1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * Copyright (C) 1997-2016, International Business Machines |
6 | * Corporation and others. All Rights Reserved. |
7 | ****************************************************************************** |
8 | * Date Name Description |
9 | * 03/22/00 aliu Adapted from original C++ ICU Hashtable. |
10 | * 07/06/01 aliu Modified to support int32_t keys on |
11 | * platforms with sizeof(void*) < 32. |
12 | ****************************************************************************** |
13 | */ |
14 | |
15 | #include "uhash.h" |
16 | #include "unicode/ustring.h" |
17 | #include "cstring.h" |
18 | #include "cmemory.h" |
19 | #include "uassert.h" |
20 | #include "ustr_imp.h" |
21 | |
22 | /* This hashtable is implemented as a double hash. All elements are |
23 | * stored in a single array with no secondary storage for collision |
24 | * resolution (no linked list, etc.). When there is a hash collision |
25 | * (when two unequal keys have the same hashcode) we resolve this by |
26 | * using a secondary hash. The secondary hash is an increment |
27 | * computed as a hash function (a different one) of the primary |
28 | * hashcode. This increment is added to the initial hash value to |
29 | * obtain further slots assigned to the same hash code. For this to |
30 | * work, the length of the array and the increment must be relatively |
31 | * prime. The easiest way to achieve this is to have the length of |
32 | * the array be prime, and the increment be any value from |
33 | * 1..length-1. |
34 | * |
35 | * Hashcodes are 32-bit integers. We make sure all hashcodes are |
36 | * non-negative by masking off the top bit. This has two effects: (1) |
37 | * modulo arithmetic is simplified. If we allowed negative hashcodes, |
38 | * then when we computed hashcode % length, we could get a negative |
39 | * result, which we would then have to adjust back into range. It's |
40 | * simpler to just make hashcodes non-negative. (2) It makes it easy |
41 | * to check for empty vs. occupied slots in the table. We just mark |
42 | * empty or deleted slots with a negative hashcode. |
43 | * |
44 | * The central function is _uhash_find(). This function looks for a |
45 | * slot matching the given key and hashcode. If one is found, it |
46 | * returns a pointer to that slot. If the table is full, and no match |
47 | * is found, it returns NULL -- in theory. This would make the code |
48 | * more complicated, since all callers of _uhash_find() would then |
49 | * have to check for a NULL result. To keep this from happening, we |
50 | * don't allow the table to fill. When there is only one |
51 | * empty/deleted slot left, uhash_put() will refuse to increase the |
52 | * count, and fail. This simplifies the code. In practice, one will |
53 | * seldom encounter this using default UHashtables. However, if a |
54 | * hashtable is set to a U_FIXED resize policy, or if memory is |
55 | * exhausted, then the table may fill. |
56 | * |
57 | * High and low water ratios control rehashing. They establish levels |
58 | * of fullness (from 0 to 1) outside of which the data array is |
59 | * reallocated and repopulated. Setting the low water ratio to zero |
60 | * means the table will never shrink. Setting the high water ratio to |
61 | * one means the table will never grow. The ratios should be |
62 | * coordinated with the ratio between successive elements of the |
63 | * PRIMES table, so that when the primeIndex is incremented or |
64 | * decremented during rehashing, it brings the ratio of count / length |
65 | * back into the desired range (between low and high water ratios). |
66 | */ |
67 | |
68 | /******************************************************************** |
69 | * PRIVATE Constants, Macros |
70 | ********************************************************************/ |
71 | |
72 | /* This is a list of non-consecutive primes chosen such that |
73 | * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 |
74 | * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this |
75 | * ratio is changed, the low and high water ratios should also be |
76 | * adjusted to suit. |
77 | * |
78 | * These prime numbers were also chosen so that they are the largest |
79 | * prime number while being less than a power of two. |
80 | */ |
81 | static const int32_t PRIMES[] = { |
82 | 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, |
