| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /* |
| 4 | ****************************************************************************** |
| 5 | * Copyright (C) 1997-2016, International Business Machines |
| 6 | * Corporation and others. All Rights Reserved. |
| 7 | ****************************************************************************** |
| 8 | * Date Name Description |
| 9 | * 03/22/00 aliu Adapted from original C++ ICU Hashtable. |
| 10 | * 07/06/01 aliu Modified to support int32_t keys on |
| 11 | * platforms with sizeof(void*) < 32. |
| 12 | ****************************************************************************** |
| 13 | */ |
| 14 | |
| 15 | #include "uhash.h" |
| 16 | #include "unicode/ustring.h" |
| 17 | #include "cstring.h" |
| 18 | #include "cmemory.h" |
| 19 | #include "uassert.h" |
| 20 | #include "ustr_imp.h" |
| 21 | |
| 22 | /* This hashtable is implemented as a double hash. All elements are |
| 23 | * stored in a single array with no secondary storage for collision |
| 24 | * resolution (no linked list, etc.). When there is a hash collision |
| 25 | * (when two unequal keys have the same hashcode) we resolve this by |
| 26 | * using a secondary hash. The secondary hash is an increment |
| 27 | * computed as a hash function (a different one) of the primary |
| 28 | * hashcode. This increment is added to the initial hash value to |
| 29 | * obtain further slots assigned to the same hash code. For this to |
| 30 | * work, the length of the array and the increment must be relatively |
| 31 | * prime. The easiest way to achieve this is to have the length of |
| 32 | * the array be prime, and the increment be any value from |
| 33 | * 1..length-1. |
| 34 | * |
| 35 | * Hashcodes are 32-bit integers. We make sure all hashcodes are |
| 36 | * non-negative by masking off the top bit. This has two effects: (1) |
| 37 | * modulo arithmetic is simplified. If we allowed negative hashcodes, |
| 38 | * then when we computed hashcode % length, we could get a negative |
| 39 | * result, which we would then have to adjust back into range. It's |
| 40 | * simpler to just make hashcodes non-negative. (2) It makes it easy |
| 41 | * to check for empty vs. occupied slots in the table. We just mark |
| 42 | * empty or deleted slots with a negative hashcode. |
| 43 | * |
| 44 | * The central function is _uhash_find(). This function looks for a |
| 45 | * slot matching the given key and hashcode. If one is found, it |
| 46 | * returns a pointer to that slot. If the table is full, and no match |
| 47 | * is found, it returns NULL -- in theory. This would make the code |
| 48 | * more complicated, since all callers of _uhash_find() would then |
| 49 | * have to check for a NULL result. To keep this from happening, we |
| 50 | * don't allow the table to fill. When there is only one |
| 51 | * empty/deleted slot left, uhash_put() will refuse to increase the |
| 52 | * count, and fail. This simplifies the code. In practice, one will |
| 53 | * seldom encounter this using default UHashtables. However, if a |
| 54 | * hashtable is set to a U_FIXED resize policy, or if memory is |
| 55 | * exhausted, then the table may fill. |
| 56 | * |
| 57 | * High and low water ratios control rehashing. They establish levels |
| 58 | * of fullness (from 0 to 1) outside of which the data array is |
| 59 | * reallocated and repopulated. Setting the low water ratio to zero |
| 60 | * means the table will never shrink. Setting the high water ratio to |
| 61 | * one means the table will never grow. The ratios should be |
| 62 | * coordinated with the ratio between successive elements of the |
| 63 | * PRIMES table, so that when the primeIndex is incremented or |
| 64 | * decremented during rehashing, it brings the ratio of count / length |
| 65 | * back into the desired range (between low and high water ratios). |
| 66 | */ |
| 67 | |
| 68 | /******************************************************************** |
| 69 | * PRIVATE Constants, Macros |
| 70 | ********************************************************************/ |
| 71 | |
| 72 | /* This is a list of non-consecutive primes chosen such that |
| 73 | * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 |
| 74 | * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this |
| 75 | * ratio is changed, the low and high water ratios should also be |
| 76 | * adjusted to suit. |
| 77 | * |
| 78 | * These prime numbers were also chosen so that they are the largest |
| 79 | * prime number while being less than a power of two. |
| 80 | */ |
| 81 | static const int32_t PRIMES[] = { |
| 82 | 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, |
