, |
| 299 | small_literal_count); |
| 300 | group &= local_group; |
| 301 | if (!group) { |
| 302 | break; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | if (group == ~0ULL) { |
| 307 | goto boring; |
| 308 | } |
| 309 | |
| 310 | group &= ~((1ULL << min_start_group) - 1); /* ensure the purity of the |
| 311 | * always_on groups */ |
| 312 | if (!group) { |
| 313 | goto boring; |
| 314 | } |
| 315 | |
| 316 | group_id = ctz64(group); |
| 317 | |
| 318 | /* TODO: fairness */ |
| 319 | DEBUG_PRINTF("picking sibling group %hhd\n" , group_id); |
| 320 | literal_info[id].group_mask = 1ULL << group_id; |
| 321 | groupCount[group_id]++; |
| 322 | |
| 323 | continue; |
| 324 | |
| 325 | boring: |
| 326 | /* long literals will either be stuck in a mega group or spread around |
| 327 | * depending on availability */ |
| 328 | if (superStrong(lit)) { |
| 329 | long_lits.push_back(id); |
| 330 | continue; |
| 331 | } |
| 332 | |
| 333 | // Other literals are assigned to our remaining groups round-robin. |
| 334 | group_id = counter; |
| 335 | |
| 336 | DEBUG_PRINTF("picking boring group %hhd\n" , group_id); |
| 337 | literal_info[id].group_mask = 1ULL << group_id; |
| 338 | groupCount[group_id]++; |
| 339 | counter = next_available_group(counter, min_start_group); |
| 340 | } |
| 341 | |
| 342 | /* spread long literals out amongst unused groups if any, otherwise stick |
| 343 | * them in the always on the group */ |
| 344 | |
| 345 | if (groupCount[counter]) { |
| 346 | DEBUG_PRINTF("sticking long literals in the image of the always on\n" ); |
| 347 | for (u32 lit_id : long_lits) { |
| 348 | literal_info[lit_id].group_mask = 1ULL << group_long_lit; |
| 349 | groupCount[group_long_lit]++; |
| 350 | } |
| 351 | } else { |
| 352 | u32 min_long_counter = counter; |
| 353 | DEBUG_PRINTF("base long lit group = %u\n" , min_long_counter); |
| 354 | for (u32 lit_id : long_lits) { |
| 355 | u8 group_id = counter; |
| 356 | literal_info[lit_id].group_mask = 1ULL << group_id; |
| 357 | groupCount[group_id]++; |
| 358 | counter = next_available_group(counter, min_long_counter); |
| 359 | } |
| 360 | } |
| 361 | /* assign delayed literals to the same group as their parent */ |
| 362 | for (u32 id = 0; id < literals.size(); id++) { |
| 363 | const rose_literal_id &lit = literals.at(id); |
| 364 | |
| 365 | if (!lit.delay) { |
| 366 | continue; |
| 367 | } |
| 368 | |
| 369 | u32 parent = literal_info[id].undelayed_id; |
| 370 | DEBUG_PRINTF("%u is shadow picking up groups from %u\n" , id, parent); |
| 371 | assert(literal_info[parent].undelayed_id == parent); |
| 372 | assert(literal_info[parent].group_mask); |
| 373 | literal_info[id].group_mask = literal_info[parent].group_mask; |
| 374 | /* don't increment the group count - these don't really exist */ |
| 375 | } |
| 376 | |
| 377 | DEBUG_PRINTF("populate group to literal mapping\n" ); |
| 378 | for (u32 id = 0; id < literals.size(); id++) { |
| 379 | rose_group groups = literal_info[id].group_mask; |
| 380 | while (groups) { |
| 381 | u32 group_id = findAndClearLSB_64(&groups); |
| 382 | build.group_to_literal[group_id].insert(id); |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | /* find how many groups we allocated */ |
| 387 | for (u32 i = 0; i < ROSE_GROUPS_MAX; i++) { |
| 388 | if (groupCount[i]) { |
| 389 | build.group_end = max(build.group_end, i + 1); |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | rose_group RoseBuildImpl::getGroups(RoseVertex v) const { |
| 395 | rose_group groups = 0; |
| 396 | |
| 397 | for (u32 id : g[v].literals) { |
| 398 | u32 lit_id = literal_info.at(id).undelayed_id; |
| 399 | |
| 400 | rose_group mygroups = literal_info[lit_id].group_mask; |