83 | 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, |
84 | 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, |
85 | 1073741789, 2147483647 /*, 4294967291 */ |
86 | }; |
87 | |
88 | #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES) |
89 | #define DEFAULT_PRIME_INDEX 4 |
90 | |
91 | /* These ratios are tuned to the PRIMES array such that a resize |
92 | * places the table back into the zone of non-resizing. That is, |
93 | * after a call to _uhash_rehash(), a subsequent call to |
94 | * _uhash_rehash() should do nothing (should not churn). This is only |
95 | * a potential problem with U_GROW_AND_SHRINK. |
96 | */ |
97 | static const float RESIZE_POLICY_RATIO_TABLE[6] = { |
98 | /* low, high water ratio */ |
99 | 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ |
100 | 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ |
101 | 0.0F, 1.0F /* U_FIXED: Never change size */ |
102 | }; |
103 | |
104 | /* |
105 | Invariants for hashcode values: |
106 | |
107 | * DELETED < 0 |
108 | * EMPTY < 0 |
109 | * Real hashes >= 0 |
110 | |
111 | Hashcodes may not start out this way, but internally they are |
112 | adjusted so that they are always positive. We assume 32-bit |
113 | hashcodes; adjust these constants for other hashcode sizes. |
114 | */ |
115 | #define HASH_DELETED ((int32_t) 0x80000000) |
116 | #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) |
117 | |
118 | #define IS_EMPTY_OR_DELETED(x) ((x) < 0) |
119 | |
120 | /* This macro expects a UHashTok.pointer as its keypointer and |
121 | valuepointer parameters */ |
122 | #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) UPRV_BLOCK_MACRO_BEGIN { \ |
123 | if (hash->keyDeleter != NULL && keypointer != NULL) { \ |
124 | (*hash->keyDeleter)(keypointer); \ |
125 | } \ |
126 | if (hash->valueDeleter != NULL && valuepointer != NULL) { \ |
127 | (*hash->valueDeleter)(valuepointer); \ |
128 | } \ |
129 | } UPRV_BLOCK_MACRO_END |
130 | |
131 | /* |
132 | * Constants for hinting whether a key or value is an integer |
133 | * or a pointer. If a hint bit is zero, then the associated |
134 | * token is assumed to be an integer. |
135 | */ |
136 | #define HINT_KEY_POINTER (1) |
137 | #define HINT_VALUE_POINTER (2) |
138 | |
139 | /******************************************************************** |
140 | * PRIVATE Implementation |
141 | ********************************************************************/ |
142 | |
143 | static UHashTok |
144 | _uhash_setElement(UHashtable *hash, UHashElement* e, |
145 | int32_t hashcode, |
146 | UHashTok key, UHashTok value, int8_t hint) { |
147 | |
148 | UHashTok oldValue = e->value; |
149 | if (hash->keyDeleter != NULL && e->key.pointer != NULL && |
150 | e->key.pointer != key.pointer) { /* Avoid double deletion */ |
151 | (*hash->keyDeleter)(e->key.pointer); |
152 | } |
153 | if (hash->valueDeleter != NULL) { |
154 | if (oldValue.pointer != NULL && |
155 | oldValue.pointer != value.pointer) { /* Avoid double deletion */ |
156 | (*hash->valueDeleter)(oldValue.pointer); |
157 | } |
158 | oldValue.pointer = NULL; |
159 | } |
160 | /* Compilers should copy the UHashTok union correctly, but even if |
161 | * they do, memory heap tools (e.g. BoundsChecker) can get |
162 | * confused when a pointer is cloaked in a union and then copied. |
163 | * TO ALLEVIATE THIS, we use hints (based on what API the user is |
164 | * calling) to copy pointers when we know the user thinks |
165 | * something is a pointer. */ |
166 | if (hint & HINT_KEY_POINTER) { |
167 | e->key.pointer = key.pointer; |
168 | } else { |
169 | e->key = key; |
170 | } |
171 | if (hint & HINT_VALUE_POINTER) { |
172 | e->value.pointer = value.pointer; |
173 | } else { |
174 | e->value = value; |
175 | } |
176 | e->hashcode = hashcode; |
177 | return oldValue; |
178 | } |
179 | |
180 | /** |
181 | * Assumes that the given element is not empty or deleted. |
182 | */ |
183 | static UHashTok |
184 | _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { |
185 | UHashTok empty; |
186 | U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); |
187 | --hash->count; |
188 | empty.pointer = NULL; empty.integer = 0; |
189 | return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); |
190 | } |
191 | |
192 | static void |
193 | _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
194 | U_ASSERT(hash != NULL); |
195 | U_ASSERT(((int32_t)policy) >= 0); |
196 | U_ASSERT(((int32_t)policy) < 3); |