| 83 | 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, |
| 84 | 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, |
| 85 | 1073741789, 2147483647 /*, 4294967291 */ |
| 86 | }; |
| 87 | |
| 88 | #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES) |
| 89 | #define DEFAULT_PRIME_INDEX 4 |
| 90 | |
| 91 | /* These ratios are tuned to the PRIMES array such that a resize |
| 92 | * places the table back into the zone of non-resizing. That is, |
| 93 | * after a call to _uhash_rehash(), a subsequent call to |
| 94 | * _uhash_rehash() should do nothing (should not churn). This is only |
| 95 | * a potential problem with U_GROW_AND_SHRINK. |
| 96 | */ |
| 97 | static const float RESIZE_POLICY_RATIO_TABLE[6] = { |
| 98 | /* low, high water ratio */ |
| 99 | 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ |
| 100 | 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ |
| 101 | 0.0F, 1.0F /* U_FIXED: Never change size */ |
| 102 | }; |
| 103 | |
| 104 | /* |
| 105 | Invariants for hashcode values: |
| 106 | |
| 107 | * DELETED < 0 |
| 108 | * EMPTY < 0 |
| 109 | * Real hashes >= 0 |
| 110 | |
| 111 | Hashcodes may not start out this way, but internally they are |
| 112 | adjusted so that they are always positive. We assume 32-bit |
| 113 | hashcodes; adjust these constants for other hashcode sizes. |
| 114 | */ |
| 115 | #define HASH_DELETED ((int32_t) 0x80000000) |
| 116 | #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) |
| 117 | |
| 118 | #define IS_EMPTY_OR_DELETED(x) ((x) < 0) |
| 119 | |
| 120 | /* This macro expects a UHashTok.pointer as its keypointer and |
| 121 | valuepointer parameters */ |
| 122 | #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) UPRV_BLOCK_MACRO_BEGIN { \ |
| 123 | if (hash->keyDeleter != NULL && keypointer != NULL) { \ |
| 124 | (*hash->keyDeleter)(keypointer); \ |
| 125 | } \ |
| 126 | if (hash->valueDeleter != NULL && valuepointer != NULL) { \ |
| 127 | (*hash->valueDeleter)(valuepointer); \ |
| 128 | } \ |
| 129 | } UPRV_BLOCK_MACRO_END |
| 130 | |
| 131 | /* |
| 132 | * Constants for hinting whether a key or value is an integer |
| 133 | * or a pointer. If a hint bit is zero, then the associated |
| 134 | * token is assumed to be an integer. |
| 135 | */ |
| 136 | #define HINT_KEY_POINTER (1) |
| 137 | #define HINT_VALUE_POINTER (2) |
| 138 | |
| 139 | /******************************************************************** |
| 140 | * PRIVATE Implementation |
| 141 | ********************************************************************/ |
| 142 | |
| 143 | static UHashTok |
| 144 | _uhash_setElement(UHashtable *hash, UHashElement* e, |
| 145 | int32_t hashcode, |
| 146 | UHashTok key, UHashTok value, int8_t hint) { |
| 147 | |
| 148 | UHashTok oldValue = e->value; |
| 149 | if (hash->keyDeleter != NULL && e->key.pointer != NULL && |
| 150 | e->key.pointer != key.pointer) { /* Avoid double deletion */ |
| 151 | (*hash->keyDeleter)(e->key.pointer); |
| 152 | } |
| 153 | if (hash->valueDeleter != NULL) { |
| 154 | if (oldValue.pointer != NULL && |
| 155 | oldValue.pointer != value.pointer) { /* Avoid double deletion */ |
| 156 | (*hash->valueDeleter)(oldValue.pointer); |
| 157 | } |
| 158 | oldValue.pointer = NULL; |
| 159 | } |
| 160 | /* Compilers should copy the UHashTok union correctly, but even if |
| 161 | * they do, memory heap tools (e.g. BoundsChecker) can get |
| 162 | * confused when a pointer is cloaked in a union and then copied. |
| 163 | * TO ALLEVIATE THIS, we use hints (based on what API the user is |
| 164 | * calling) to copy pointers when we know the user thinks |
| 165 | * something is a pointer. */ |
| 166 | if (hint & HINT_KEY_POINTER) { |
| 167 | e->key.pointer = key.pointer; |
| 168 | } else { |
| 169 | e->key = key; |
| 170 | } |
| 171 | if (hint & HINT_VALUE_POINTER) { |
| 172 | e->value.pointer = value.pointer; |
| 173 | } else { |
| 174 | e->value = value; |
| 175 | } |
| 176 | e->hashcode = hashcode; |
| 177 | return oldValue; |
| 178 | } |
| 179 | |
| 180 | /** |
| 181 | * Assumes that the given element is not empty or deleted. |
| 182 | */ |
| 183 | static UHashTok |
| 184 | _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { |
| 185 | UHashTok empty; |
| 186 | U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); |
| 187 | --hash->count; |
| 188 | empty.pointer = NULL; empty.integer = 0; |
| 189 | return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); |
| 190 | } |
| 191 | |
| 192 | static void |
| 193 | _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
| 194 | U_ASSERT(hash != NULL); |
| 195 | U_ASSERT(((int32_t)policy) >= 0); |
| 196 | U_ASSERT(((int32_t)policy) < 3); |
| 197 | hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; |
