| 1 | /* |
| 2 | * Copyright (c) 2015-2018, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Multibit: fast bitset structure, main runtime. |
| 31 | * |
| 32 | * *Structure* |
| 33 | * |
| 34 | * For sizes <= MMB_FLAT_MAX_BITS, a flat bit vector is used, stored as N |
| 35 | * 64-bit blocks followed by one "runt block". |
| 36 | * |
| 37 | * In larger cases, we use a sequence of blocks forming a tree. Each bit in an |
| 38 | * internal block indicates whether its child block contains valid data. Every |
| 39 | * level bar the last is complete. The last level is just a basic bit vector. |
| 40 | * |
| 41 | * ----------------------------------------------------------------------------- |
| 42 | * WARNING: |
| 43 | * |
| 44 | * mmbit code assumes that it is legal to load 8 bytes before the end of the |
| 45 | * mmbit. This means that for small mmbits (< 8byte), data may be read from |
| 46 | * before the base pointer. It is the user's responsibility to ensure that this |
| 47 | * is possible. |
| 48 | * ----------------------------------------------------------------------------- |
| 49 | */ |
| 50 | #ifndef MULTIBIT_H |
| 51 | #define MULTIBIT_H |
| 52 | |
| 53 | #include "config.h" |
| 54 | #include "ue2common.h" |
| 55 | #include "bitutils.h" |
| 56 | #include "partial_store.h" |
| 57 | #include "unaligned.h" |
| 58 | #include "multibit_internal.h" |
| 59 | |
| 60 | #include <string.h> |
| 61 | |
| 62 | #ifdef __cplusplus |
| 63 | extern "C" { |
| 64 | #endif |
| 65 | |
| 66 | #define MMB_ONE (1ULL) |
| 67 | #define MMB_ALL_ONES (0xffffffffffffffffULL) |
| 68 | |
| 69 | /** \brief Number of bits in a block. */ |
| 70 | #define MMB_KEY_BITS (sizeof(MMB_TYPE) * 8) |
| 71 | |
| 72 | #define MMB_KEY_MASK (MMB_KEY_BITS - 1) |
| 73 | |
| 74 | // Key structure defines |
| 75 | #define MMB_KEY_SHIFT 6 |
| 76 | |
| 77 | /** \brief Max size of a flat multibit. */ |
| 78 | #define MMB_FLAT_MAX_BITS 256 |
| 79 | |
| 80 | // Utility functions and data |
| 81 | // see multibit.c for contents |
| 82 | extern const u8 mmbit_keyshift_lut[32]; |
| 83 | extern const u8 mmbit_maxlevel_from_keyshift_lut[32]; |
| 84 | extern const u8 mmbit_maxlevel_direct_lut[32]; |
| 85 | extern const u32 mmbit_root_offset_from_level[7]; |
| 86 | extern const u64a mmbit_zero_to_lut[65]; |
| 87 | |
| 88 | static really_inline |
| 89 | MMB_TYPE mmb_load(const u8 * bits) { |
| 90 | return unaligned_load_u64a(bits); |
| 91 | } |
| 92 | |
| 93 | static really_inline |
| 94 | void mmb_store(u8 *bits, MMB_TYPE val) { |
| 95 | unaligned_store_u64a(bits, val); |
| 96 | } |
| 97 | |
| 98 | static really_inline |
| 99 | void mmb_store_partial(u8 *bits, MMB_TYPE val, u32 block_bits) { |
| 100 | assert(block_bits <= MMB_KEY_BITS); |
| 101 | partial_store_u64a(bits, val, ROUNDUP_N(block_bits, 8U) / 8U); |
| 102 | } |
| 103 | |
| 104 | static really_inline |
| 105 | MMB_TYPE mmb_single_bit(u32 bit) { |
| 106 | assert(bit < MMB_KEY_BITS); |
| 107 | return MMB_ONE << bit; |
| 108 | } |
| 109 | |
| 110 | static really_inline |
| 111 | MMB_TYPE mmb_mask_zero_to(u32 bit) { |
| 112 | assert(bit <= MMB_KEY_BITS); |
| 113 | #ifdef ARCH_32_BIT |
| 114 | return mmbit_zero_to_lut[bit]; |
| 115 | #else |
| 116 | if (bit == MMB_KEY_BITS) { |
| 117 | return MMB_ALL_ONES; |
| 118 | } else { |
| 119 | return mmb_single_bit(bit) - MMB_ONE; |
| 120 | } |
| 121 | #endif |
| 122 | } |
| 123 | |
| 124 | /** \brief Returns a mask of set bits up to position \a bit. Does not handle |
| 125 | * the case where bit == MMB_KEY_BITS. */ |
| 126 | static really_inline |
| 127 | MMB_TYPE mmb_mask_zero_to_nocheck(u32 bit) { |
| 128 | assert(bit < MMB_KEY_BITS); |
| 129 | #ifdef ARCH_32_BIT |
| 130 | return mmbit_zero_to_lut[bit]; |
| 131 | #else |
| 132 | return mmb_single_bit(bit) - MMB_ONE; |
| 133 | #endif |
| 134 | } |
| 135 | |
| 136 | static really_inline |
| 137 | u32 mmb_test(MMB_TYPE val, u32 bit) { |
| 138 | assert(bit < MMB_KEY_BITS); |
| 139 | return (val >> bit) & MMB_ONE; |
| 140 | } |
| 141 | |
| 142 | static really_inline |
| 143 | void mmb_set(MMB_TYPE * val, u32 bit) { |
| 144 | assert(bit < MMB_KEY_BITS); |
| 145 | *val |= mmb_single_bit(bit); |
| 146 | } |
| 147 | |
| 148 | static really_inline |
| 149 | void mmb_clear(MMB_TYPE * val, u32 bit) { |
| 150 | assert(bit < MMB_KEY_BITS); |
| 151 | *val &= ~mmb_single_bit(bit); |
| 152 | } |
| 153 | |
| 154 | static really_inline |
| 155 | u32 mmb_ctz(MMB_TYPE val) { |
| 156 | return ctz64(val); |
| 157 | } |
| 158 | |
| 159 | static really_inline |
| 160 | u32 mmb_popcount(MMB_TYPE val) { |
| 161 | return popcount64(val); |
| 162 | } |
| 163 | |
| 164 | #ifndef MMMB_DEBUG |
| 165 | #define MDEBUG_PRINTF(x, ...) do { } while(0) |
| 166 | #else |
| 167 | #define MDEBUG_PRINTF DEBUG_PRINTF |
| 168 | #endif |
| 169 | |
| 170 | // Switch the following define on to trace writes to multibit. |
| 171 | //#define MMB_TRACE_WRITES |
| 172 | #ifdef MMB_TRACE_WRITES |
| 173 | #define MMB_TRACE(format, ...) \ |
| 174 | printf("mmb [%u bits @ %p] " format, total_bits, bits, ##__VA_ARGS__) |
| 175 | #else |
| 176 | #define MMB_TRACE(format, ...) \ |
| 177 | do { \ |
| 178 | } while (0) |
| 179 | #endif |
| 180 | |
| 181 | static really_inline |
| 182 | u32 mmbit_keyshift(u32 total_bits) { |
| 183 | assert(total_bits > 1); |
| 184 | u32 n = clz32(total_bits - 1); // subtract one as we're rounding down |
| 185 | return mmbit_keyshift_lut[n]; |
| 186 | } |
| 187 | |
| 188 | static really_inline |
| 189 | u32 mmbit_maxlevel(u32 total_bits) { |
| 190 | assert(total_bits > 1); |
| 191 | u32 n = clz32(total_bits - 1); // subtract one as we're rounding down |
| 192 | u32 max_level = mmbit_maxlevel_direct_lut[n]; |
| 193 | assert(max_level <= MMB_MAX_LEVEL); |
| 194 | return max_level; |
| 195 | } |
| 196 | |
| 197 | static really_inline |
| 198 | u32 mmbit_maxlevel_from_keyshift(u32 ks) { |
| 199 | assert(ks <= 30); |
| 200 | assert(ks % MMB_KEY_SHIFT == 0); |
| 201 | |
| 202 | u32 max_level = mmbit_maxlevel_from_keyshift_lut[ks]; |
| 203 | assert(max_level <= MMB_MAX_LEVEL); |
| 204 | return max_level; |
| 205 | } |
| 206 | |
| 207 | /** \brief get our keyshift for the current level */ |
| 208 | static really_inline |
| 209 | u32 mmbit_get_ks(u32 max_level, u32 level) { |
| 210 | assert(max_level <= MMB_MAX_LEVEL); |
| 211 | assert(level <= max_level); |
| 212 | return (max_level - level) * MMB_KEY_SHIFT; |
| 213 | } |
| 214 | |
| 215 | /** \brief get our key value for the current level */ |
| 216 | static really_inline |
| 217 | u32 mmbit_get_key_val(u32 max_level, u32 level, u32 key) { |
| 218 | return (key >> mmbit_get_ks(max_level, level)) & MMB_KEY_MASK; |
| 219 | } |
| 220 | |
| 221 | /** \brief get the level root for the current level */ |
| 222 | static really_inline |
| 223 | u8 *mmbit_get_level_root(u8 *bits, u32 level) { |
| 224 | assert(level < ARRAY_LENGTH(mmbit_root_offset_from_level)); |
| 225 | return bits + mmbit_root_offset_from_level[level] * sizeof(MMB_TYPE); |
| 226 | } |
| 227 | |
| 228 | /** \brief get the level root for the current level as const */ |
| 229 | static really_inline |