| 401 | groups |= mygroups; |
| 402 | } |
| 403 | |
| 404 | return groups; |
| 405 | } |
| 406 | |
| 407 | /** \brief Get the groups of the successor literals of a given vertex. */ |
| 408 | rose_group RoseBuildImpl::getSuccGroups(RoseVertex start) const { |
| 409 | rose_group initialGroups = 0; |
| 410 | |
| 411 | for (auto v : adjacent_vertices_range(start, g)) { |
| 412 | initialGroups |= getGroups(v); |
| 413 | } |
| 414 | |
| 415 | return initialGroups; |
| 416 | } |
| 417 | |
| 418 | /** |
| 419 | * The groups that a role sets are determined by the union of its successor |
| 420 | * literals. Requires the literals already have had groups assigned. |
| 421 | */ |
| 422 | void assignGroupsToRoles(RoseBuildImpl &build) { |
| 423 | auto &g = build.g; |
| 424 | |
| 425 | /* Note: if there is a succ literal in the sidematcher, its successors |
| 426 | * literals must be added instead */ |
| 427 | for (auto v : vertices_range(g)) { |
| 428 | if (build.isAnyStart(v)) { |
| 429 | continue; |
| 430 | } |
| 431 | |
| 432 | const rose_group succ_groups = build.getSuccGroups(v); |
| 433 | g[v].groups |= succ_groups; |
| 434 | |
| 435 | auto ghost_it = build.ghost.find(v); |
| 436 | if (ghost_it != end(build.ghost)) { |
| 437 | /* delayed roles need to supply their groups to the ghost role */ |
| 438 | g[ghost_it->second].groups |= succ_groups; |
| 439 | } |
| 440 | |
| 441 | DEBUG_PRINTF("vertex %zu: groups=%llx\n" , g[v].index, g[v].groups); |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | /** |
| 446 | * \brief Returns a mapping from each graph vertex v to the intersection of the |
| 447 | * groups switched on by all of the paths leading up to (and including) v from |
| 448 | * the start vertexes. |
| 449 | */ |
| 450 | unordered_map<RoseVertex, rose_group> |
| 451 | getVertexGroupMap(const RoseBuildImpl &build) { |
| 452 | const RoseGraph &g = build.g; |
| 453 | vector<RoseVertex> v_order; |
| 454 | v_order.reserve(num_vertices(g)); |
| 455 | |
| 456 | boost::topological_sort(g, back_inserter(v_order)); |
| 457 | |
| 458 | unordered_map<RoseVertex, rose_group> vertex_group_map; |
| 459 | vertex_group_map.reserve(num_vertices(g)); |
| 460 | |
| 461 | const rose_group initial_groups = build.getInitialGroups(); |
| 462 | |
| 463 | for (const auto &v : boost::adaptors::reverse(v_order)) { |
| 464 | DEBUG_PRINTF("vertex %zu\n" , g[v].index); |
| 465 | |
| 466 | if (build.isAnyStart(v)) { |
| 467 | DEBUG_PRINTF("start vertex, groups=0x%llx\n" , initial_groups); |
| 468 | vertex_group_map.emplace(v, initial_groups); |
| 469 | continue; |
| 470 | } |
| 471 | |
| 472 | // To get to this vertex, we must have come through a predecessor, and |
| 473 | // everyone who isn't a start vertex has one. |
| 474 | assert(in_degree(v, g) > 0); |
| 475 | rose_group pred_groups = ~rose_group{0}; |
| 476 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 477 | DEBUG_PRINTF("pred %zu\n" , g[u].index); |
| 478 | assert(contains(vertex_group_map, u)); |
| 479 | pred_groups &= vertex_group_map.at(u); |
| 480 | } |
| 481 | |
| 482 | DEBUG_PRINTF("pred_groups=0x%llx\n" , pred_groups); |
| 483 | DEBUG_PRINTF("g[v].groups=0x%llx\n" , g[v].groups); |
| 484 | |
| 485 | rose_group v_groups = pred_groups | g[v].groups; |
| 486 | DEBUG_PRINTF("v_groups=0x%llx\n" , v_groups); |
| 487 | |
| 488 | vertex_group_map.emplace(v, v_groups); |
| 489 | } |
| 490 | |
| 491 | return vertex_group_map; |
| 492 | } |
| 493 | |
| 494 | /** |
| 495 | * \brief Find the set of groups that can be squashed anywhere in the graph, |
| 496 | * either by a literal or by a leftfix. |
| 497 | */ |
| 498 | rose_group getSquashableGroups(const RoseBuildImpl &build) { |