197 | hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; |
198 | hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; |
199 | } |
200 | |
201 | /** |
202 | * Allocate internal data array of a size determined by the given |
203 | * prime index. If the index is out of range it is pinned into range. |
204 | * If the allocation fails the status is set to |
205 | * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In |
206 | * either case the previous array pointer is overwritten. |
207 | * |
208 | * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. |
209 | */ |
210 | static void |
211 | _uhash_allocate(UHashtable *hash, |
212 | int32_t primeIndex, |
213 | UErrorCode *status) { |
214 | |
215 | UHashElement *p, *limit; |
216 | UHashTok emptytok; |
217 | |
218 | if (U_FAILURE(*status)) return; |
219 | |
220 | U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); |
221 | |
222 | hash->primeIndex = static_cast<int8_t>(primeIndex); |
223 | hash->length = PRIMES[primeIndex]; |
224 | |
225 | p = hash->elements = (UHashElement*) |
226 | uprv_malloc(sizeof(UHashElement) * hash->length); |
227 | |
228 | if (hash->elements == NULL) { |
229 | *status = U_MEMORY_ALLOCATION_ERROR; |
230 | return; |
231 | } |
232 | |
233 | emptytok.pointer = NULL; /* Only one of these two is needed */ |
234 | emptytok.integer = 0; /* but we don't know which one. */ |
235 | |
236 | limit = p + hash->length; |
237 | while (p < limit) { |
238 | p->key = emptytok; |
239 | p->value = emptytok; |
240 | p->hashcode = HASH_EMPTY; |
241 | ++p; |
242 | } |
243 | |
244 | hash->count = 0; |
245 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
246 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
247 | } |
248 | |
249 | static UHashtable* |
250 | _uhash_init(UHashtable *result, |
251 | UHashFunction *keyHash, |
252 | UKeyComparator *keyComp, |
253 | UValueComparator *valueComp, |
254 | int32_t primeIndex, |
255 | UErrorCode *status) |
256 | { |
257 | if (U_FAILURE(*status)) return NULL; |
258 | U_ASSERT(keyHash != NULL); |
259 | U_ASSERT(keyComp != NULL); |
260 | |
261 | result->keyHasher = keyHash; |
262 | result->keyComparator = keyComp; |
263 | result->valueComparator = valueComp; |
264 | result->keyDeleter = NULL; |
265 | result->valueDeleter = NULL; |
266 | result->allocated = FALSE; |
267 | _uhash_internalSetResizePolicy(result, U_GROW); |
268 | |
269 | _uhash_allocate(result, primeIndex, status); |
270 | |
271 | if (U_FAILURE(*status)) { |
272 | return NULL; |
273 | } |
274 | |
275 | return result; |
276 | } |
277 | |
278 | static UHashtable* |
279 | _uhash_create(UHashFunction *keyHash, |
280 | UKeyComparator *keyComp, |
281 | UValueComparator *valueComp, |
282 | int32_t primeIndex, |
283 | UErrorCode *status) { |
284 | UHashtable *result; |
285 | |
286 | if (U_FAILURE(*status)) return NULL; |
287 | |
288 | result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); |
289 | if (result == NULL) { |
290 | *status = U_MEMORY_ALLOCATION_ERROR; |
291 | return NULL; |
292 | } |
293 | |
294 | _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); |
295 | result->allocated = TRUE; |
296 | |
297 | if (U_FAILURE(*status)) { |
298 | uprv_free(result); |
299 | return NULL; |
300 | } |
301 | |
302 | return result; |
303 | } |
304 | |
305 | /** |
306 | * Look for a key in the table, or if no such key exists, the first |
307 | * empty slot matching the given hashcode. Keys are compared using |
308 | * the keyComparator function. |
309 | * |
310 | * First find the start position, which is the hashcode modulo |
311 | * the length. Test it to see if it is: |
312 | * |
313 | * a. identical: First check the hash values for a quick check, |
314 | * then compare keys for equality using keyComparator. |
315 | * b. deleted |
316 | * c. empty |
317 | * |
318 | * Stop if it is identical or empty, otherwise continue by adding a |
319 | * "jump" value (moduloing by the length again to keep it within |
320 | * range) and retesting. For efficiency, there need enough empty |
321 | * values so that the searchs stop within a reasonable amount of time. |
322 | * This can be changed by changing the high/low water marks. |
323 | * |
324 | * In theory, this function can return NULL, if it is full (no empty |
325 | * or deleted slots) and if no matching key is found. In practice, we |
326 | * prevent this elsewhere (in uhash_put) by making sure the last slot |