| 198 | hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; |
| 199 | } |
| 200 | |
| 201 | /** |
| 202 | * Allocate internal data array of a size determined by the given |
| 203 | * prime index. If the index is out of range it is pinned into range. |
| 204 | * If the allocation fails the status is set to |
| 205 | * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In |
| 206 | * either case the previous array pointer is overwritten. |
| 207 | * |
| 208 | * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. |
| 209 | */ |
| 210 | static void |
| 211 | _uhash_allocate(UHashtable *hash, |
| 212 | int32_t primeIndex, |
| 213 | UErrorCode *status) { |
| 214 | |
| 215 | UHashElement *p, *limit; |
| 216 | UHashTok emptytok; |
| 217 | |
| 218 | if (U_FAILURE(*status)) return; |
| 219 | |
| 220 | U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); |
| 221 | |
| 222 | hash->primeIndex = static_cast<int8_t>(primeIndex); |
| 223 | hash->length = PRIMES[primeIndex]; |
| 224 | |
| 225 | p = hash->elements = (UHashElement*) |
| 226 | uprv_malloc(sizeof(UHashElement) * hash->length); |
| 227 | |
| 228 | if (hash->elements == NULL) { |
| 229 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 230 | return; |
| 231 | } |
| 232 | |
| 233 | emptytok.pointer = NULL; /* Only one of these two is needed */ |
| 234 | emptytok.integer = 0; /* but we don't know which one. */ |
| 235 | |
| 236 | limit = p + hash->length; |
| 237 | while (p < limit) { |
| 238 | p->key = emptytok; |
| 239 | p->value = emptytok; |
| 240 | p->hashcode = HASH_EMPTY; |
| 241 | ++p; |
| 242 | } |
| 243 | |
| 244 | hash->count = 0; |
| 245 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
| 246 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
| 247 | } |
| 248 | |
| 249 | static UHashtable* |
| 250 | _uhash_init(UHashtable *result, |
| 251 | UHashFunction *keyHash, |
| 252 | UKeyComparator *keyComp, |
| 253 | UValueComparator *valueComp, |
| 254 | int32_t primeIndex, |
| 255 | UErrorCode *status) |
| 256 | { |
| 257 | if (U_FAILURE(*status)) return NULL; |
| 258 | U_ASSERT(keyHash != NULL); |
| 259 | U_ASSERT(keyComp != NULL); |
| 260 | |
| 261 | result->keyHasher = keyHash; |
| 262 | result->keyComparator = keyComp; |
| 263 | result->valueComparator = valueComp; |
| 264 | result->keyDeleter = NULL; |
| 265 | result->valueDeleter = NULL; |
| 266 | result->allocated = FALSE; |
| 267 | _uhash_internalSetResizePolicy(result, U_GROW); |
| 268 | |
| 269 | _uhash_allocate(result, primeIndex, status); |
| 270 | |
| 271 | if (U_FAILURE(*status)) { |
| 272 | return NULL; |
| 273 | } |
| 274 | |
| 275 | return result; |
| 276 | } |
| 277 | |
| 278 | static UHashtable* |
| 279 | _uhash_create(UHashFunction *keyHash, |
| 280 | UKeyComparator *keyComp, |
| 281 | UValueComparator *valueComp, |
| 282 | int32_t primeIndex, |
| 283 | UErrorCode *status) { |
| 284 | UHashtable *result; |
| 285 | |
| 286 | if (U_FAILURE(*status)) return NULL; |
| 287 | |
| 288 | result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); |
| 289 | if (result == NULL) { |
| 290 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 291 | return NULL; |
| 292 | } |
| 293 | |
| 294 | _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); |
| 295 | result->allocated = TRUE; |
| 296 | |
| 297 | if (U_FAILURE(*status)) { |
| 298 | uprv_free(result); |
| 299 | return NULL; |
| 300 | } |
| 301 | |
| 302 | return result; |
| 303 | } |
| 304 | |
| 305 | /** |
| 306 | * Look for a key in the table, or if no such key exists, the first |
| 307 | * empty slot matching the given hashcode. Keys are compared using |
| 308 | * the keyComparator function. |
| 309 | * |
| 310 | * First find the start position, which is the hashcode modulo |
| 311 | * the length. Test it to see if it is: |
| 312 | * |
| 313 | * a. identical: First check the hash values for a quick check, |
| 314 | * then compare keys for equality using keyComparator. |
| 315 | * b. deleted |
| 316 | * c. empty |
| 317 | * |
| 318 | * Stop if it is identical or empty, otherwise continue by adding a |
| 319 | * "jump" value (moduloing by the length again to keep it within |
| 320 | * range) and retesting. For efficiency, there need enough empty |
| 321 | * values so that the searchs stop within a reasonable amount of time. |
| 322 | * This can be changed by changing the high/low water marks. |
| 323 | * |
| 324 | * In theory, this function can return NULL, if it is full (no empty |
| 325 | * or deleted slots) and if no matching key is found. In practice, we |
| 326 | * prevent this elsewhere (in uhash_put) by making sure the last slot |
| 327 | * in the table is never filled. |
| 328 | * |