| 230 | const u8 *mmbit_get_level_root_const(const u8 *bits, u32 level) { |
| 231 | assert(level < ARRAY_LENGTH(mmbit_root_offset_from_level)); |
| 232 | return bits + mmbit_root_offset_from_level[level] * sizeof(MMB_TYPE); |
| 233 | } |
| 234 | |
| 235 | /** \brief get the block for this key on the current level as a u8 ptr */ |
| 236 | static really_inline |
| 237 | u8 *mmbit_get_block_ptr(u8 *bits, u32 max_level, u32 level, u32 key) { |
| 238 | u8 *level_root = mmbit_get_level_root(bits, level); |
| 239 | u32 ks = mmbit_get_ks(max_level, level); |
| 240 | return level_root + ((u64a)key >> (ks + MMB_KEY_SHIFT)) * sizeof(MMB_TYPE); |
| 241 | } |
| 242 | |
| 243 | /** \brief get the block for this key on the current level as a const u8 ptr */ |
| 244 | static really_inline |
| 245 | const u8 *mmbit_get_block_ptr_const(const u8 *bits, u32 max_level, u32 level, |
| 246 | u32 key) { |
| 247 | const u8 *level_root = mmbit_get_level_root_const(bits, level); |
| 248 | u32 ks = mmbit_get_ks(max_level, level); |
| 249 | return level_root + ((u64a)key >> (ks + MMB_KEY_SHIFT)) * sizeof(MMB_TYPE); |
| 250 | } |
| 251 | |
| 252 | /** \brief get the _byte_ for this key on the current level as a u8 ptr */ |
| 253 | static really_inline |
| 254 | u8 *mmbit_get_byte_ptr(u8 *bits, u32 max_level, u32 level, u32 key) { |
| 255 | u8 *level_root = mmbit_get_level_root(bits, level); |
| 256 | u32 ks = mmbit_get_ks(max_level, level); |
| 257 | return level_root + ((u64a)key >> (ks + MMB_KEY_SHIFT - 3)); |
| 258 | } |
| 259 | |
| 260 | /** \brief get our key value for the current level */ |
| 261 | static really_inline |
| 262 | u32 mmbit_get_key_val_byte(u32 max_level, u32 level, u32 key) { |
| 263 | return (key >> (mmbit_get_ks(max_level, level))) & 0x7; |
| 264 | } |
| 265 | |
| 266 | /** \brief Load a flat bitvector block corresponding to N bits. */ |
| 267 | static really_inline |
| 268 | MMB_TYPE mmbit_get_flat_block(const u8 *bits, u32 n_bits) { |
| 269 | assert(n_bits <= MMB_KEY_BITS); |
| 270 | u32 n_bytes = ROUNDUP_N(n_bits, 8) / 8; |
| 271 | switch (n_bytes) { |
| 272 | case 1: |
| 273 | return *bits; |
| 274 | case 2: |
| 275 | return unaligned_load_u16(bits); |
| 276 | case 3: |
| 277 | case 4: { |
| 278 | u32 rv; |
| 279 | assert(n_bytes <= sizeof(rv)); |
| 280 | memcpy(&rv, bits + n_bytes - sizeof(rv), sizeof(rv)); |
| 281 | rv >>= (sizeof(rv) - n_bytes) * 8; /* need to shift to get things in |
| 282 | * the right position and remove |
| 283 | * junk */ |
| 284 | assert(rv == partial_load_u32(bits, n_bytes)); |
| 285 | return rv; |
| 286 | } |
| 287 | default: { |
| 288 | u64a rv; |
| 289 | assert(n_bytes <= sizeof(rv)); |
| 290 | memcpy(&rv, bits + n_bytes - sizeof(rv), sizeof(rv)); |
| 291 | rv >>= (sizeof(rv) - n_bytes) * 8; /* need to shift to get things in |
| 292 | * the right position and remove |
| 293 | * junk */ |
| 294 | assert(rv == partial_load_u64a(bits, n_bytes)); |
| 295 | return rv; |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | /** \brief True if this multibit is small enough to use a flat model */ |
| 301 | static really_inline |
| 302 | u32 mmbit_is_flat_model(u32 total_bits) { |
| 303 | return total_bits <= MMB_FLAT_MAX_BITS; |
| 304 | } |
| 305 | |
| 306 | static really_inline |
| 307 | u32 mmbit_flat_size(u32 total_bits) { |
| 308 | assert(mmbit_is_flat_model(total_bits)); |
| 309 | return ROUNDUP_N(total_bits, 8) / 8; |
| 310 | } |
| 311 | |
| 312 | static really_inline |
| 313 | u32 mmbit_flat_select_byte(u32 key, UNUSED u32 total_bits) { |
| 314 | return key / 8; |
| 315 | } |
| 316 | |
| 317 | /** \brief returns the dense index of the bit in the given mask. */ |
| 318 | static really_inline |
| 319 | u32 mmbit_mask_index(u32 bit, MMB_TYPE mask) { |
| 320 | assert(bit < MMB_KEY_BITS); |
| 321 | assert(mmb_test(mask, bit)); |
| 322 | |
| 323 | mask &= mmb_mask_zero_to(bit); |
| 324 | if (mask == 0ULL) { |
| 325 | return 0; // Common case. |
| 326 | } |
| 327 | return mmb_popcount(mask); |
| 328 | } |
| 329 | |
| 330 | /** \brief Clear all bits. */ |
| 331 | static really_inline |
| 332 | void mmbit_clear(u8 *bits, u32 total_bits) { |
| 333 | MDEBUG_PRINTF("%p total_bits %u\n" , bits, total_bits); |
| 334 | MMB_TRACE("CLEAR\n" ); |
| 335 | if (!total_bits) { |
| 336 | return; |
| 337 | } |
| 338 | if (mmbit_is_flat_model(total_bits)) { |
| 339 | memset(bits, 0, mmbit_flat_size(total_bits)); |
| 340 | return; |
| 341 | } |
| 342 | mmb_store(bits, 0); |
| 343 | } |
| 344 | |
| 345 | /** \brief Specialisation of \ref mmbit_set for flat models. */ |
| 346 | static really_inline |
| 347 | char mmbit_set_flat(u8 *bits, u32 total_bits, u32 key) { |
| 348 | bits += mmbit_flat_select_byte(key, total_bits); |
| 349 | u8 mask = 1U << (key % 8); |
| 350 | char was_set = !!(*bits & mask); |
| 351 | *bits |= mask; |
| 352 | return was_set; |
| 353 | } |
| 354 | |
| 355 | static really_inline |
| 356 | char mmbit_set_big(u8 *bits, u32 total_bits, u32 key) { |
| 357 | const u32 max_level = mmbit_maxlevel(total_bits); |
| 358 | u32 level = 0; |
| 359 | do { |
| 360 | u8 * byte_ptr = mmbit_get_byte_ptr(bits, max_level, level, key); |
| 361 | u8 keymask = 1U << mmbit_get_key_val_byte(max_level, level, key); |
| 362 | u8 byte = *byte_ptr; |
| 363 | if (likely(!(byte & keymask))) { |
| 364 | *byte_ptr = byte | keymask; |
| 365 | while (level++ != max_level) { |
| 366 | u8 *block_ptr_1 = mmbit_get_block_ptr(bits, max_level, level, key); |
| 367 | MMB_TYPE keymask_1 = mmb_single_bit(mmbit_get_key_val(max_level, level, key)); |
| 368 | mmb_store(block_ptr_1, keymask_1); |
| 369 | } |
| 370 | return 0; |
| 371 | } |
| 372 | } while (level++ != max_level); |
| 373 | return 1; |
| 374 | } |
| 375 | |
| 376 | /** Internal version of \ref mmbit_set without MMB_TRACE, so it can be used by |
| 377 | * \ref mmbit_sparse_iter_dump. */ |
| 378 | static really_inline |
| 379 | char mmbit_set_i(u8 *bits, u32 total_bits, u32 key) { |
| 380 | assert(key < total_bits); |
| 381 | if (mmbit_is_flat_model(total_bits)) { |
| 382 | return mmbit_set_flat(bits, total_bits, key); |
| 383 | } else { |
| 384 | return mmbit_set_big(bits, total_bits, key); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | static really_inline |
| 389 | char mmbit_isset(const u8 *bits, u32 total_bits, u32 key); |
| 390 | |
| 391 | /** \brief Sets the given key in the multibit. Returns 0 if the key was NOT |
| 392 | * already set, 1 otherwise. */ |
| 393 | static really_inline |
| 394 | char mmbit_set(u8 *bits, u32 total_bits, u32 key) { |
| 395 | MDEBUG_PRINTF("%p total_bits %u key %u\n" , bits, total_bits, key); |
| 396 | char status = mmbit_set_i(bits, total_bits, key); |
| 397 | MMB_TRACE("SET %u (prev status: %d)\n" , key, (int)status); |
| 398 | assert(mmbit_isset(bits, total_bits, key)); |
| 399 | return status; |
| 400 | } |
| 401 | |
| 402 | /** \brief Specialisation of \ref mmbit_isset for flat models. */ |
| 403 | static really_inline |
| 404 | char mmbit_isset_flat(const u8 *bits, u32 total_bits, u32 key) { |
| 405 | bits += mmbit_flat_select_byte(key, total_bits); |