327 | * in the table is never filled. |
328 | * |
329 | * The size of the table should be prime for this algorithm to work; |
330 | * otherwise we are not guaranteed that the jump value (the secondary |
331 | * hash) is relatively prime to the table length. |
332 | */ |
333 | static UHashElement* |
334 | _uhash_find(const UHashtable *hash, UHashTok key, |
335 | int32_t hashcode) { |
336 | |
337 | int32_t firstDeleted = -1; /* assume invalid index */ |
338 | int32_t theIndex, startIndex; |
339 | int32_t jump = 0; /* lazy evaluate */ |
340 | int32_t tableHash; |
341 | UHashElement *elements = hash->elements; |
342 | |
343 | hashcode &= 0x7FFFFFFF; /* must be positive */ |
344 | startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; |
345 | |
346 | do { |
347 | tableHash = elements[theIndex].hashcode; |
348 | if (tableHash == hashcode) { /* quick check */ |
349 | if ((*hash->keyComparator)(key, elements[theIndex].key)) { |
350 | return &(elements[theIndex]); |
351 | } |
352 | } else if (!IS_EMPTY_OR_DELETED(tableHash)) { |
353 | /* We have hit a slot which contains a key-value pair, |
354 | * but for which the hash code does not match. Keep |
355 | * looking. |
356 | */ |
357 | } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ |
358 | break; |
359 | } else if (firstDeleted < 0) { /* remember first deleted */ |
360 | firstDeleted = theIndex; |
361 | } |
362 | if (jump == 0) { /* lazy compute jump */ |
363 | /* The jump value must be relatively prime to the table |
364 | * length. As long as the length is prime, then any value |
365 | * 1..length-1 will be relatively prime to it. |
366 | */ |
367 | jump = (hashcode % (hash->length - 1)) + 1; |
368 | } |
369 | theIndex = (theIndex + jump) % hash->length; |
370 | } while (theIndex != startIndex); |
371 | |
372 | if (firstDeleted >= 0) { |
373 | theIndex = firstDeleted; /* reset if had deleted slot */ |
374 | } else if (tableHash != HASH_EMPTY) { |
375 | /* We get to this point if the hashtable is full (no empty or |
376 | * deleted slots), and we've failed to find a match. THIS |
377 | * WILL NEVER HAPPEN as long as uhash_put() makes sure that |
378 | * count is always < length. |
379 | */ |
380 | UPRV_UNREACHABLE; |
381 | } |
382 | return &(elements[theIndex]); |
383 | } |
384 | |
385 | /** |
386 | * Attempt to grow or shrink the data arrays in order to make the |
387 | * count fit between the high and low water marks. hash_put() and |
388 | * hash_remove() call this method when the count exceeds the high or |
389 | * low water marks. This method may do nothing, if memory allocation |
390 | * fails, or if the count is already in range, or if the length is |
391 | * already at the low or high limit. In any case, upon return the |
392 | * arrays will be valid. |
393 | */ |
394 | static void |
395 | _uhash_rehash(UHashtable *hash, UErrorCode *status) { |
396 | |
397 | UHashElement *old = hash->elements; |
398 | int32_t oldLength = hash->length; |
399 | int32_t newPrimeIndex = hash->primeIndex; |
400 | int32_t i; |
401 | |
402 | if (hash->count > hash->highWaterMark) { |
403 | if (++newPrimeIndex >= PRIMES_LENGTH) { |
404 | return; |
405 | } |
406 | } else if (hash->count < hash->lowWaterMark) { |
407 | if (--newPrimeIndex < 0) { |
408 | return; |
409 | } |
410 | } else { |
411 | return; |
412 | } |
413 | |
414 | _uhash_allocate(hash, newPrimeIndex, status); |
415 | |
416 | if (U_FAILURE(*status)) { |
417 | hash->elements = old; |
418 | hash->length = oldLength; |
419 | return; |
420 | } |
421 | |
422 | for (i = oldLength - 1; i >= 0; --i) { |
423 | if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { |
424 | UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); |
425 | U_ASSERT(e != NULL); |
426 | U_ASSERT(e->hashcode == HASH_EMPTY); |
427 | e->key = old[i].key; |
428 | e->value = old[i].value; |
429 | e->hashcode = old[i].hashcode; |
430 | ++hash->count; |
431 | } |
432 | } |
433 | |
434 | uprv_free(old); |
435 | } |
436 | |
437 | static UHashTok |
438 | _uhash_remove(UHashtable *hash, |
439 | UHashTok key) { |
440 | /* First find the position of the key in the table. If the object |
441 | * has not been removed already, remove it. If the user wanted |
442 | * keys deleted, then delete it also. We have to put a special |
443 | * hashcode in that position that means that something has been |
444 | * deleted, since when we do a find, we have to continue PAST any |
445 | * deleted values. |