| 329 | * The size of the table should be prime for this algorithm to work; |
| 330 | * otherwise we are not guaranteed that the jump value (the secondary |
| 331 | * hash) is relatively prime to the table length. |
| 332 | */ |
| 333 | static UHashElement* |
| 334 | _uhash_find(const UHashtable *hash, UHashTok key, |
| 335 | int32_t hashcode) { |
| 336 | |
| 337 | int32_t firstDeleted = -1; /* assume invalid index */ |
| 338 | int32_t theIndex, startIndex; |
| 339 | int32_t jump = 0; /* lazy evaluate */ |
| 340 | int32_t tableHash; |
| 341 | UHashElement *elements = hash->elements; |
| 342 | |
| 343 | hashcode &= 0x7FFFFFFF; /* must be positive */ |
| 344 | startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; |
| 345 | |
| 346 | do { |
| 347 | tableHash = elements[theIndex].hashcode; |
| 348 | if (tableHash == hashcode) { /* quick check */ |
| 349 | if ((*hash->keyComparator)(key, elements[theIndex].key)) { |
| 350 | return &(elements[theIndex]); |
| 351 | } |
| 352 | } else if (!IS_EMPTY_OR_DELETED(tableHash)) { |
| 353 | /* We have hit a slot which contains a key-value pair, |
| 354 | * but for which the hash code does not match. Keep |
| 355 | * looking. |
| 356 | */ |
| 357 | } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ |
| 358 | break; |
| 359 | } else if (firstDeleted < 0) { /* remember first deleted */ |
| 360 | firstDeleted = theIndex; |
| 361 | } |
| 362 | if (jump == 0) { /* lazy compute jump */ |
| 363 | /* The jump value must be relatively prime to the table |
| 364 | * length. As long as the length is prime, then any value |
| 365 | * 1..length-1 will be relatively prime to it. |
| 366 | */ |
| 367 | jump = (hashcode % (hash->length - 1)) + 1; |
| 368 | } |
| 369 | theIndex = (theIndex + jump) % hash->length; |
| 370 | } while (theIndex != startIndex); |
| 371 | |
| 372 | if (firstDeleted >= 0) { |
| 373 | theIndex = firstDeleted; /* reset if had deleted slot */ |
| 374 | } else if (tableHash != HASH_EMPTY) { |
| 375 | /* We get to this point if the hashtable is full (no empty or |
| 376 | * deleted slots), and we've failed to find a match. THIS |
| 377 | * WILL NEVER HAPPEN as long as uhash_put() makes sure that |
| 378 | * count is always < length. |
| 379 | */ |
| 380 | UPRV_UNREACHABLE; |
| 381 | } |
| 382 | return &(elements[theIndex]); |
| 383 | } |
| 384 | |
| 385 | /** |
| 386 | * Attempt to grow or shrink the data arrays in order to make the |
| 387 | * count fit between the high and low water marks. hash_put() and |
| 388 | * hash_remove() call this method when the count exceeds the high or |
| 389 | * low water marks. This method may do nothing, if memory allocation |
| 390 | * fails, or if the count is already in range, or if the length is |
| 391 | * already at the low or high limit. In any case, upon return the |
| 392 | * arrays will be valid. |
| 393 | */ |
| 394 | static void |
| 395 | _uhash_rehash(UHashtable *hash, UErrorCode *status) { |
| 396 | |
| 397 | UHashElement *old = hash->elements; |
| 398 | int32_t oldLength = hash->length; |
| 399 | int32_t newPrimeIndex = hash->primeIndex; |
| 400 | int32_t i; |
| 401 | |
| 402 | if (hash->count > hash->highWaterMark) { |
| 403 | if (++newPrimeIndex >= PRIMES_LENGTH) { |
| 404 | return; |
| 405 | } |
| 406 | } else if (hash->count < hash->lowWaterMark) { |
| 407 | if (--newPrimeIndex < 0) { |
| 408 | return; |
| 409 | } |
| 410 | } else { |
| 411 | return; |
| 412 | } |
| 413 | |
| 414 | _uhash_allocate(hash, newPrimeIndex, status); |
| 415 | |
| 416 | if (U_FAILURE(*status)) { |
| 417 | hash->elements = old; |
| 418 | hash->length = oldLength; |
| 419 | return; |
| 420 | } |
| 421 | |
| 422 | for (i = oldLength - 1; i >= 0; --i) { |
| 423 | if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { |
| 424 | UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); |
| 425 | U_ASSERT(e != NULL); |
| 426 | U_ASSERT(e->hashcode == HASH_EMPTY); |
| 427 | e->key = old[i].key; |
| 428 | e->value = old[i].value; |
| 429 | e->hashcode = old[i].hashcode; |
| 430 | ++hash->count; |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | uprv_free(old); |
| 435 | } |
| 436 | |
| 437 | static UHashTok |
| 438 | _uhash_remove(UHashtable *hash, |
| 439 | UHashTok key) { |
| 440 | /* First find the position of the key in the table. If the object |
| 441 | * has not been removed already, remove it. If the user wanted |
| 442 | * keys deleted, then delete it also. We have to put a special |
| 443 | * hashcode in that position that means that something has been |
| 444 | * deleted, since when we do a find, we have to continue PAST any |
| 445 | * deleted values. |
| 446 | */ |
| 447 | UHashTok result; |