| 499 | rose_group squashable_groups = 0; |
| 500 | for (const auto &info : build.literal_info) { |
| 501 | if (info.squash_group) { |
| 502 | DEBUG_PRINTF("lit squash mask 0x%llx\n" , info.group_mask); |
| 503 | squashable_groups |= info.group_mask; |
| 504 | } |
| 505 | } |
| 506 | for (const auto &m : build.rose_squash_masks) { |
| 507 | DEBUG_PRINTF("left squash mask 0x%llx\n" , ~m.second); |
| 508 | squashable_groups |= ~m.second; |
| 509 | } |
| 510 | |
| 511 | DEBUG_PRINTF("squashable groups=0x%llx\n" , squashable_groups); |
| 512 | assert(!(squashable_groups & build.boundary_group_mask)); |
| 513 | return squashable_groups; |
| 514 | } |
| 515 | |
| 516 | /** |
| 517 | * \brief True if every vertex associated with a group also belongs to |
| 518 | * lit_info. |
| 519 | */ |
| 520 | static |
| 521 | bool coversGroup(const RoseBuildImpl &build, |
| 522 | const rose_literal_info &lit_info) { |
| 523 | if (lit_info.vertices.empty()) { |
| 524 | DEBUG_PRINTF("no vertices - does not cover\n" ); |
| 525 | return false; |
| 526 | } |
| 527 | |
| 528 | if (!lit_info.group_mask) { |
| 529 | DEBUG_PRINTF("no group - does not cover\n" ); |
| 530 | return false; /* no group (not a floating lit?) */ |
| 531 | } |
| 532 | |
| 533 | assert(popcount64(lit_info.group_mask) == 1); |
| 534 | |
| 535 | /* for each lit in group, ensure that vertices are a subset of lit_info's */ |
| 536 | rose_group groups = lit_info.group_mask; |
| 537 | while (groups) { |
| 538 | u32 group_id = findAndClearLSB_64(&groups); |
| 539 | for (u32 id : build.group_to_literal.at(group_id)) { |
| 540 | DEBUG_PRINTF(" checking against friend %u\n" , id); |
| 541 | if (!is_subset_of(build.literal_info[id].vertices, |
| 542 | lit_info.vertices)) { |
| 543 | DEBUG_PRINTF("fail\n" ); |
| 544 | return false; |
| 545 | } |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | DEBUG_PRINTF("ok\n" ); |
| 550 | return true; |
| 551 | } |
| 552 | |
| 553 | static |
| 554 | bool isGroupSquasher(const RoseBuildImpl &build, const u32 id /* literal id */, |
| 555 | rose_group forbidden_squash_group) { |
| 556 | const RoseGraph &g = build.g; |
| 557 | |
| 558 | const rose_literal_info &lit_info = build.literal_info.at(id); |
| 559 | |
| 560 | DEBUG_PRINTF("checking if %u '%s' is a group squasher %016llx\n" , id, |
| 561 | dumpString(build.literals.at(id).s).c_str(), |
| 562 | lit_info.group_mask); |
| 563 | |
| 564 | if (build.literals.at(id).table == ROSE_EVENT) { |
| 565 | DEBUG_PRINTF("event literal\n" ); |
| 566 | return false; |
| 567 | } |
| 568 | |
| 569 | if (!coversGroup(build, lit_info)) { |
| 570 | DEBUG_PRINTF("does not cover group\n" ); |
| 571 | return false; |
| 572 | } |
| 573 | |
| 574 | if (lit_info.group_mask & forbidden_squash_group) { |
| 575 | /* probably a delayed lit */ |
| 576 | DEBUG_PRINTF("skipping as involves a forbidden group\n" ); |
| 577 | return false; |
| 578 | } |
| 579 | |
| 580 | // Single-vertex, less constrained case than the multiple-vertex one below. |
| 581 | if (lit_info.vertices.size() == 1) { |
| 582 | const RoseVertex &v = *lit_info.vertices.begin(); |
| 583 | |
| 584 | if (build.hasDelayPred(v)) { /* due to rebuild issues */ |
| 585 | return false; |
| 586 | } |
| 587 | |
| 588 | /* there are two ways to be a group squasher: |
| 589 | * 1) only care about the first accepted match |
| 590 | * 2) can only match once after a pred match |
| 591 | * |
| 592 | * (2) requires analysis of the infix before v and is not implemented, |
| 593 | * TODO |
| 594 | */ |
| 595 | |
| 596 | /* Case 1 */ |
| 597 | |
| 598 | // Can't squash cases with accepts unless they are all |
| 599 | // simple-exhaustible. |