| 406 | return !!(*bits & (1U << (key % 8U))); |
| 407 | } |
| 408 | |
| 409 | static really_inline |
| 410 | char mmbit_isset_big(const u8 *bits, u32 total_bits, u32 key) { |
| 411 | const u32 max_level = mmbit_maxlevel(total_bits); |
| 412 | u32 level = 0; |
| 413 | do { |
| 414 | const u8 *block_ptr = mmbit_get_block_ptr_const(bits, max_level, level, key); |
| 415 | MMB_TYPE block = mmb_load(block_ptr); |
| 416 | if (!mmb_test(block, mmbit_get_key_val(max_level, level, key))) { |
| 417 | return 0; |
| 418 | } |
| 419 | } while (level++ != max_level); |
| 420 | return 1; |
| 421 | } |
| 422 | |
| 423 | /** \brief Returns whether the given key is set. */ |
| 424 | static really_inline |
| 425 | char mmbit_isset(const u8 *bits, u32 total_bits, u32 key) { |
| 426 | MDEBUG_PRINTF("%p total_bits %u key %u\n" , bits, total_bits, key); |
| 427 | assert(key < total_bits); |
| 428 | if (mmbit_is_flat_model(total_bits)) { |
| 429 | return mmbit_isset_flat(bits, total_bits, key); |
| 430 | } else { |
| 431 | return mmbit_isset_big(bits, total_bits, key); |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | /** \brief Specialisation of \ref mmbit_unset for flat models. */ |
| 436 | static really_inline |
| 437 | void mmbit_unset_flat(u8 *bits, u32 total_bits, u32 key) { |
| 438 | bits += mmbit_flat_select_byte(key, total_bits); |
| 439 | *bits &= ~(1U << (key % 8U)); |
| 440 | } |
| 441 | |
| 442 | // TODO: |
| 443 | // build two versions of this - unset_dangerous that doesn't clear the summary |
| 444 | // block and a regular unset that actually clears ALL the way up the levels if |
| 445 | // possible - might make a utility function for the clear |
| 446 | static really_inline |
| 447 | void mmbit_unset_big(u8 *bits, u32 total_bits, u32 key) { |
| 448 | /* This function is lazy as it does not clear the summary block |
| 449 | * entry if the child becomes empty. This is not a correctness problem as the |
| 450 | * summary block entries are used to mean that their children are valid |
| 451 | * rather than that they have a set child. */ |
| 452 | const u32 max_level = mmbit_maxlevel(total_bits); |
| 453 | u32 level = 0; |
| 454 | do { |
| 455 | u8 *block_ptr = mmbit_get_block_ptr(bits, max_level, level, key); |
| 456 | u32 key_val = mmbit_get_key_val(max_level, level, key); |
| 457 | MMB_TYPE block = mmb_load(block_ptr); |
| 458 | if (!mmb_test(block, key_val)) { |
| 459 | return; |
| 460 | } |
| 461 | if (level == max_level) { |
| 462 | mmb_clear(&block, key_val); |
| 463 | mmb_store(block_ptr, block); |
| 464 | } |
| 465 | } while (level++ != max_level); |
| 466 | } |
| 467 | |
| 468 | /** \brief Switch off a given key. */ |
| 469 | static really_inline |
| 470 | void mmbit_unset(u8 *bits, u32 total_bits, u32 key) { |
| 471 | MDEBUG_PRINTF("%p total_bits %u key %u\n" , bits, total_bits, key); |
| 472 | assert(key < total_bits); |
| 473 | MMB_TRACE("UNSET %u (prev status: %d)\n" , key, |
| 474 | (int)mmbit_isset(bits, total_bits, key)); |
| 475 | |
| 476 | if (mmbit_is_flat_model(total_bits)) { |
| 477 | mmbit_unset_flat(bits, total_bits, key); |
| 478 | } else { |
| 479 | mmbit_unset_big(bits, total_bits, key); |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | /** \brief Specialisation of \ref mmbit_iterate for flat models. */ |
| 484 | static really_inline |
| 485 | u32 mmbit_iterate_flat(const u8 *bits, u32 total_bits, u32 it_in) { |
| 486 | // Short cut for single-block cases. |
| 487 | if (total_bits <= MMB_KEY_BITS) { |
| 488 | MMB_TYPE block = mmbit_get_flat_block(bits, total_bits); |
| 489 | if (it_in != MMB_INVALID) { |
| 490 | it_in++; |
| 491 | assert(it_in < total_bits); |
| 492 | block &= ~mmb_mask_zero_to(it_in); |
| 493 | } |
| 494 | if (block) { |
| 495 | return mmb_ctz(block); |
| 496 | } |
| 497 | return MMB_INVALID; |
| 498 | } |
| 499 | |
| 500 | const u32 last_block = total_bits / MMB_KEY_BITS; |
| 501 | u32 start; // starting block index |
| 502 | |
| 503 | if (it_in != MMB_INVALID) { |
| 504 | it_in++; |
| 505 | assert(it_in < total_bits); |
| 506 | |
| 507 | start = (ROUNDUP_N(it_in, MMB_KEY_BITS) / MMB_KEY_BITS) - 1; |
| 508 | u32 start_key = start * MMB_KEY_BITS; |
| 509 | u32 block_size = MIN(MMB_KEY_BITS, total_bits - start_key); |
| 510 | MMB_TYPE block = |
| 511 | mmbit_get_flat_block(bits + (start * sizeof(MMB_TYPE)), block_size); |
| 512 | block &= ~mmb_mask_zero_to(it_in - start_key); |
| 513 | |
| 514 | if (block) { |
| 515 | return start_key + mmb_ctz(block); |
| 516 | } else if (start_key + MMB_KEY_BITS >= total_bits) { |
| 517 | return MMB_INVALID; // That was the final block. |
| 518 | } |
| 519 | start++; |
| 520 | } else { |
| 521 | start = 0; |
| 522 | } |
| 523 | |
| 524 | // Remaining full-sized blocks. |
| 525 | for (; start < last_block; start++) { |
| 526 | MMB_TYPE block = mmb_load(bits + (start * sizeof(MMB_TYPE))); |
| 527 | if (block) { |
| 528 | return (start * MMB_KEY_BITS) + mmb_ctz(block); |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | // We may have a final, smaller than full-sized, block to deal with at the |
| 533 | // end. |
| 534 | if (total_bits % MMB_KEY_BITS) { |
| 535 | u32 start_key = start * MMB_KEY_BITS; |
| 536 | u32 block_size = MIN(MMB_KEY_BITS, total_bits - start_key); |
| 537 | MMB_TYPE block = |
| 538 | mmbit_get_flat_block(bits + (start * sizeof(MMB_TYPE)), block_size); |
| 539 | if (block) { |
| 540 | return start_key + mmb_ctz(block); |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | return MMB_INVALID; |
| 545 | } |
| 546 | |
| 547 | static really_inline |
| 548 | u32 mmbit_iterate_big(const u8 * bits, u32 total_bits, u32 it_in) { |
| 549 | const u32 max_level = mmbit_maxlevel(total_bits); |
| 550 | u32 level = 0; |
| 551 | u32 key = 0; |
| 552 | u32 key_rem = 0; |
| 553 | |
| 554 | if (it_in != MMB_INVALID) { |
| 555 | // We're continuing a previous iteration, so we need to go |
| 556 | // to max_level so we can pick up where we left off. |
| 557 | // NOTE: assumes that we're valid down the whole tree |
| 558 | key = it_in >> MMB_KEY_SHIFT; |
| 559 | key_rem = (it_in & MMB_KEY_MASK) + 1; |
| 560 | level = max_level; |
| 561 | } |
| 562 | while (1) { |
| 563 | if (key_rem < MMB_KEY_BITS) { |
| 564 | const u8 *block_ptr = mmbit_get_level_root_const(bits, level) + |
| 565 | key * sizeof(MMB_TYPE); |
| 566 | MMB_TYPE block |
| 567 | = mmb_load(block_ptr) & ~mmb_mask_zero_to_nocheck(key_rem); |
| 568 | if (block) { |
| 569 | key = (key << MMB_KEY_SHIFT) + mmb_ctz(block); |
| 570 | if (level++ == max_level) { |
| 571 | break; |
| 572 | } |
| 573 | key_rem = 0; |
| 574 | continue; // jump the rootwards step if we found a 'tree' non-zero bit |
| 575 | } |
| 576 | } |
| 577 | // rootwards step (block is zero or key_rem == MMB_KEY_BITS) |
| 578 | if (level-- == 0) { |
| 579 | return MMB_INVALID; // if we don't find anything and we're at the top level, we're done |
| 580 | } |
| 581 | key_rem = (key & MMB_KEY_MASK) + 1; |
| 582 | key >>= MMB_KEY_SHIFT; |
| 583 | } |
| 584 | assert(key < total_bits); |
| 585 | assert(mmbit_isset(bits, total_bits, key)); |
| 586 | return key; |
| 587 | } |
| 588 | |