| 448 | UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); |
| 449 | U_ASSERT(e != NULL); |
| 450 | result.pointer = NULL; |
| 451 | result.integer = 0; |
| 452 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
| 453 | result = _uhash_internalRemoveElement(hash, e); |
| 454 | if (hash->count < hash->lowWaterMark) { |
| 455 | UErrorCode status = U_ZERO_ERROR; |
| 456 | _uhash_rehash(hash, &status); |
| 457 | } |
| 458 | } |
| 459 | return result; |
| 460 | } |
| 461 | |
| 462 | static UHashTok |
| 463 | _uhash_put(UHashtable *hash, |
| 464 | UHashTok key, |
| 465 | UHashTok value, |
| 466 | int8_t hint, |
| 467 | UErrorCode *status) { |
| 468 | |
| 469 | /* Put finds the position in the table for the new value. If the |
| 470 | * key is already in the table, it is deleted, if there is a |
| 471 | * non-NULL keyDeleter. Then the key, the hash and the value are |
| 472 | * all put at the position in their respective arrays. |
| 473 | */ |
| 474 | int32_t hashcode; |
| 475 | UHashElement* e; |
| 476 | UHashTok emptytok; |
| 477 | |
| 478 | if (U_FAILURE(*status)) { |
| 479 | goto err; |
| 480 | } |
| 481 | U_ASSERT(hash != NULL); |
| 482 | /* Cannot always check pointer here or iSeries sees NULL every time. */ |
| 483 | if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { |
| 484 | /* Disallow storage of NULL values, since NULL is returned by |
| 485 | * get() to indicate an absent key. Storing NULL == removing. |
| 486 | */ |
| 487 | return _uhash_remove(hash, key); |
| 488 | } |
| 489 | if (hash->count > hash->highWaterMark) { |
| 490 | _uhash_rehash(hash, status); |
| 491 | if (U_FAILURE(*status)) { |
| 492 | goto err; |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | hashcode = (*hash->keyHasher)(key); |
| 497 | e = _uhash_find(hash, key, hashcode); |
| 498 | U_ASSERT(e != NULL); |
| 499 | |
| 500 | if (IS_EMPTY_OR_DELETED(e->hashcode)) { |
| 501 | /* Important: We must never actually fill the table up. If we |
| 502 | * do so, then _uhash_find() will return NULL, and we'll have |
| 503 | * to check for NULL after every call to _uhash_find(). To |
| 504 | * avoid this we make sure there is always at least one empty |
| 505 | * or deleted slot in the table. This only is a problem if we |
| 506 | * are out of memory and rehash isn't working. |
| 507 | */ |
| 508 | ++hash->count; |
| 509 | if (hash->count == hash->length) { |
| 510 | /* Don't allow count to reach length */ |
| 511 | --hash->count; |
| 512 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 513 | goto err; |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | /* We must in all cases handle storage properly. If there was an |
| 518 | * old key, then it must be deleted (if the deleter != NULL). |
| 519 | * Make hashcodes stored in table positive. |
| 520 | */ |
| 521 | return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); |
| 522 | |
| 523 | err: |
| 524 | /* If the deleters are non-NULL, this method adopts its key and/or |
| 525 | * value arguments, and we must be sure to delete the key and/or |
| 526 | * value in all cases, even upon failure. |
| 527 | */ |
| 528 | HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); |
| 529 | emptytok.pointer = NULL; emptytok.integer = 0; |
| 530 | return emptytok; |
| 531 | } |
| 532 | |
| 533 | |
| 534 | /******************************************************************** |
| 535 | * PUBLIC API |
| 536 | ********************************************************************/ |
| 537 | |
| 538 | U_CAPI UHashtable* U_EXPORT2 |
| 539 | uhash_open(UHashFunction *keyHash, |
| 540 | UKeyComparator *keyComp, |
| 541 | UValueComparator *valueComp, |
| 542 | UErrorCode *status) { |
| 543 | |
| 544 | return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
| 545 | } |
| 546 | |
| 547 | U_CAPI UHashtable* U_EXPORT2 |
| 548 | uhash_openSize(UHashFunction *keyHash, |
| 549 | UKeyComparator *keyComp, |
| 550 | UValueComparator *valueComp, |
| 551 | int32_t size, |
| 552 | UErrorCode *status) { |
| 553 | |
| 554 | /* Find the smallest index i for which PRIMES[i] >= size. */ |
| 555 | int32_t i = 0; |
| 556 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
| 557 | ++i; |
| 558 | } |
| 559 | |
| 560 | return _uhash_create(keyHash, keyComp, valueComp, i, status); |
| 561 | } |
| 562 | |
| 563 | U_CAPI UHashtable* U_EXPORT2 |
| 564 | uhash_init(UHashtable *fillinResult, |
| 565 | UHashFunction *keyHash, |
| 566 | UKeyComparator *keyComp, |
| 567 | UValueComparator *valueComp, |
| 568 | UErrorCode *status) { |
| 569 | |
| 570 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
| 571 | } |
| 572 | |
| 573 | U_CAPI UHashtable* U_EXPORT2 |
| 574 | uhash_initSize(UHashtable *fillinResult, |
| 575 | UHashFunction *keyHash, |