446 | */ |
447 | UHashTok result; |
448 | UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); |
449 | U_ASSERT(e != NULL); |
450 | result.pointer = NULL; |
451 | result.integer = 0; |
452 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
453 | result = _uhash_internalRemoveElement(hash, e); |
454 | if (hash->count < hash->lowWaterMark) { |
455 | UErrorCode status = U_ZERO_ERROR; |
456 | _uhash_rehash(hash, &status); |
457 | } |
458 | } |
459 | return result; |
460 | } |
461 | |
462 | static UHashTok |
463 | _uhash_put(UHashtable *hash, |
464 | UHashTok key, |
465 | UHashTok value, |
466 | int8_t hint, |
467 | UErrorCode *status) { |
468 | |
469 | /* Put finds the position in the table for the new value. If the |
470 | * key is already in the table, it is deleted, if there is a |
471 | * non-NULL keyDeleter. Then the key, the hash and the value are |
472 | * all put at the position in their respective arrays. |
473 | */ |
474 | int32_t hashcode; |
475 | UHashElement* e; |
476 | UHashTok emptytok; |
477 | |
478 | if (U_FAILURE(*status)) { |
479 | goto err; |
480 | } |
481 | U_ASSERT(hash != NULL); |
482 | /* Cannot always check pointer here or iSeries sees NULL every time. */ |
483 | if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { |
484 | /* Disallow storage of NULL values, since NULL is returned by |
485 | * get() to indicate an absent key. Storing NULL == removing. |
486 | */ |
487 | return _uhash_remove(hash, key); |
488 | } |
489 | if (hash->count > hash->highWaterMark) { |
490 | _uhash_rehash(hash, status); |
491 | if (U_FAILURE(*status)) { |
492 | goto err; |
493 | } |
494 | } |
495 | |
496 | hashcode = (*hash->keyHasher)(key); |
497 | e = _uhash_find(hash, key, hashcode); |
498 | U_ASSERT(e != NULL); |
499 | |
500 | if (IS_EMPTY_OR_DELETED(e->hashcode)) { |
501 | /* Important: We must never actually fill the table up. If we |
502 | * do so, then _uhash_find() will return NULL, and we'll have |
503 | * to check for NULL after every call to _uhash_find(). To |
504 | * avoid this we make sure there is always at least one empty |
505 | * or deleted slot in the table. This only is a problem if we |
506 | * are out of memory and rehash isn't working. |
507 | */ |
508 | ++hash->count; |
509 | if (hash->count == hash->length) { |
510 | /* Don't allow count to reach length */ |
511 | --hash->count; |
512 | *status = U_MEMORY_ALLOCATION_ERROR; |
513 | goto err; |
514 | } |
515 | } |
516 | |
517 | /* We must in all cases handle storage properly. If there was an |
518 | * old key, then it must be deleted (if the deleter != NULL). |
519 | * Make hashcodes stored in table positive. |
520 | */ |
521 | return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); |
522 | |
523 | err: |
524 | /* If the deleters are non-NULL, this method adopts its key and/or |
525 | * value arguments, and we must be sure to delete the key and/or |
526 | * value in all cases, even upon failure. |
527 | */ |
528 | HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); |
529 | emptytok.pointer = NULL; emptytok.integer = 0; |
530 | return emptytok; |
531 | } |
532 | |
533 | |
534 | /******************************************************************** |
535 | * PUBLIC API |
536 | ********************************************************************/ |
537 | |
538 | U_CAPI UHashtable* U_EXPORT2 |
539 | uhash_open(UHashFunction *keyHash, |
540 | UKeyComparator *keyComp, |
541 | UValueComparator *valueComp, |
542 | UErrorCode *status) { |
543 | |
544 | return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
545 | } |
546 | |
547 | U_CAPI UHashtable* U_EXPORT2 |
548 | uhash_openSize(UHashFunction *keyHash, |
549 | UKeyComparator *keyComp, |
550 | UValueComparator *valueComp, |
551 | int32_t size, |
552 | UErrorCode *status) { |
553 | |
554 | /* Find the smallest index i for which PRIMES[i] >= size. */ |
555 | int32_t i = 0; |
556 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
557 | ++i; |
558 | } |
559 | |
560 | return _uhash_create(keyHash, keyComp, valueComp, i, status); |
561 | } |
562 | |
563 | U_CAPI UHashtable* U_EXPORT2 |
564 | uhash_init(UHashtable *fillinResult, |
565 | UHashFunction *keyHash, |
566 | UKeyComparator *keyComp, |
567 | UValueComparator *valueComp, |
568 | UErrorCode *status) { |
569 | |
570 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
571 | } |
572 | |
573 | U_CAPI UHashtable* U_EXPORT2 |
574 | uhash_initSize(UHashtable *fillinResult, |