| 589 | /** \brief Unbounded iterator. Returns the index of the next set bit after \a |
| 590 | * it_in, or MMB_INVALID. |
| 591 | * |
| 592 | * Note: assumes that if you pass in a value of it_in other than MMB_INVALID, |
| 593 | * that bit must be on (assumes all its summary blocks are set). |
| 594 | */ |
| 595 | static really_inline |
| 596 | u32 mmbit_iterate(const u8 *bits, u32 total_bits, u32 it_in) { |
| 597 | MDEBUG_PRINTF("%p total_bits %u it_in %u\n" , bits, total_bits, it_in); |
| 598 | assert(it_in < total_bits || it_in == MMB_INVALID); |
| 599 | if (!total_bits) { |
| 600 | return MMB_INVALID; |
| 601 | } |
| 602 | if (it_in == total_bits - 1) { |
| 603 | return MMB_INVALID; // it_in is the last key. |
| 604 | } |
| 605 | |
| 606 | u32 key; |
| 607 | if (mmbit_is_flat_model(total_bits)) { |
| 608 | key = mmbit_iterate_flat(bits, total_bits, it_in); |
| 609 | } else { |
| 610 | key = mmbit_iterate_big(bits, total_bits, it_in); |
| 611 | } |
| 612 | assert(key == MMB_INVALID || mmbit_isset(bits, total_bits, key)); |
| 613 | return key; |
| 614 | } |
| 615 | |
| 616 | /** \brief Specialisation of \ref mmbit_any and \ref mmbit_any_precise for flat |
| 617 | * models. */ |
| 618 | static really_inline |
| 619 | char mmbit_any_flat(const u8 *bits, u32 total_bits) { |
| 620 | if (total_bits <= MMB_KEY_BITS) { |
| 621 | return !!mmbit_get_flat_block(bits, total_bits); |
| 622 | } |
| 623 | |
| 624 | const u8 *end = bits + mmbit_flat_size(total_bits); |
| 625 | for (const u8 *last = end - sizeof(MMB_TYPE); bits < last; |
| 626 | bits += sizeof(MMB_TYPE)) { |
| 627 | if (mmb_load(bits)) { |
| 628 | return 1; |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | // Overlapping load at the end. |
| 633 | return !!mmb_load(end - sizeof(MMB_TYPE)); |
| 634 | } |
| 635 | |
| 636 | /** \brief True if any keys are (or might be) on in the given multibit. |
| 637 | * |
| 638 | * NOTE: mmbit_any is sloppy (may return true when only summary bits are set). |
| 639 | * Use \ref mmbit_any_precise if you need/want a correct answer. |
| 640 | */ |
| 641 | static really_inline |
| 642 | char mmbit_any(const u8 *bits, u32 total_bits) { |
| 643 | MDEBUG_PRINTF("%p total_bits %u\n" , bits, total_bits); |
| 644 | if (!total_bits) { |
| 645 | return 0; |
| 646 | } |
| 647 | if (mmbit_is_flat_model(total_bits)) { |
| 648 | return mmbit_any_flat(bits, total_bits); |
| 649 | } |
| 650 | return !!mmb_load(bits); |
| 651 | } |
| 652 | |
| 653 | /** \brief True if there are any keys on. Guaranteed precise. */ |
| 654 | static really_inline |
| 655 | char mmbit_any_precise(const u8 *bits, u32 total_bits) { |
| 656 | MDEBUG_PRINTF("%p total_bits %u\n" , bits, total_bits); |
| 657 | if (!total_bits) { |
| 658 | return 0; |
| 659 | } |
| 660 | if (mmbit_is_flat_model(total_bits)) { |
| 661 | return mmbit_any_flat(bits, total_bits); |
| 662 | } |
| 663 | |
| 664 | return mmbit_iterate_big(bits, total_bits, MMB_INVALID) != MMB_INVALID; |
| 665 | } |
| 666 | |
| 667 | static really_inline |
| 668 | char mmbit_all_flat(const u8 *bits, u32 total_bits) { |
| 669 | while (total_bits > MMB_KEY_BITS) { |
| 670 | if (mmb_load(bits) != MMB_ALL_ONES) { |
| 671 | return 0; |
| 672 | } |
| 673 | bits += sizeof(MMB_TYPE); |
| 674 | total_bits -= MMB_KEY_BITS; |
| 675 | } |
| 676 | while (total_bits > 8) { |
| 677 | if (*bits != 0xff) { |
| 678 | return 0; |
| 679 | } |
| 680 | bits++; |
| 681 | total_bits -= 8; |
| 682 | } |
| 683 | u8 mask = (u8)mmb_mask_zero_to_nocheck(total_bits); |
| 684 | return (*bits & mask) == mask; |
| 685 | } |
| 686 | |
| 687 | static really_inline |
| 688 | char mmbit_all_big(const u8 *bits, u32 total_bits) { |
| 689 | u32 ks = mmbit_keyshift(total_bits); |
| 690 | |
| 691 | u32 level = 0; |
| 692 | for (;;) { |
| 693 | // Number of bits we expect to see switched on on this level. |
| 694 | u32 level_bits; |
| 695 | if (ks != 0) { |
| 696 | u32 next_level_width = MMB_KEY_BITS << (ks - MMB_KEY_SHIFT); |
| 697 | level_bits = ROUNDUP_N(total_bits, next_level_width) >> ks; |
| 698 | } else { |
| 699 | level_bits = total_bits; |
| 700 | } |
| 701 | |
| 702 | const u8 *block_ptr = mmbit_get_level_root_const(bits, level); |
| 703 | |
| 704 | // All full-size blocks should be all-ones. |
| 705 | while (level_bits >= MMB_KEY_BITS) { |
| 706 | MMB_TYPE block = mmb_load(block_ptr); |
| 707 | if (block != MMB_ALL_ONES) { |
| 708 | return 0; |
| 709 | } |
| 710 | block_ptr += sizeof(MMB_TYPE); |
| 711 | level_bits -= MMB_KEY_BITS; |
| 712 | } |
| 713 | |
| 714 | // If we have bits remaining, we have a runt block on the end. |
| 715 | if (level_bits > 0) { |
| 716 | MMB_TYPE block = mmb_load(block_ptr); |
| 717 | MMB_TYPE mask = mmb_mask_zero_to_nocheck(level_bits); |
| 718 | if ((block & mask) != mask) { |
| 719 | return 0; |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | if (ks == 0) { |
| 724 | break; |
| 725 | } |
| 726 | |
| 727 | ks -= MMB_KEY_SHIFT; |
| 728 | level++; |
| 729 | } |
| 730 | |
| 731 | return 1; |
| 732 | } |
| 733 | |
| 734 | /** \brief True if all keys are on. Guaranteed precise. */ |
| 735 | static really_inline |
| 736 | char mmbit_all(const u8 *bits, u32 total_bits) { |
| 737 | MDEBUG_PRINTF("%p total_bits %u\n" , bits, total_bits); |
| 738 | |
| 739 | if (mmbit_is_flat_model(total_bits)) { |
| 740 | return mmbit_all_flat(bits, total_bits); |
| 741 | } |
| 742 | return mmbit_all_big(bits, total_bits); |
| 743 | } |
| 744 | |
| 745 | static really_inline |
| 746 | MMB_TYPE get_flat_masks(u32 base, u32 it_start, u32 it_end) { |
| 747 | if (it_end <= base) { |
| 748 | return 0; |
| 749 | } |
| 750 | u32 udiff = it_end - base; |
| 751 | MMB_TYPE mask = udiff < 64 ? mmb_mask_zero_to_nocheck(udiff) : MMB_ALL_ONES; |
| 752 | if (it_start >= base) { |
| 753 | u32 ldiff = it_start - base; |
| 754 | MMB_TYPE lmask = ldiff < 64 ? ~mmb_mask_zero_to_nocheck(ldiff) : 0; |
| 755 | mask &= lmask; |
| 756 | } |
| 757 | return mask; |
| 758 | } |
| 759 | |
| 760 | /** \brief Specialisation of \ref mmbit_iterate_bounded for flat models. */ |
| 761 | static really_inline |
| 762 | u32 mmbit_iterate_bounded_flat(const u8 *bits, u32 total_bits, u32 begin, |
| 763 | u32 end) { |
| 764 | // Short cut for single-block cases. |
| 765 | if (total_bits <= MMB_KEY_BITS) { |
| 766 | MMB_TYPE block = mmbit_get_flat_block(bits, total_bits); |
| 767 | block &= get_flat_masks(0, begin, end); |
| 768 | if (block) { |
| 769 | return mmb_ctz(block); |
| 770 | } |
| 771 | return MMB_INVALID; |
| 772 | } |
| 773 | |
| 774 | const u32 last_block = ROUNDDOWN_N(total_bits, MMB_KEY_BITS); |
| 775 | |
| 776 | // Iterate over full-sized blocks. |
| 777 | for (u32 i = ROUNDDOWN_N(begin, MMB_KEY_BITS), e = MIN(end, last_block); |
| 778 | i < e; i += MMB_KEY_BITS) { |
| 779 | const u8 *block_ptr = bits + i / 8; |
| 780 | MMB_TYPE block = mmb_load(block_ptr); |
| 781 | block &= get_flat_masks(i, begin, end); |
| 782 | if (block) { |
| 783 | return i + mmb_ctz(block); |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | // Final block, which is less than full-sized. |
| 788 | if (end > last_block) { |