| 576 | UKeyComparator *keyComp, |
| 577 | UValueComparator *valueComp, |
| 578 | int32_t size, |
| 579 | UErrorCode *status) { |
| 580 | |
| 581 | // Find the smallest index i for which PRIMES[i] >= size. |
| 582 | int32_t i = 0; |
| 583 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
| 584 | ++i; |
| 585 | } |
| 586 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status); |
| 587 | } |
| 588 | |
| 589 | U_CAPI void U_EXPORT2 |
| 590 | uhash_close(UHashtable *hash) { |
| 591 | if (hash == NULL) { |
| 592 | return; |
| 593 | } |
| 594 | if (hash->elements != NULL) { |
| 595 | if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { |
| 596 | int32_t pos=UHASH_FIRST; |
| 597 | UHashElement *e; |
| 598 | while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { |
| 599 | HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); |
| 600 | } |
| 601 | } |
| 602 | uprv_free(hash->elements); |
| 603 | hash->elements = NULL; |
| 604 | } |
| 605 | if (hash->allocated) { |
| 606 | uprv_free(hash); |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | U_CAPI UHashFunction *U_EXPORT2 |
| 611 | uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { |
| 612 | UHashFunction *result = hash->keyHasher; |
| 613 | hash->keyHasher = fn; |
| 614 | return result; |
| 615 | } |
| 616 | |
| 617 | U_CAPI UKeyComparator *U_EXPORT2 |
| 618 | uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { |
| 619 | UKeyComparator *result = hash->keyComparator; |
| 620 | hash->keyComparator = fn; |
| 621 | return result; |
| 622 | } |
| 623 | U_CAPI UValueComparator *U_EXPORT2 |
| 624 | uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ |
| 625 | UValueComparator *result = hash->valueComparator; |
| 626 | hash->valueComparator = fn; |
| 627 | return result; |
| 628 | } |
| 629 | |
| 630 | U_CAPI UObjectDeleter *U_EXPORT2 |
| 631 | uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { |
| 632 | UObjectDeleter *result = hash->keyDeleter; |
| 633 | hash->keyDeleter = fn; |
| 634 | return result; |
| 635 | } |
| 636 | |
| 637 | U_CAPI UObjectDeleter *U_EXPORT2 |
| 638 | uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { |
| 639 | UObjectDeleter *result = hash->valueDeleter; |
| 640 | hash->valueDeleter = fn; |
| 641 | return result; |
| 642 | } |
| 643 | |
| 644 | U_CAPI void U_EXPORT2 |
| 645 | uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
| 646 | UErrorCode status = U_ZERO_ERROR; |
| 647 | _uhash_internalSetResizePolicy(hash, policy); |
| 648 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
| 649 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
| 650 | _uhash_rehash(hash, &status); |
| 651 | } |
| 652 | |
| 653 | U_CAPI int32_t U_EXPORT2 |
| 654 | uhash_count(const UHashtable *hash) { |
| 655 | return hash->count; |
| 656 | } |
| 657 | |
| 658 | U_CAPI void* U_EXPORT2 |
| 659 | uhash_get(const UHashtable *hash, |
| 660 | const void* key) { |
| 661 | UHashTok keyholder; |
| 662 | keyholder.pointer = (void*) key; |
| 663 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
| 664 | } |
| 665 | |
| 666 | U_CAPI void* U_EXPORT2 |
| 667 | uhash_iget(const UHashtable *hash, |
| 668 | int32_t key) { |
| 669 | UHashTok keyholder; |
| 670 | keyholder.integer = key; |
| 671 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
| 672 | } |
| 673 | |
| 674 | U_CAPI int32_t U_EXPORT2 |
| 675 | uhash_geti(const UHashtable *hash, |
| 676 | const void* key) { |
| 677 | UHashTok keyholder; |
| 678 | keyholder.pointer = (void*) key; |
| 679 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
| 680 | } |
| 681 | |
| 682 | U_CAPI int32_t U_EXPORT2 |
| 683 | uhash_igeti(const UHashtable *hash, |
| 684 | int32_t key) { |
| 685 | UHashTok keyholder; |
| 686 | keyholder.integer = key; |
| 687 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
| 688 | } |
| 689 | |
| 690 | U_CAPI void* U_EXPORT2 |
| 691 | uhash_put(UHashtable *hash, |
| 692 | void* key, |
| 693 | void* value, |
| 694 | UErrorCode *status) { |
| 695 | UHashTok keyholder, valueholder; |
| 696 | keyholder.pointer = key; |
| 697 | valueholder.pointer = value; |
| 698 | return _uhash_put(hash, keyholder, valueholder, |
| 699 | HINT_KEY_POINTER | HINT_VALUE_POINTER, |
| 700 | status).pointer; |
| 701 | } |
| 702 | |
| 703 | U_CAPI void* U_EXPORT2 |
| 704 | uhash_iput(UHashtable *hash, |
| 705 | int32_t key, |
| 706 | void* value, |
| 707 | UErrorCode *status) { |
| 708 | UHashTok keyholder, valueholder; |
| 709 | keyholder.integer = key; |
| 710 | valueholder.pointer = value; |
| 711 | return _uhash_put(hash, keyholder, valueholder, |
| 712 | HINT_VALUE_POINTER, |
| 713 | status).pointer; |
| 714 | } |
| 715 | |
| 716 | U_CAPI int32_t U_EXPORT2 |