575 | UHashFunction *keyHash, |
576 | UKeyComparator *keyComp, |
577 | UValueComparator *valueComp, |
578 | int32_t size, |
579 | UErrorCode *status) { |
580 | |
581 | // Find the smallest index i for which PRIMES[i] >= size. |
582 | int32_t i = 0; |
583 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
584 | ++i; |
585 | } |
586 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status); |
587 | } |
588 | |
589 | U_CAPI void U_EXPORT2 |
590 | uhash_close(UHashtable *hash) { |
591 | if (hash == NULL) { |
592 | return; |
593 | } |
594 | if (hash->elements != NULL) { |
595 | if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { |
596 | int32_t pos=UHASH_FIRST; |
597 | UHashElement *e; |
598 | while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { |
599 | HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); |
600 | } |
601 | } |
602 | uprv_free(hash->elements); |
603 | hash->elements = NULL; |
604 | } |
605 | if (hash->allocated) { |
606 | uprv_free(hash); |
607 | } |
608 | } |
609 | |
610 | U_CAPI UHashFunction *U_EXPORT2 |
611 | uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { |
612 | UHashFunction *result = hash->keyHasher; |
613 | hash->keyHasher = fn; |
614 | return result; |
615 | } |
616 | |
617 | U_CAPI UKeyComparator *U_EXPORT2 |
618 | uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { |
619 | UKeyComparator *result = hash->keyComparator; |
620 | hash->keyComparator = fn; |
621 | return result; |
622 | } |
623 | U_CAPI UValueComparator *U_EXPORT2 |
624 | uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ |
625 | UValueComparator *result = hash->valueComparator; |
626 | hash->valueComparator = fn; |
627 | return result; |
628 | } |
629 | |
630 | U_CAPI UObjectDeleter *U_EXPORT2 |
631 | uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { |
632 | UObjectDeleter *result = hash->keyDeleter; |
633 | hash->keyDeleter = fn; |
634 | return result; |
635 | } |
636 | |
637 | U_CAPI UObjectDeleter *U_EXPORT2 |
638 | uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { |
639 | UObjectDeleter *result = hash->valueDeleter; |
640 | hash->valueDeleter = fn; |
641 | return result; |
642 | } |
643 | |
644 | U_CAPI void U_EXPORT2 |
645 | uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
646 | UErrorCode status = U_ZERO_ERROR; |
647 | _uhash_internalSetResizePolicy(hash, policy); |
648 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
649 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
650 | _uhash_rehash(hash, &status); |
651 | } |
652 | |
653 | U_CAPI int32_t U_EXPORT2 |
654 | uhash_count(const UHashtable *hash) { |
655 | return hash->count; |
656 | } |
657 | |
658 | U_CAPI void* U_EXPORT2 |
659 | uhash_get(const UHashtable *hash, |
660 | const void* key) { |
661 | UHashTok keyholder; |
662 | keyholder.pointer = (void*) key; |
663 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
664 | } |
665 | |
666 | U_CAPI void* U_EXPORT2 |
667 | uhash_iget(const UHashtable *hash, |
668 | int32_t key) { |
669 | UHashTok keyholder; |
670 | keyholder.integer = key; |
671 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
672 | } |
673 | |
674 | U_CAPI int32_t U_EXPORT2 |
675 | uhash_geti(const UHashtable *hash, |
676 | const void* key) { |
677 | UHashTok keyholder; |
678 | keyholder.pointer = (void*) key; |
679 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
680 | } |
681 | |
682 | U_CAPI int32_t U_EXPORT2 |
683 | uhash_igeti(const UHashtable *hash, |
684 | int32_t key) { |
685 | UHashTok keyholder; |
686 | keyholder.integer = key; |
687 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
688 | } |
689 | |
690 | U_CAPI void* U_EXPORT2 |
691 | uhash_put(UHashtable *hash, |
692 | void* key, |
693 | void* value, |
694 | UErrorCode *status) { |
695 | UHashTok keyholder, valueholder; |
696 | keyholder.pointer = key; |
697 | valueholder.pointer = value; |
698 | return _uhash_put(hash, keyholder, valueholder, |
699 | HINT_KEY_POINTER | HINT_VALUE_POINTER, |
700 | status).pointer; |
701 | } |
702 | |
703 | U_CAPI void* U_EXPORT2 |
704 | uhash_iput(UHashtable *hash, |
705 | int32_t key, |
706 | void* value, |
707 | UErrorCode *status) { |
708 | UHashTok keyholder, valueholder; |
709 | keyholder.integer = key; |
710 | valueholder.pointer = value; |
711 | return _uhash_put(hash, keyholder, valueholder, |
712 | HINT_VALUE_POINTER, |
713 | status).pointer; |
714 | } |
715 | |