| 789 | const u8 *block_ptr = bits + last_block / 8; |
| 790 | u32 num_bits = total_bits - last_block; |
| 791 | MMB_TYPE block = mmbit_get_flat_block(block_ptr, num_bits); |
| 792 | block &= get_flat_masks(last_block, begin, end); |
| 793 | if (block) { |
| 794 | return last_block + mmb_ctz(block); |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | return MMB_INVALID; |
| 799 | } |
| 800 | |
| 801 | static really_inline |
| 802 | MMB_TYPE get_lowhi_masks(u32 level, u32 max_level, u64a block_min, u64a block_max, |
| 803 | u64a block_base) { |
| 804 | const u32 level_shift = (max_level - level) * MMB_KEY_SHIFT; |
| 805 | u64a lshift = (block_min - block_base) >> level_shift; |
| 806 | u64a ushift = (block_max - block_base) >> level_shift; |
| 807 | MMB_TYPE lmask = lshift < 64 ? ~mmb_mask_zero_to_nocheck(lshift) : 0; |
| 808 | MMB_TYPE umask = |
| 809 | ushift < 63 ? mmb_mask_zero_to_nocheck(ushift + 1) : MMB_ALL_ONES; |
| 810 | return lmask & umask; |
| 811 | } |
| 812 | |
| 813 | static really_inline |
| 814 | u32 mmbit_iterate_bounded_big(const u8 *bits, u32 total_bits, u32 it_start, u32 it_end) { |
| 815 | u64a key = 0; |
| 816 | u32 ks = mmbit_keyshift(total_bits); |
| 817 | const u32 max_level = mmbit_maxlevel_from_keyshift(ks); |
| 818 | u32 level = 0; |
| 819 | --it_end; // make end-limit inclusive |
| 820 | for (;;) { |
| 821 | assert(level <= max_level); |
| 822 | |
| 823 | u64a block_width = MMB_KEY_BITS << ks; |
| 824 | u64a block_base = key * block_width; |
| 825 | u64a block_min = MAX(it_start, block_base); |
| 826 | u64a block_max = MIN(it_end, block_base + block_width - 1); |
| 827 | const u8 *block_ptr = |
| 828 | mmbit_get_level_root_const(bits, level) + key * sizeof(MMB_TYPE); |
| 829 | MMB_TYPE block = mmb_load(block_ptr); |
| 830 | block &= get_lowhi_masks(level, max_level, block_min, block_max, block_base); |
| 831 | if (block) { |
| 832 | // Found a bit, go down a level |
| 833 | key = (key << MMB_KEY_SHIFT) + mmb_ctz(block); |
| 834 | if (level++ == max_level) { |
| 835 | return key; |
| 836 | } |
| 837 | ks -= MMB_KEY_SHIFT; |
| 838 | } else { |
| 839 | // No bit found, go up a level |
| 840 | // we know that this block didn't have any answers, so we can push |
| 841 | // our start iterator forward. |
| 842 | u64a next_start = block_base + block_width; |
| 843 | if (next_start > it_end) { |
| 844 | break; |
| 845 | } |
| 846 | if (level-- == 0) { |
| 847 | break; |
| 848 | } |
| 849 | it_start = next_start; |
| 850 | key >>= MMB_KEY_SHIFT; |
| 851 | ks += MMB_KEY_SHIFT; |
| 852 | } |
| 853 | } |
| 854 | return MMB_INVALID; |
| 855 | } |
| 856 | |
| 857 | /** \brief Bounded iterator. Returns the index of the first set bit between |
| 858 | * it_start (inclusive) and it_end (exclusive) or MMB_INVALID if no bits are |
| 859 | * set in that range. |
| 860 | */ |
| 861 | static really_inline |
| 862 | u32 mmbit_iterate_bounded(const u8 *bits, u32 total_bits, u32 it_start, |
| 863 | u32 it_end) { |
| 864 | MDEBUG_PRINTF("%p total_bits %u it_start %u it_end %u\n" , bits, total_bits, |
| 865 | it_start, it_end); |
| 866 | assert(it_start <= it_end); |
| 867 | assert(it_end <= total_bits); |
| 868 | if (!total_bits || it_end == it_start) { |
| 869 | return MMB_INVALID; |
| 870 | } |
| 871 | assert(it_start < total_bits); |
| 872 | u32 key; |
| 873 | if (mmbit_is_flat_model(total_bits)) { |
| 874 | key = mmbit_iterate_bounded_flat(bits, total_bits, it_start, it_end); |
| 875 | } else { |
| 876 | key = mmbit_iterate_bounded_big(bits, total_bits, it_start, it_end); |
| 877 | } |
| 878 | assert(key == MMB_INVALID || mmbit_isset(bits, total_bits, key)); |
| 879 | return key; |
| 880 | } |
| 881 | |
| 882 | /** \brief Specialisation of \ref mmbit_unset_range for flat models. */ |
| 883 | static really_inline |
| 884 | void mmbit_unset_range_flat(u8 *bits, u32 total_bits, u32 begin, u32 end) { |
| 885 | const u32 last_block = ROUNDDOWN_N(total_bits, MMB_KEY_BITS); |
| 886 | |
| 887 | // Iterate over full-sized blocks. |
| 888 | for (u32 i = ROUNDDOWN_N(begin, MMB_KEY_BITS), e = MIN(end, last_block); |
| 889 | i < e; i += MMB_KEY_BITS) { |
| 890 | u8 *block_ptr = bits + i / 8; |
| 891 | MMB_TYPE block = mmb_load(block_ptr); |
| 892 | MMB_TYPE mask = get_flat_masks(i, begin, end); |
| 893 | mmb_store(block_ptr, block & ~mask); |
| 894 | } |
| 895 | |
| 896 | // Final block, which is less than full-sized. |
| 897 | if (end > last_block) { |
| 898 | u8 *block_ptr = bits + last_block / 8; |
| 899 | u32 num_bits = total_bits - last_block; |
| 900 | MMB_TYPE block = mmbit_get_flat_block(block_ptr, num_bits); |
| 901 | MMB_TYPE mask = get_flat_masks(last_block, begin, end); |
| 902 | mmb_store_partial(block_ptr, block & ~mask, num_bits); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | static really_inline |
| 907 | void mmbit_unset_range_big(u8 *bits, const u32 total_bits, u32 begin, |
| 908 | u32 end) { |
| 909 | // TODO: combine iterator and unset operation; completely replace this |
| 910 | u32 i = begin; |
| 911 | for (;;) { |
| 912 | i = mmbit_iterate_bounded(bits, total_bits, i, end); |
| 913 | if (i == MMB_INVALID) { |
| 914 | break; |
| 915 | } |
| 916 | mmbit_unset_big(bits, total_bits, i); |
| 917 | if (++i == end) { |
| 918 | break; |
| 919 | } |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | /** \brief Unset a whole range of bits. Ensures that all bits between \a begin |
| 924 | * (inclusive) and \a end (exclusive) are switched off. */ |
| 925 | static really_inline |
| 926 | void mmbit_unset_range(u8 *bits, const u32 total_bits, u32 begin, u32 end) { |
| 927 | MDEBUG_PRINTF("%p total_bits %u begin %u end %u\n" , bits, total_bits, begin, |
| 928 | end); |
| 929 | assert(begin <= end); |
| 930 | assert(end <= total_bits); |
| 931 | if (mmbit_is_flat_model(total_bits)) { |
| 932 | mmbit_unset_range_flat(bits, total_bits, begin, end); |
| 933 | } else { |
| 934 | mmbit_unset_range_big(bits, total_bits, begin, end); |
| 935 | } |
| 936 | // No bits are on in [begin, end) once we're done. |
| 937 | assert(MMB_INVALID == mmbit_iterate_bounded(bits, total_bits, begin, end)); |
| 938 | } |
| 939 | |
| 940 | /** \brief Specialisation of \ref mmbit_init_range for flat models. */ |
| 941 | static really_inline |
| 942 | void mmbit_init_range_flat(u8 *bits, const u32 total_bits, u32 begin, u32 end) { |
| 943 | const u32 last_block = ROUNDDOWN_N(total_bits, MMB_KEY_BITS); |
| 944 | |
| 945 | // Iterate over full-sized blocks. |
| 946 | for (u32 i = 0; i < last_block; i += MMB_KEY_BITS) { |
| 947 | mmb_store(bits + i / 8, get_flat_masks(i, begin, end)); |
| 948 | } |
| 949 | |
| 950 | // Final block, which is less than full-sized. |
| 951 | if (total_bits % MMB_KEY_BITS) { |
| 952 | u32 num_bits = total_bits - last_block; |
| 953 | MMB_TYPE block = get_flat_masks(last_block, begin, end); |
| 954 | mmb_store_partial(bits + last_block / 8, block, num_bits); |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | static really_inline |
| 959 | void mmbit_init_range_big(u8 *bits, const u32 total_bits, u32 begin, u32 end) { |
| 960 | u32 ks = mmbit_keyshift(total_bits); |