| 717 | uhash_puti(UHashtable *hash, |
| 718 | void* key, |
| 719 | int32_t value, |
| 720 | UErrorCode *status) { |
| 721 | UHashTok keyholder, valueholder; |
| 722 | keyholder.pointer = key; |
| 723 | valueholder.integer = value; |
| 724 | return _uhash_put(hash, keyholder, valueholder, |
| 725 | HINT_KEY_POINTER, |
| 726 | status).integer; |
| 727 | } |
| 728 | |
| 729 | |
| 730 | U_CAPI int32_t U_EXPORT2 |
| 731 | uhash_iputi(UHashtable *hash, |
| 732 | int32_t key, |
| 733 | int32_t value, |
| 734 | UErrorCode *status) { |
| 735 | UHashTok keyholder, valueholder; |
| 736 | keyholder.integer = key; |
| 737 | valueholder.integer = value; |
| 738 | return _uhash_put(hash, keyholder, valueholder, |
| 739 | 0, /* neither is a ptr */ |
| 740 | status).integer; |
| 741 | } |
| 742 | |
| 743 | U_CAPI void* U_EXPORT2 |
| 744 | uhash_remove(UHashtable *hash, |
| 745 | const void* key) { |
| 746 | UHashTok keyholder; |
| 747 | keyholder.pointer = (void*) key; |
| 748 | return _uhash_remove(hash, keyholder).pointer; |
| 749 | } |
| 750 | |
| 751 | U_CAPI void* U_EXPORT2 |
| 752 | uhash_iremove(UHashtable *hash, |
| 753 | int32_t key) { |
| 754 | UHashTok keyholder; |
| 755 | keyholder.integer = key; |
| 756 | return _uhash_remove(hash, keyholder).pointer; |
| 757 | } |
| 758 | |
| 759 | U_CAPI int32_t U_EXPORT2 |
| 760 | uhash_removei(UHashtable *hash, |
| 761 | const void* key) { |
| 762 | UHashTok keyholder; |
| 763 | keyholder.pointer = (void*) key; |
| 764 | return _uhash_remove(hash, keyholder).integer; |
| 765 | } |
| 766 | |
| 767 | U_CAPI int32_t U_EXPORT2 |
| 768 | uhash_iremovei(UHashtable *hash, |
| 769 | int32_t key) { |
| 770 | UHashTok keyholder; |
| 771 | keyholder.integer = key; |
| 772 | return _uhash_remove(hash, keyholder).integer; |
| 773 | } |
| 774 | |
| 775 | U_CAPI void U_EXPORT2 |
| 776 | uhash_removeAll(UHashtable *hash) { |
| 777 | int32_t pos = UHASH_FIRST; |
| 778 | const UHashElement *e; |
| 779 | U_ASSERT(hash != NULL); |
| 780 | if (hash->count != 0) { |
| 781 | while ((e = uhash_nextElement(hash, &pos)) != NULL) { |
| 782 | uhash_removeElement(hash, e); |
| 783 | } |
| 784 | } |
| 785 | U_ASSERT(hash->count == 0); |
| 786 | } |
| 787 | |
| 788 | U_CAPI const UHashElement* U_EXPORT2 |
| 789 | uhash_find(const UHashtable *hash, const void* key) { |
| 790 | UHashTok keyholder; |
| 791 | const UHashElement *e; |
| 792 | keyholder.pointer = (void*) key; |
| 793 | e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
| 794 | return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; |
| 795 | } |
| 796 | |
| 797 | U_CAPI const UHashElement* U_EXPORT2 |
| 798 | uhash_nextElement(const UHashtable *hash, int32_t *pos) { |
| 799 | /* Walk through the array until we find an element that is not |
| 800 | * EMPTY and not DELETED. |
| 801 | */ |
| 802 | int32_t i; |
| 803 | U_ASSERT(hash != NULL); |
| 804 | for (i = *pos + 1; i < hash->length; ++i) { |
| 805 | if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { |
| 806 | *pos = i; |
| 807 | return &(hash->elements[i]); |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | /* No more elements */ |
| 812 | return NULL; |
| 813 | } |
| 814 | |
| 815 | U_CAPI void* U_EXPORT2 |
| 816 | uhash_removeElement(UHashtable *hash, const UHashElement* e) { |
| 817 | U_ASSERT(hash != NULL); |
| 818 | U_ASSERT(e != NULL); |
| 819 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
| 820 | UHashElement *nce = (UHashElement *)e; |
| 821 | return _uhash_internalRemoveElement(hash, nce).pointer; |
| 822 | } |
| 823 | return NULL; |
| 824 | } |
| 825 | |
| 826 | /******************************************************************** |
| 827 | * UHashTok convenience |
| 828 | ********************************************************************/ |
| 829 | |
| 830 | /** |
| 831 | * Return a UHashTok for an integer. |
| 832 | */ |
| 833 | /*U_CAPI UHashTok U_EXPORT2 |
| 834 | uhash_toki(int32_t i) { |
| 835 | UHashTok tok; |
| 836 | tok.integer = i; |
| 837 | return tok; |
| 838 | }*/ |
| 839 | |
| 840 | /** |
| 841 | * Return a UHashTok for a pointer. |
| 842 | */ |
| 843 | /*U_CAPI UHashTok U_EXPORT2 |
| 844 | uhash_tokp(void* p) { |
| 845 | UHashTok tok; |
| 846 | tok.pointer = p; |
| 847 | return tok; |
| 848 | }*/ |
| 849 | |
| 850 | /******************************************************************** |
| 851 | * PUBLIC Key Hash Functions |
| 852 | ********************************************************************/ |
| 853 | |
| 854 | U_CAPI int32_t U_EXPORT2 |
| 855 | uhash_hashUChars(const UHashTok key) { |
| 856 | const UChar *s = (const UChar *)key.pointer; |
| 857 | return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s)); |
| 858 | } |