| 600 | if (any_of_in(g[v].reports, [&](ReportID report) { |
| 601 | return !isSimpleExhaustible(build.rm.getReport(report)); |
| 602 | })) { |
| 603 | DEBUG_PRINTF("can't squash reporter\n" ); |
| 604 | return false; |
| 605 | } |
| 606 | |
| 607 | /* Can't squash cases with a suffix without analysis of the suffix. |
| 608 | * TODO: look at suffixes */ |
| 609 | if (g[v].suffix) { |
| 610 | return false; |
| 611 | } |
| 612 | |
| 613 | // Out-edges must have inf max bound, + no other shenanigans */ |
| 614 | for (const auto &e : out_edges_range(v, g)) { |
| 615 | if (g[e].maxBound != ROSE_BOUND_INF) { |
| 616 | return false; |
| 617 | } |
| 618 | |
| 619 | if (g[target(e, g)].left) { |
| 620 | return false; /* is an infix rose trigger, TODO: analysis */ |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | DEBUG_PRINTF("%u is a path 1 group squasher\n" , id); |
| 625 | return true; |
| 626 | |
| 627 | /* note: we could also squash the groups of its preds (if nobody else is |
| 628 | * using them. TODO. */ |
| 629 | } |
| 630 | |
| 631 | // Multiple-vertex case |
| 632 | for (auto v : lit_info.vertices) { |
| 633 | assert(!build.isAnyStart(v)); |
| 634 | |
| 635 | // Can't squash cases with accepts |
| 636 | if (!g[v].reports.empty()) { |
| 637 | return false; |
| 638 | } |
| 639 | |
| 640 | // Suffixes and leftfixes are out too as first literal may not match |
| 641 | // for everyone. |
| 642 | if (!g[v].isBoring()) { |
| 643 | return false; |
| 644 | } |
| 645 | |
| 646 | /* TODO: checks are solid but we should explain */ |
| 647 | if (build.hasDelayPred(v) || build.hasAnchoredTablePred(v)) { |
| 648 | return false; |
| 649 | } |
| 650 | |
| 651 | // Out-edges must have inf max bound and not directly lead to another |
| 652 | // vertex with this group, e.g. 'foobar.*foobar'. |
| 653 | for (const auto &e : out_edges_range(v, g)) { |
| 654 | if (g[e].maxBound != ROSE_BOUND_INF) { |
| 655 | return false; |
| 656 | } |
| 657 | RoseVertex t = target(e, g); |
| 658 | |
| 659 | if (g[t].left) { |
| 660 | return false; /* is an infix rose trigger */ |
| 661 | } |
| 662 | |
| 663 | for (u32 lit_id : g[t].literals) { |
| 664 | if (build.literal_info[lit_id].group_mask & |
| 665 | lit_info.group_mask) { |
| 666 | return false; |
| 667 | } |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | // In-edges must all be dot-stars with no overlap at all, as overlap |
| 672 | // also causes history to be used. |
| 673 | /* Different tables are already forbidden by previous checks */ |
| 674 | for (const auto &e : in_edges_range(v, g)) { |
| 675 | if (!(g[e].minBound == 0 && g[e].maxBound == ROSE_BOUND_INF)) { |
| 676 | return false; |
| 677 | } |
| 678 | |
| 679 | // Check overlap, if source was a literal. |
| 680 | RoseVertex u = source(e, g); |
| 681 | if (build.maxLiteralOverlap(u, v)) { |
| 682 | return false; |
| 683 | } |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | DEBUG_PRINTF("literal %u is a multi-vertex group squasher\n" , id); |
| 688 | return true; |
| 689 | } |
| 690 | |
| 691 | void findGroupSquashers(RoseBuildImpl &build) { |
| 692 | rose_group forbidden_squash_group = build.boundary_group_mask; |
| 693 | for (u32 id = 0; id < build.literals.size(); id++) { |
| 694 | const auto &lit = build.literals.at(id); |
| 695 | if (lit.delay) { |
| 696 | forbidden_squash_group |= build.literal_info[id].group_mask; |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | for (u32 id = 0; id < build.literal_info.size(); id++) { |
| 701 | if (isGroupSquasher(build, id, forbidden_squash_group)) { |
| 702 | build.literal_info[id].squash_group = true; |
| 703 | } |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | } // namespace ue2 |
| 708 | |