| 961 | u32 level = 0; |
| 962 | |
| 963 | for (;;) { |
| 964 | u8 *block = mmbit_get_level_root(bits, level); |
| 965 | u32 k1 = begin >> ks, k2 = end >> ks; |
| 966 | |
| 967 | // Summary blocks need to account for the runt block on the end. |
| 968 | if ((k2 << ks) != end) { |
| 969 | k2++; |
| 970 | } |
| 971 | |
| 972 | // Partial block to deal with beginning. |
| 973 | block += (k1 / MMB_KEY_BITS) * sizeof(MMB_TYPE); |
| 974 | if (k1 % MMB_KEY_BITS) { |
| 975 | u32 idx = k1 / MMB_KEY_BITS; |
| 976 | u32 block_end = (idx + 1) * MMB_KEY_BITS; |
| 977 | |
| 978 | // Because k1 % MMB_KEY_BITS != 0, we can avoid checking edge cases |
| 979 | // here (see the branch in mmb_mask_zero_to). |
| 980 | MMB_TYPE mask = MMB_ALL_ONES << (k1 % MMB_KEY_BITS); |
| 981 | |
| 982 | if (k2 < block_end) { |
| 983 | assert(k2 % MMB_KEY_BITS); |
| 984 | mask &= mmb_mask_zero_to_nocheck(k2 % MMB_KEY_BITS); |
| 985 | mmb_store(block, mask); |
| 986 | goto next_level; |
| 987 | } else { |
| 988 | mmb_store(block, mask); |
| 989 | k1 = block_end; |
| 990 | block += sizeof(MMB_TYPE); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | // Write blocks filled with ones until we get to the last block. |
| 995 | for (; k1 < (k2 & ~MMB_KEY_MASK); k1 += MMB_KEY_BITS) { |
| 996 | mmb_store(block, MMB_ALL_ONES); |
| 997 | block += sizeof(MMB_TYPE); |
| 998 | } |
| 999 | |
| 1000 | // Final block. |
| 1001 | if (likely(k1 < k2)) { |
| 1002 | // Again, if k2 was at a block boundary, it would have been handled |
| 1003 | // by the previous loop, so we know k2 % MMB_KEY_BITS != 0 and can |
| 1004 | // avoid the branch in mmb_mask_zero_to here. |
| 1005 | assert(k2 % MMB_KEY_BITS); |
| 1006 | MMB_TYPE mask = mmb_mask_zero_to_nocheck(k2 % MMB_KEY_BITS); |
| 1007 | mmb_store(block, mask); |
| 1008 | } |
| 1009 | |
| 1010 | next_level: |
| 1011 | if (ks == 0) { |
| 1012 | break; // Last level is done, finished. |
| 1013 | } |
| 1014 | |
| 1015 | ks -= MMB_KEY_SHIFT; |
| 1016 | level++; |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | /** \brief Initialises the multibit so that only the given range of bits are |
| 1021 | * set. |
| 1022 | * |
| 1023 | * Ensures that all bits between \a begin (inclusive) and \a end (exclusive) |
| 1024 | * are switched on. |
| 1025 | */ |
| 1026 | static really_inline |
| 1027 | void mmbit_init_range(u8 *bits, const u32 total_bits, u32 begin, u32 end) { |
| 1028 | MDEBUG_PRINTF("%p total_bits %u begin %u end %u\n" , bits, total_bits, begin, |
| 1029 | end); |
| 1030 | assert(begin <= end); |
| 1031 | assert(end <= total_bits); |
| 1032 | |
| 1033 | if (!total_bits) { |
| 1034 | return; |
| 1035 | } |
| 1036 | |
| 1037 | // Short cut for cases where we're not actually setting any bits; just |
| 1038 | // clear the multibit. |
| 1039 | if (begin == end) { |
| 1040 | mmbit_clear(bits, total_bits); |
| 1041 | return; |
| 1042 | } |
| 1043 | |
| 1044 | if (mmbit_is_flat_model(total_bits)) { |
| 1045 | mmbit_init_range_flat(bits, total_bits, begin, end); |
| 1046 | } else { |
| 1047 | mmbit_init_range_big(bits, total_bits, begin, end); |
| 1048 | } |
| 1049 | |
| 1050 | assert(begin == end || |
| 1051 | mmbit_iterate(bits, total_bits, MMB_INVALID) == begin); |
| 1052 | assert(!end || begin == end || |
| 1053 | mmbit_iterate(bits, total_bits, end - 1) == MMB_INVALID); |
| 1054 | } |
| 1055 | |
| 1056 | /** \brief Determine the number of \ref mmbit_sparse_state elements required. |
| 1057 | * */ |
| 1058 | static really_inline |
| 1059 | u32 mmbit_sparse_iter_state_size(u32 total_bits) { |
| 1060 | if (mmbit_is_flat_model(total_bits)) { |
| 1061 | return 2; |
| 1062 | } |
| 1063 | u32 levels = mmbit_maxlevel(total_bits); |
| 1064 | return levels + 1; |
| 1065 | } |
| 1066 | |
| 1067 | #ifdef DUMP_SUPPORT |
| 1068 | // Dump function, defined in multibit.c. |
| 1069 | void mmbit_sparse_iter_dump(const struct mmbit_sparse_iter *it, u32 total_bits); |
| 1070 | #endif |
| 1071 | |
| 1072 | /** Internal: common loop used by mmbit_sparse_iter_{begin,next}_big. Returns |
| 1073 | * matching next key given starting state, or MMB_INVALID. */ |
| 1074 | static really_inline |
| 1075 | u32 mmbit_sparse_iter_exec(const u8 *bits, u32 key, u32 *idx, u32 level, |
| 1076 | const u32 max_level, struct mmbit_sparse_state *s, |
| 1077 | const struct mmbit_sparse_iter *it_root, |
| 1078 | const struct mmbit_sparse_iter *it) { |
| 1079 | for (;;) { |
| 1080 | MMB_TYPE block = s[level].mask; |
| 1081 | if (block) { |
| 1082 | u32 bit = mmb_ctz(block); |
| 1083 | key = (key << MMB_KEY_SHIFT) + bit; |
| 1084 | u32 bit_idx = mmbit_mask_index(bit, it->mask); |
| 1085 | if (level++ == max_level) { |
| 1086 | // we've found a key |
| 1087 | *idx = it->val + bit_idx; |
| 1088 | return key; |
| 1089 | } else { |
| 1090 | // iterator record is the start of the level (current it->val) |
| 1091 | // plus N, where N is the dense index of the bit in the current |
| 1092 | // level's itmask |
| 1093 | u32 iter_key = it->val + bit_idx; |
| 1094 | it = it_root + iter_key; |
| 1095 | MMB_TYPE nextblock = |
| 1096 | mmb_load(mmbit_get_level_root_const(bits, level) + |
| 1097 | key * sizeof(MMB_TYPE)); |
| 1098 | s[level].mask = nextblock & it->mask; |
| 1099 | s[level].itkey = iter_key; |
| 1100 | } |
| 1101 | } else { |
| 1102 | // No bits set in this block |
| 1103 | if (level-- == 0) { |
| 1104 | break; // no key available |
| 1105 | } |
| 1106 | key >>= MMB_KEY_SHIFT; |
| 1107 | // Update state mask and iterator |
| 1108 | s[level].mask &= (s[level].mask - 1); |
| 1109 | it = it_root + s[level].itkey; |
| 1110 | } |
| 1111 | } |
| 1112 | return MMB_INVALID; |
| 1113 | } |
| 1114 | |
| 1115 | static really_inline |
| 1116 | u32 mmbit_sparse_iter_begin_big(const u8 *bits, u32 total_bits, u32 *idx, |
| 1117 | const struct mmbit_sparse_iter *it_root, |
| 1118 | struct mmbit_sparse_state *s) { |
| 1119 | const struct mmbit_sparse_iter *it = it_root; |
| 1120 | u32 key = 0; |
| 1121 | MMB_TYPE block = mmb_load(bits) & it->mask; |
| 1122 | if (!block) { |
| 1123 | return MMB_INVALID; |
| 1124 | } |
| 1125 | |
| 1126 | // Load first block into top level state. |
| 1127 | const u32 max_level = mmbit_maxlevel(total_bits); |
| 1128 | s[0].mask = block; |
| 1129 | s[0].itkey = 0; |
| 1130 | return mmbit_sparse_iter_exec(bits, key, idx, 0, max_level, |
| 1131 | s, it_root, it); |
| 1132 | } |
| 1133 | |
| 1134 | /** \brief Specialisation of \ref mmbit_sparse_iter_begin for flat models. */ |
| 1135 | static really_inline |
| 1136 | u32 mmbit_sparse_iter_begin_flat(const u8 *bits, u32 total_bits, u32 *idx, |
| 1137 | const struct mmbit_sparse_iter *it_root, |
| 1138 | struct mmbit_sparse_state *s) { |
| 1139 | // Small cases have everything in the root iterator mask. |
| 1140 | if (total_bits <= MMB_KEY_BITS) { |
| 1141 | MMB_TYPE block = mmbit_get_flat_block(bits, total_bits); |
| 1142 | block &= it_root->mask; |
| 1143 | if (!block) { |
| 1144 | return MMB_INVALID; |
| 1145 | } |
| 1146 | |
| 1147 | s->mask = block; |
| 1148 | u32 key = mmb_ctz(block); |
| 1149 | *idx = mmbit_mask_index(key, it_root->mask); |