| 859 | |
| 860 | U_CAPI int32_t U_EXPORT2 |
| 861 | uhash_hashChars(const UHashTok key) { |
| 862 | const char *s = (const char *)key.pointer; |
| 863 | return s == NULL ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s)))); |
| 864 | } |
| 865 | |
| 866 | U_CAPI int32_t U_EXPORT2 |
| 867 | uhash_hashIChars(const UHashTok key) { |
| 868 | const char *s = (const char *)key.pointer; |
| 869 | return s == NULL ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s))); |
| 870 | } |
| 871 | |
| 872 | U_CAPI UBool U_EXPORT2 |
| 873 | uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ |
| 874 | int32_t count1, count2, pos, i; |
| 875 | |
| 876 | if(hash1==hash2){ |
| 877 | return TRUE; |
| 878 | } |
| 879 | |
| 880 | /* |
| 881 | * Make sure that we are comparing 2 valid hashes of the same type |
| 882 | * with valid comparison functions. |
| 883 | * Without valid comparison functions, a binary comparison |
| 884 | * of the hash values will yield random results on machines |
| 885 | * with 64-bit pointers and 32-bit integer hashes. |
| 886 | * A valueComparator is normally optional. |
| 887 | */ |
| 888 | if (hash1==NULL || hash2==NULL || |
| 889 | hash1->keyComparator != hash2->keyComparator || |
| 890 | hash1->valueComparator != hash2->valueComparator || |
| 891 | hash1->valueComparator == NULL) |
| 892 | { |
| 893 | /* |
| 894 | Normally we would return an error here about incompatible hash tables, |
| 895 | but we return FALSE instead. |
| 896 | */ |
| 897 | return FALSE; |
| 898 | } |
| 899 | |
| 900 | count1 = uhash_count(hash1); |
| 901 | count2 = uhash_count(hash2); |
| 902 | if(count1!=count2){ |
| 903 | return FALSE; |
| 904 | } |
| 905 | |
| 906 | pos=UHASH_FIRST; |
| 907 | for(i=0; i<count1; i++){ |
| 908 | const UHashElement* elem1 = uhash_nextElement(hash1, &pos); |
| 909 | const UHashTok key1 = elem1->key; |
| 910 | const UHashTok val1 = elem1->value; |
| 911 | /* here the keys are not compared, instead the key form hash1 is used to fetch |
| 912 | * value from hash2. If the hashes are equal then then both hashes should |
| 913 | * contain equal values for the same key! |
| 914 | */ |
| 915 | const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); |
| 916 | const UHashTok val2 = elem2->value; |
| 917 | if(hash1->valueComparator(val1, val2)==FALSE){ |
| 918 | return FALSE; |
| 919 | } |
| 920 | } |
| 921 | return TRUE; |
| 922 | } |
| 923 | |
| 924 | /******************************************************************** |
| 925 | * PUBLIC Comparator Functions |
| 926 | ********************************************************************/ |
| 927 | |
| 928 | U_CAPI UBool U_EXPORT2 |
| 929 | uhash_compareUChars(const UHashTok key1, const UHashTok key2) { |
| 930 | const UChar *p1 = (const UChar*) key1.pointer; |
| 931 | const UChar *p2 = (const UChar*) key2.pointer; |
| 932 | if (p1 == p2) { |
| 933 | return TRUE; |
| 934 | } |
| 935 | if (p1 == NULL || p2 == NULL) { |
| 936 | return FALSE; |
| 937 | } |
| 938 | while (*p1 != 0 && *p1 == *p2) { |
| 939 | ++p1; |
| 940 | ++p2; |
| 941 | } |
| 942 | return (UBool)(*p1 == *p2); |
| 943 | } |
| 944 | |
| 945 | U_CAPI UBool U_EXPORT2 |
| 946 | uhash_compareChars(const UHashTok key1, const UHashTok key2) { |
| 947 | const char *p1 = (const char*) key1.pointer; |
| 948 | const char *p2 = (const char*) key2.pointer; |
| 949 | if (p1 == p2) { |
| 950 | return TRUE; |
| 951 | } |
| 952 | if (p1 == NULL || p2 == NULL) { |
| 953 | return FALSE; |
| 954 | } |
| 955 | while (*p1 != 0 && *p1 == *p2) { |
| 956 | ++p1; |
| 957 | ++p2; |
| 958 | } |
| 959 | return (UBool)(*p1 == *p2); |
| 960 | } |
| 961 | |
| 962 | U_CAPI UBool U_EXPORT2 |
| 963 | uhash_compareIChars(const UHashTok key1, const UHashTok key2) { |
| 964 | const char *p1 = (const char*) key1.pointer; |
| 965 | const char *p2 = (const char*) key2.pointer; |
| 966 | if (p1 == p2) { |
| 967 | return TRUE; |
| 968 | } |
| 969 | if (p1 == NULL || p2 == NULL) { |
| 970 | return FALSE; |
| 971 | } |
| 972 | while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { |
| 973 | ++p1; |
| 974 | ++p2; |
| 975 | } |
| 976 | return (UBool)(*p1 == *p2); |
| 977 | } |
| 978 | |
| 979 | /******************************************************************** |
| 980 | * PUBLIC int32_t Support Functions |
| 981 | ********************************************************************/ |
| 982 | |
| 983 | U_CAPI int32_t U_EXPORT2 |
| 984 | uhash_hashLong(const UHashTok key) { |
| 985 | return key.integer; |
| 986 | } |
| 987 | |
| 988 | U_CAPI UBool U_EXPORT2 |
| 989 | uhash_compareLong(const UHashTok key1, const UHashTok key2) { |
| 990 | return (UBool)(key1.integer == key2.integer); |
| 991 | } |
| 992 | |