716 | U_CAPI int32_t U_EXPORT2 |
717 | uhash_puti(UHashtable *hash, |
718 | void* key, |
719 | int32_t value, |
720 | UErrorCode *status) { |
721 | UHashTok keyholder, valueholder; |
722 | keyholder.pointer = key; |
723 | valueholder.integer = value; |
724 | return _uhash_put(hash, keyholder, valueholder, |
725 | HINT_KEY_POINTER, |
726 | status).integer; |
727 | } |
728 | |
729 | |
730 | U_CAPI int32_t U_EXPORT2 |
731 | uhash_iputi(UHashtable *hash, |
732 | int32_t key, |
733 | int32_t value, |
734 | UErrorCode *status) { |
735 | UHashTok keyholder, valueholder; |
736 | keyholder.integer = key; |
737 | valueholder.integer = value; |
738 | return _uhash_put(hash, keyholder, valueholder, |
739 | 0, /* neither is a ptr */ |
740 | status).integer; |
741 | } |
742 | |
743 | U_CAPI void* U_EXPORT2 |
744 | uhash_remove(UHashtable *hash, |
745 | const void* key) { |
746 | UHashTok keyholder; |
747 | keyholder.pointer = (void*) key; |
748 | return _uhash_remove(hash, keyholder).pointer; |
749 | } |
750 | |
751 | U_CAPI void* U_EXPORT2 |
752 | uhash_iremove(UHashtable *hash, |
753 | int32_t key) { |
754 | UHashTok keyholder; |
755 | keyholder.integer = key; |
756 | return _uhash_remove(hash, keyholder).pointer; |
757 | } |
758 | |
759 | U_CAPI int32_t U_EXPORT2 |
760 | uhash_removei(UHashtable *hash, |
761 | const void* key) { |
762 | UHashTok keyholder; |
763 | keyholder.pointer = (void*) key; |
764 | return _uhash_remove(hash, keyholder).integer; |
765 | } |
766 | |
767 | U_CAPI int32_t U_EXPORT2 |
768 | uhash_iremovei(UHashtable *hash, |
769 | int32_t key) { |
770 | UHashTok keyholder; |
771 | keyholder.integer = key; |
772 | return _uhash_remove(hash, keyholder).integer; |
773 | } |
774 | |
775 | U_CAPI void U_EXPORT2 |
776 | uhash_removeAll(UHashtable *hash) { |
777 | int32_t pos = UHASH_FIRST; |
778 | const UHashElement *e; |
779 | U_ASSERT(hash != NULL); |
780 | if (hash->count != 0) { |
781 | while ((e = uhash_nextElement(hash, &pos)) != NULL) { |
782 | uhash_removeElement(hash, e); |
783 | } |
784 | } |
785 | U_ASSERT(hash->count == 0); |
786 | } |
787 | |
788 | U_CAPI const UHashElement* U_EXPORT2 |
789 | uhash_find(const UHashtable *hash, const void* key) { |
790 | UHashTok keyholder; |
791 | const UHashElement *e; |
792 | keyholder.pointer = (void*) key; |
793 | e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
794 | return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; |
795 | } |
796 | |
797 | U_CAPI const UHashElement* U_EXPORT2 |
798 | uhash_nextElement(const UHashtable *hash, int32_t *pos) { |
799 | /* Walk through the array until we find an element that is not |
800 | * EMPTY and not DELETED. |
801 | */ |
802 | int32_t i; |
803 | U_ASSERT(hash != NULL); |
804 | for (i = *pos + 1; i < hash->length; ++i) { |
805 | if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { |
806 | *pos = i; |
807 | return &(hash->elements[i]); |
808 | } |
809 | } |
810 | |
811 | /* No more elements */ |
812 | return NULL; |
813 | } |
814 | |
815 | U_CAPI void* U_EXPORT2 |
816 | uhash_removeElement(UHashtable *hash, const UHashElement* e) { |
817 | U_ASSERT(hash != NULL); |
818 | U_ASSERT(e != NULL); |
819 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
820 | UHashElement *nce = (UHashElement *)e; |
821 | return _uhash_internalRemoveElement(hash, nce).pointer; |
822 | } |
823 | return NULL; |
824 | } |
825 | |
826 | /******************************************************************** |
827 | * UHashTok convenience |
828 | ********************************************************************/ |
829 | |
830 | /** |
831 | * Return a UHashTok for an integer. |
832 | */ |
833 | /*U_CAPI UHashTok U_EXPORT2 |
834 | uhash_toki(int32_t i) { |
835 | UHashTok tok; |
836 | tok.integer = i; |
837 | return tok; |
838 | }*/ |
839 | |
840 | /** |
841 | * Return a UHashTok for a pointer. |
842 | */ |
843 | /*U_CAPI UHashTok U_EXPORT2 |
844 | uhash_tokp(void* p) { |
845 | UHashTok tok; |
846 | tok.pointer = p; |
847 | return tok; |
848 | }*/ |
849 | |
850 | /******************************************************************** |
851 | * PUBLIC Key Hash Functions |
852 | ********************************************************************/ |
853 | |
854 | U_CAPI int32_t U_EXPORT2 |
855 | uhash_hashUChars(const UHashTok key) { |
856 | const UChar *s = (const UChar *)key.pointer; |
857 | return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s)); |
858 | } |