| 1150 | return key; |
| 1151 | } |
| 1152 | |
| 1153 | // Otherwise, the root iterator mask tells us which blocks (which we lay out |
| 1154 | // linearly in the flat model) could contain keys. |
| 1155 | assert(mmbit_maxlevel(total_bits) == 1); // Should only be two levels |
| 1156 | MMB_TYPE root = it_root->mask; |
| 1157 | for (; root; root &= (root - 1)) { |
| 1158 | u32 bit = mmb_ctz(root); |
| 1159 | u32 bit_idx = mmbit_mask_index(bit, it_root->mask); |
| 1160 | u32 iter_key = it_root->val + bit_idx; |
| 1161 | const struct mmbit_sparse_iter *it = it_root + iter_key; |
| 1162 | u32 block_key_min = bit * MMB_KEY_BITS; |
| 1163 | u32 block_key_max = block_key_min + MMB_KEY_BITS; |
| 1164 | MMB_TYPE block; |
| 1165 | if (block_key_max > total_bits) { |
| 1166 | block_key_max = total_bits; |
| 1167 | block = mmbit_get_flat_block(bits + (bit * sizeof(MMB_TYPE)), |
| 1168 | block_key_max - block_key_min); |
| 1169 | } else { |
| 1170 | block = mmb_load(bits + (bit * sizeof(MMB_TYPE))); |
| 1171 | } |
| 1172 | |
| 1173 | block &= it->mask; |
| 1174 | if (block) { |
| 1175 | s[0].mask = root; |
| 1176 | s[1].mask = block; |
| 1177 | s[1].itkey = iter_key; |
| 1178 | u32 key = mmb_ctz(block); |
| 1179 | *idx = it->val + mmbit_mask_index(key, it->mask); |
| 1180 | return key + block_key_min; |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | return MMB_INVALID; |
| 1185 | } |
| 1186 | |
| 1187 | /** \brief Sparse iterator, find first key. |
| 1188 | * |
| 1189 | * Returns the first of the bits specified by the iterator \a it_root that is |
| 1190 | * on, and initialises the state \a s. If none of the bits specified by the |
| 1191 | * iterator are on, returns MMB_INVALID. |
| 1192 | */ |
| 1193 | static really_inline |
| 1194 | u32 mmbit_sparse_iter_begin(const u8 *bits, u32 total_bits, u32 *idx, |
| 1195 | const struct mmbit_sparse_iter *it_root, |
| 1196 | struct mmbit_sparse_state *s) { |
| 1197 | assert(ISALIGNED_N(it_root, alignof(struct mmbit_sparse_iter))); |
| 1198 | |
| 1199 | // Our state _may_ be on the stack |
| 1200 | #ifndef _WIN32 |
| 1201 | assert(ISALIGNED_N(s, alignof(struct mmbit_sparse_state))); |
| 1202 | #else |
| 1203 | assert(ISALIGNED_N(s, 4)); |
| 1204 | #endif |
| 1205 | |
| 1206 | MDEBUG_PRINTF("%p total_bits %u\n" , bits, total_bits); |
| 1207 | // iterator should have _something_ at the root level |
| 1208 | assert(it_root->mask != 0); |
| 1209 | u32 key; |
| 1210 | if (mmbit_is_flat_model(total_bits)) { |
| 1211 | key = mmbit_sparse_iter_begin_flat(bits, total_bits, idx, it_root, s); |
| 1212 | } else { |
| 1213 | key = mmbit_sparse_iter_begin_big(bits, total_bits, idx, it_root, s); |
| 1214 | } |
| 1215 | if (key != MMB_INVALID) { |
| 1216 | assert(key < total_bits); |
| 1217 | assert(mmbit_isset(bits, total_bits, key)); |
| 1218 | } |
| 1219 | return key; |
| 1220 | } |
| 1221 | |
| 1222 | static really_inline |
| 1223 | u32 mmbit_sparse_iter_next_big(const u8 *bits, u32 total_bits, u32 last_key, |
| 1224 | u32 *idx, |
| 1225 | const struct mmbit_sparse_iter *it_root, |
| 1226 | struct mmbit_sparse_state *s) { |
| 1227 | const u32 max_level = mmbit_maxlevel(total_bits); |
| 1228 | u32 key = last_key >> MMB_KEY_SHIFT; |
| 1229 | s[max_level].mask &= (s[max_level].mask - 1); |
| 1230 | const struct mmbit_sparse_iter *it = it_root + s[max_level].itkey; |
| 1231 | return mmbit_sparse_iter_exec(bits, key, idx, max_level, max_level, s, |
| 1232 | it_root, it); |
| 1233 | } |
| 1234 | |
| 1235 | /** \brief Specialisation of \ref mmbit_sparse_iter_next for flat models. */ |
| 1236 | static really_inline |
| 1237 | u32 mmbit_sparse_iter_next_flat(const u8 *bits, const u32 total_bits, u32 *idx, |
| 1238 | const struct mmbit_sparse_iter *it_root, |
| 1239 | struct mmbit_sparse_state *s) { |
| 1240 | if (total_bits <= MMB_KEY_BITS) { |
| 1241 | // All of our data is already in the s->mask, so we just need to scrape |
| 1242 | // off the next match. |
| 1243 | s->mask &= (s->mask - 1); |
| 1244 | if (s->mask) { |
| 1245 | u32 key = mmb_ctz(s->mask); |
| 1246 | *idx = mmbit_mask_index(key, it_root->mask); |
| 1247 | return key; |
| 1248 | } |
| 1249 | } else { |
| 1250 | assert(s[0].mask); |
| 1251 | |
| 1252 | s[1].mask &= (s[1].mask - 1); // Remove previous key from iter state. |
| 1253 | u32 bit = mmb_ctz(s[0].mask); // Flat block currently being accessed. |
| 1254 | |
| 1255 | for (;;) { |
| 1256 | if (s[1].mask) { |
| 1257 | u32 key = mmb_ctz(s[1].mask); |
| 1258 | const struct mmbit_sparse_iter *it = it_root + s[1].itkey; |
| 1259 | *idx = it->val + mmbit_mask_index(key, it->mask); |
| 1260 | key += (bit * MMB_KEY_BITS); |
| 1261 | return key; |
| 1262 | } |
| 1263 | |
| 1264 | // Otherwise, we have no keys left in this block. Consult the root |
| 1265 | // mask and find the next one. |
| 1266 | |
| 1267 | s[0].mask &= s[0].mask - 1; |
| 1268 | if (!s[0].mask) { |
| 1269 | break; |
| 1270 | } |
| 1271 | |
| 1272 | bit = mmb_ctz(s[0].mask); |
| 1273 | u32 bit_idx = mmbit_mask_index(bit, it_root->mask); |
| 1274 | u32 iter_key = it_root->val + bit_idx; |
| 1275 | const struct mmbit_sparse_iter *it = it_root + iter_key; |
| 1276 | u32 block_key_min = bit * MMB_KEY_BITS; |
| 1277 | u32 block_key_max = block_key_min + MMB_KEY_BITS; |
| 1278 | MMB_TYPE block; |
| 1279 | if (block_key_max > total_bits) { |
| 1280 | block_key_max = total_bits; |
| 1281 | block = mmbit_get_flat_block(bits + (bit * sizeof(MMB_TYPE)), |
| 1282 | block_key_max - block_key_min); |
| 1283 | } else { |
| 1284 | block = mmb_load(bits + (bit * sizeof(MMB_TYPE))); |
| 1285 | } |
| 1286 | |
| 1287 | s[1].mask = block & it->mask; |
| 1288 | s[1].itkey = iter_key; |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | return MMB_INVALID; |
| 1293 | } |
| 1294 | |
| 1295 | /** \brief Sparse iterator, find next key. |
| 1296 | * |
| 1297 | * Takes in a sparse iterator tree structure \a it_root and a state array, and |
| 1298 | * finds the next on bit (from the set of bits specified in the iterator). |
| 1299 | * |
| 1300 | * NOTE: The sparse iterator stores copies of the multibit blocks in its state, |
| 1301 | * so it is not necessarily safe to set or unset bits in the multibit while |
| 1302 | * iterating: the changes you make may or may not be taken into account |
| 1303 | * by the iterator. |
| 1304 | */ |
| 1305 | static really_inline |
| 1306 | u32 mmbit_sparse_iter_next(const u8 *bits, u32 total_bits, u32 last_key, |
| 1307 | u32 *idx, const struct mmbit_sparse_iter *it_root, |
| 1308 | struct mmbit_sparse_state *s) { |
| 1309 | assert(ISALIGNED_N(it_root, alignof(struct mmbit_sparse_iter))); |
| 1310 | |
| 1311 | // Our state _may_ be on the stack |
| 1312 | #ifndef _WIN32 |
| 1313 | assert(ISALIGNED_N(s, alignof(struct mmbit_sparse_state))); |
| 1314 | #else |
| 1315 | assert(ISALIGNED_N(s, 4)); |
| 1316 | #endif |
| 1317 | |
| 1318 | MDEBUG_PRINTF("%p total_bits %u\n" , bits, total_bits); |
| 1319 | MDEBUG_PRINTF("NEXT (total_bits=%u, last_key=%u)\n" , total_bits, last_key); |
| 1320 | UNUSED u32 last_idx = *idx; // for assertion at the end |
| 1321 | // our iterator should have _something_ at the root level |
| 1322 | assert(it_root->mask != 0); |
| 1323 | assert(last_key < total_bits); |
| 1324 | |
| 1325 | u32 key; |
| 1326 | if (mmbit_is_flat_model(total_bits)) { |
| 1327 | key = mmbit_sparse_iter_next_flat(bits, total_bits, idx, it_root, s); |
| 1328 | } else { |
| 1329 | key = mmbit_sparse_iter_next_big(bits, total_bits, last_key, idx, |
| 1330 | it_root, s); |
| 1331 | } |
| 1332 | if (key != MMB_INVALID) { |
| 1333 | MDEBUG_PRINTF("END NEXT: key=%u, idx=%u\n" , key, *idx); |
| 1334 | assert(key < total_bits); |
| 1335 | assert(key > last_key); |
| 1336 | assert(mmbit_isset(bits, total_bits, key)); |
| 1337 | assert(*idx > last_idx); |
| 1338 | } else { |
| 1339 | MDEBUG_PRINTF("END NEXT: no more keys\n" ); |
| 1340 | } |
| 1341 | return key; |
| 1342 | } |
| 1343 | |
| 1344 | /** \brief Specialisation of \ref mmbit_sparse_iter_unset for flat models. */ |
| 1345 | static really_inline |
| 1346 | void mmbit_sparse_iter_unset_flat(u8 *bits, u32 total_bits, |
| 1347 | const struct mmbit_sparse_iter *it_root) { |
| 1348 | if (total_bits <= MMB_KEY_BITS) { |
| 1349 | // Everything is in the root mask: we can just mask those bits off. |
| 1350 | MMB_TYPE block = mmbit_get_flat_block(bits, total_bits); |
| 1351 | block &= ~it_root->mask; |
| 1352 | mmb_store_partial(bits, block, total_bits); |
| 1353 | return; |
| 1354 | } |
| 1355 | |
| 1356 | // Larger case, we have two iterator levels to worry about. |
| 1357 | u32 bit_idx = 0; |
| 1358 | for (MMB_TYPE root = it_root->mask; root; root &= (root - 1), bit_idx++) { |
| 1359 | u32 bit = mmb_ctz(root); |
| 1360 | u32 block_key_min = bit * MMB_KEY_BITS; |
| 1361 | u32 block_key_max = block_key_min + MMB_KEY_BITS; |
| 1362 | u8 *block_ptr = bits + (bit * sizeof(MMB_TYPE)); |
| 1363 | u32 iter_key = it_root->val + bit_idx; |
| 1364 | const struct mmbit_sparse_iter *it = it_root + iter_key; |
| 1365 | if (block_key_max <= total_bits) { |
| 1366 | // Full-sized block. |
| 1367 | MMB_TYPE block = mmb_load(block_ptr); |
| 1368 | block &= ~it->mask; |
| 1369 | mmb_store(block_ptr, block); |
| 1370 | } else { |
| 1371 | // Runt (final) block. |
| 1372 | u32 num_bits = total_bits - block_key_min; |
| 1373 | MMB_TYPE block = mmbit_get_flat_block(block_ptr, num_bits); |
| 1374 | block &= ~it->mask; |
| 1375 | mmb_store_partial(block_ptr, block, num_bits); |
| 1376 | break; // We know this is the last block. |
| 1377 | } |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | static really_inline |
| 1382 | void mmbit_sparse_iter_unset_big(u8 *bits, u32 total_bits, |
| 1383 | const struct mmbit_sparse_iter *it_root, |
| 1384 | struct mmbit_sparse_state *s) { |
| 1385 | const struct mmbit_sparse_iter *it = it_root; |
| 1386 | MMB_TYPE block = mmb_load(bits) & it->mask; |
| 1387 | if (!block) { |
| 1388 | return; |
| 1389 | } |
| 1390 | |
| 1391 | u32 key = 0; |
| 1392 | const u32 max_level = mmbit_maxlevel(total_bits); |
| 1393 | u32 level = 0; |
| 1394 | |
| 1395 | // Load first block into top level state |
| 1396 | s[level].mask = block; |
| 1397 | s[level].itkey = 0; |
| 1398 | for (;;) { |
| 1399 | block = s[level].mask; |
| 1400 | if (block) { |
| 1401 | if (level == max_level) { |
| 1402 | // bottom level block: we want to mask out the bits specified |
| 1403 | // by the iterator mask and then go back up a level. |
| 1404 | u8 *block_ptr = |
| 1405 | mmbit_get_level_root(bits, level) + key * sizeof(MMB_TYPE); |
| 1406 | MMB_TYPE real_block = mmb_load(block_ptr); |
| 1407 | real_block &= ~(it->mask); |
| 1408 | mmb_store(block_ptr, real_block); |
| 1409 | goto uplevel; // still cheap and nasty |
| 1410 | } else { |
| 1411 | u32 bit = mmb_ctz(block); |
| 1412 | key = (key << MMB_KEY_SHIFT) + bit; |
| 1413 | level++; |
| 1414 | |
| 1415 | // iterator record is the start of the level (current it->val) |
| 1416 | // plus N, where N is the dense index of the bit in the current |
| 1417 | // level's itmask |
| 1418 | u32 iter_key = it->val + mmbit_mask_index(bit, it->mask); |
| 1419 | it = it_root + iter_key; |
| 1420 | MMB_TYPE nextblock = |
| 1421 | mmb_load(mmbit_get_level_root_const(bits, level) + |
| 1422 | key * sizeof(MMB_TYPE)); |
| 1423 | s[level].mask = nextblock & it->mask; |
| 1424 | s[level].itkey = iter_key; |
| 1425 | } |
| 1426 | } else { |
| 1427 | uplevel: |
| 1428 | // No bits set in this block |
| 1429 | if (level == 0) { |
| 1430 | return; // we are done |
| 1431 | } |
| 1432 | u8 *block_ptr = |
| 1433 | mmbit_get_level_root(bits, level) + key * sizeof(MMB_TYPE); |
| 1434 | MMB_TYPE real_block = mmb_load(block_ptr); |
| 1435 | key >>= MMB_KEY_SHIFT; |
| 1436 | level--; |
| 1437 | |
| 1438 | if (real_block == 0) { |
| 1439 | // If we've zeroed our block For Real (unmasked by iterator), |
| 1440 | // we can clear the parent bit that led us to it, so that |
| 1441 | // we don't go down this particular garden path again later. |
| 1442 | u32 bit = mmb_ctz(s[level].mask); |
| 1443 | u8 *parent_ptr = |
| 1444 | mmbit_get_level_root(bits, level) + key * sizeof(MMB_TYPE); |
| 1445 | MMB_TYPE parent_block = mmb_load(parent_ptr); |
| 1446 | mmb_clear(&parent_block, bit); |
| 1447 | mmb_store(parent_ptr, parent_block); |
| 1448 | } |
| 1449 | |
| 1450 | // Update state mask and iterator |
| 1451 | s[level].mask &= (s[level].mask - 1); |
| 1452 | it = it_root + s[level].itkey; |
| 1453 | } |
| 1454 | } |
| 1455 | } |
| 1456 | |
| 1457 | /** \brief Sparse iterator, unset all bits. |
| 1458 | * |
| 1459 | * Takes in a sparse iterator tree structure and switches off any entries found |
| 1460 | * therein. |
| 1461 | */ |
| 1462 | static really_inline |
| 1463 | void mmbit_sparse_iter_unset(u8 *bits, u32 total_bits, |
| 1464 | const struct mmbit_sparse_iter *it, |
| 1465 | struct mmbit_sparse_state *s) { |
| 1466 | assert(ISALIGNED_N(it, alignof(struct mmbit_sparse_iter))); |
| 1467 | |
| 1468 | // Our state _may_ be on the stack |
| 1469 | #ifndef _WIN32 |
| 1470 | assert(ISALIGNED_N(s, alignof(struct mmbit_sparse_state))); |
| 1471 | #else |
| 1472 | assert(ISALIGNED_N(s, 4)); |
| 1473 | #endif |
| 1474 | |
| 1475 | MDEBUG_PRINTF("%p total_bits %u\n" , bits, total_bits); |
| 1476 | |
| 1477 | #ifdef MMB_TRACE_WRITES |
| 1478 | MMB_TRACE("ITER-UNSET iter=[" ); |
| 1479 | mmbit_sparse_iter_dump(it, total_bits); |
| 1480 | printf("] actually on=[" ); |
| 1481 | struct mmbit_sparse_state tmp[MAX_SPARSE_ITER_STATES]; |
| 1482 | u32 idx = 0; |
| 1483 | u32 i = mmbit_sparse_iter_begin(bits, total_bits, &idx, it, tmp); |
| 1484 | for (; i != MMB_INVALID; |
| 1485 | i = mmbit_sparse_iter_next(bits, total_bits, i, &idx, it, tmp)) { |
| 1486 | printf(" %u" , i); |
| 1487 | } |
| 1488 | printf("]\n" ); |
| 1489 | #endif |
| 1490 | |
| 1491 | if (mmbit_is_flat_model(total_bits)) { |
| 1492 | mmbit_sparse_iter_unset_flat(bits, total_bits, it); |
| 1493 | } else { |
| 1494 | mmbit_sparse_iter_unset_big(bits, total_bits, it, s); |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | #ifdef __cplusplus |
| 1499 | } // extern "C" |
| 1500 | #endif |
| 1501 | |
| 1502 | #endif // MULTIBIT_H |
| 1503 | |