859 | |
860 | U_CAPI int32_t U_EXPORT2 |
861 | uhash_hashChars(const UHashTok key) { |
862 | const char *s = (const char *)key.pointer; |
863 | return s == NULL ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s)))); |
864 | } |
865 | |
866 | U_CAPI int32_t U_EXPORT2 |
867 | uhash_hashIChars(const UHashTok key) { |
868 | const char *s = (const char *)key.pointer; |
869 | return s == NULL ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s))); |
870 | } |
871 | |
872 | U_CAPI UBool U_EXPORT2 |
873 | uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ |
874 | int32_t count1, count2, pos, i; |
875 | |
876 | if(hash1==hash2){ |
877 | return TRUE; |
878 | } |
879 | |
880 | /* |
881 | * Make sure that we are comparing 2 valid hashes of the same type |
882 | * with valid comparison functions. |
883 | * Without valid comparison functions, a binary comparison |
884 | * of the hash values will yield random results on machines |
885 | * with 64-bit pointers and 32-bit integer hashes. |
886 | * A valueComparator is normally optional. |
887 | */ |
888 | if (hash1==NULL || hash2==NULL || |
889 | hash1->keyComparator != hash2->keyComparator || |
890 | hash1->valueComparator != hash2->valueComparator || |
891 | hash1->valueComparator == NULL) |
892 | { |
893 | /* |
894 | Normally we would return an error here about incompatible hash tables, |
895 | but we return FALSE instead. |
896 | */ |
897 | return FALSE; |
898 | } |
899 | |
900 | count1 = uhash_count(hash1); |
901 | count2 = uhash_count(hash2); |
902 | if(count1!=count2){ |
903 | return FALSE; |
904 | } |
905 | |
906 | pos=UHASH_FIRST; |
907 | for(i=0; i<count1; i++){ |
908 | const UHashElement* elem1 = uhash_nextElement(hash1, &pos); |
909 | const UHashTok key1 = elem1->key; |
910 | const UHashTok val1 = elem1->value; |
911 | /* here the keys are not compared, instead the key form hash1 is used to fetch |
912 | * value from hash2. If the hashes are equal then then both hashes should |
913 | * contain equal values for the same key! |
914 | */ |
915 | const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); |
916 | const UHashTok val2 = elem2->value; |
917 | if(hash1->valueComparator(val1, val2)==FALSE){ |
918 | return FALSE; |
919 | } |
920 | } |
921 | return TRUE; |
922 | } |
923 | |
924 | /******************************************************************** |
925 | * PUBLIC Comparator Functions |
926 | ********************************************************************/ |
927 | |
928 | U_CAPI UBool U_EXPORT2 |
929 | uhash_compareUChars(const UHashTok key1, const UHashTok key2) { |
930 | const UChar *p1 = (const UChar*) key1.pointer; |
931 | const UChar *p2 = (const UChar*) key2.pointer; |
932 | if (p1 == p2) { |
933 | return TRUE; |
934 | } |
935 | if (p1 == NULL || p2 == NULL) { |
936 | return FALSE; |
937 | } |
938 | while (*p1 != 0 && *p1 == *p2) { |
939 | ++p1; |
940 | ++p2; |
941 | } |
942 | return (UBool)(*p1 == *p2); |
943 | } |
944 | |
945 | U_CAPI UBool U_EXPORT2 |
946 | uhash_compareChars(const UHashTok key1, const UHashTok key2) { |
947 | const char *p1 = (const char*) key1.pointer; |
948 | const char *p2 = (const char*) key2.pointer; |
949 | if (p1 == p2) { |
950 | return TRUE; |
951 | } |
952 | if (p1 == NULL || p2 == NULL) { |
953 | return FALSE; |
954 | } |
955 | while (*p1 != 0 && *p1 == *p2) { |
956 | ++p1; |
957 | ++p2; |
958 | } |
959 | return (UBool)(*p1 == *p2); |
960 | } |
961 | |
962 | U_CAPI UBool U_EXPORT2 |
963 | uhash_compareIChars(const UHashTok key1, const UHashTok key2) { |
964 | const char *p1 = (const char*) key1.pointer; |
965 | const char *p2 = (const char*) key2.pointer; |
966 | if (p1 == p2) { |
967 | return TRUE; |
968 | } |
969 | if (p1 == NULL || p2 == NULL) { |
970 | return FALSE; |
971 | } |
972 | while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { |
973 | ++p1; |
974 | ++p2; |
975 | } |
976 | return (UBool)(*p1 == *p2); |
977 | } |
978 | |
979 | /******************************************************************** |
980 | * PUBLIC int32_t Support Functions |
981 | ********************************************************************/ |
982 | |
983 | U_CAPI int32_t U_EXPORT2 |
984 | uhash_hashLong(const UHashTok key) { |
985 | return key.integer; |
986 | } |
987 | |
988 | U_CAPI UBool U_EXPORT2 |
989 | uhash_compareLong(const UHashTok key1, const UHashTok key2) { |
990 | return (UBool)(key1.integer == key2.integer); |
991 | } |
992 | |