1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ******************************************************************************* |
5 | * |
6 | * Copyright (C) 2001-2014, International Business Machines |
7 | * Corporation and others. All Rights Reserved. |
8 | * |
9 | ******************************************************************************* |
10 | * file name: unormcmp.cpp |
11 | * encoding: UTF-8 |
12 | * tab size: 8 (not used) |
13 | * indentation:4 |
14 | * |
15 | * created on: 2004sep13 |
16 | * created by: Markus W. Scherer |
17 | * |
18 | * unorm_compare() function moved here from unorm.cpp for better modularization. |
19 | * Depends on both normalization and case folding. |
20 | * Allows unorm.cpp to not depend on any character properties code. |
21 | */ |
22 | |
23 | #include "unicode/utypes.h" |
24 | |
25 | #if !UCONFIG_NO_NORMALIZATION |
26 | |
27 | #include "unicode/unorm.h" |
28 | #include "unicode/ustring.h" |
29 | #include "cmemory.h" |
30 | #include "normalizer2impl.h" |
31 | #include "ucase.h" |
32 | #include "uprops.h" |
33 | #include "ustr_imp.h" |
34 | |
35 | U_NAMESPACE_USE |
36 | |
37 | /* compare canonically equivalent ------------------------------------------- */ |
38 | |
39 | /* |
40 | * Compare two strings for canonical equivalence. |
41 | * Further options include case-insensitive comparison and |
42 | * code point order (as opposed to code unit order). |
43 | * |
44 | * In this function, canonical equivalence is optional as well. |
45 | * If canonical equivalence is tested, then both strings must fulfill |
46 | * the FCD check. |
47 | * |
48 | * Semantically, this is equivalent to |
49 | * strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2))) |
50 | * where code point order, NFD and foldCase are all optional. |
51 | * |
52 | * String comparisons almost always yield results before processing both strings |
53 | * completely. |
54 | * They are generally more efficient working incrementally instead of |
55 | * performing the sub-processing (strlen, normalization, case-folding) |
56 | * on the entire strings first. |
57 | * |
58 | * It is also unnecessary to not normalize identical characters. |
59 | * |
60 | * This function works in principle as follows: |
61 | * |
62 | * loop { |
63 | * get one code unit c1 from s1 (-1 if end of source) |
64 | * get one code unit c2 from s2 (-1 if end of source) |
65 | * |
66 | * if(either string finished) { |
67 | * return result; |
68 | * } |
69 | * if(c1==c2) { |
70 | * continue; |
71 | * } |
72 | * |
73 | * // c1!=c2 |
74 | * try to decompose/case-fold c1/c2, and continue if one does; |
75 | * |
76 | * // still c1!=c2 and neither decomposes/case-folds, return result |
77 | * return c1-c2; |
78 | * } |
79 | * |
80 | * When a character decomposes, then the pointer for that source changes to |
81 | * the decomposition, pushing the previous pointer onto a stack. |
82 | * When the end of the decomposition is reached, then the code unit reader |
83 | * pops the previous source from the stack. |
84 | * (Same for case-folding.) |
85 | * |
86 | * This is complicated further by operating on variable-width UTF-16. |
87 | * The top part of the loop works on code units, while lookups for decomposition |
88 | * and case-folding need code points. |
89 | * Code points are assembled after the equality/end-of-source part. |
90 | * The source pointer is only advanced beyond all code units when the code point |
91 | * actually decomposes/case-folds. |
92 | * |
93 | * If we were on a trail surrogate unit when assembling a code point, |
94 | * and the code point decomposes/case-folds, then the decomposition/folding |
95 | * result must be compared with the part of the other string that corresponds to |
96 | * this string's lead surrogate. |
97 | * Since we only assemble a code point when hitting a trail unit when the |
98 | * preceding lead units were identical, we back up the other string by one unit |
99 | * in such a case. |
100 | * |
101 | * The optional code point order comparison at the end works with |
102 | * the same fix-up as the other code point order comparison functions. |
103 | * See ustring.c and the comment near the end of this function. |
104 | * |
105 | * Assumption: A decomposition or case-folding result string never contains |
106 | * a single surrogate. This is a safe assumption in the Unicode Standard. |
107 | * Therefore, we do not need to check for surrogate pairs across |
108 | * decomposition/case-folding boundaries. |
109 | * |
110 | * Further assumptions (see verifications tstnorm.cpp): |
111 | * The API function checks for FCD first, while the core function |
112 | * first case-folds and then decomposes. This requires that case-folding does not |
113 | * un-FCD any strings. |
114 | * |
115 | * The API function may also NFD the input and turn off decomposition. |
116 | * This requires that case-folding does not un-NFD strings either. |
117 | * |
118 | * TODO If any of the above two assumptions is violated, |
119 | * then this entire code must be re-thought. |
120 | * If this happens, then a simple solution is to case-fold both strings up front |
121 | * and to turn off UNORM_INPUT_IS_FCD. |
122 | * We already do this when not both strings are in FCD because makeFCD |
123 | * would be a partial NFD before the case folding, which does not work. |
124 | * Note that all of this is only a problem when case-folding _and_ |
125 | * canonical equivalence come together. |
126 | * (Comments in unorm_compare() are more up to date than this TODO.) |
127 | */ |
128 | |
129 | /* stack element for previous-level source/decomposition pointers */ |
130 | struct CmpEquivLevel { |
131 | const UChar *start, *s, *limit; |
132 | }; |
133 | typedef struct CmpEquivLevel CmpEquivLevel; |
134 | |
135 | /** |
136 | * Internal option for unorm_cmpEquivFold() for decomposing. |
137 | * If not set, just do strcasecmp(). |
138 | */ |
139 | #define _COMPARE_EQUIV 0x80000 |
140 | |
141 | /* internal function */ |
142 | static int32_t |
143 | unorm_cmpEquivFold(const UChar *s1, int32_t length1, |
144 | const UChar *s2, int32_t length2, |
145 | uint32_t options, |
146 | UErrorCode *pErrorCode) { |
147 | const Normalizer2Impl *nfcImpl; |
148 | |
149 | /* current-level start/limit - s1/s2 as current */ |
150 | const UChar *start1, *start2, *limit1, *limit2; |
151 | |
152 | /* decomposition and case folding variables */ |
153 | const UChar *p; |
154 | int32_t length; |
155 | |
156 | /* stacks of previous-level start/current/limit */ |
157 | CmpEquivLevel stack1[2], stack2[2]; |
158 | |
159 | /* buffers for algorithmic decompositions */ |
160 | UChar decomp1[4], decomp2[4]; |
161 | |
162 | /* case folding buffers, only use current-level start/limit */ |
163 | UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; |
164 | |
165 | /* track which is the current level per string */ |
166 | int32_t level1, level2; |
167 | |
168 | /* current code units, and code points for lookups */ |
169 | UChar32 c1, c2, cp1, cp2; |
170 | |
171 | /* no argument error checking because this itself is not an API */ |
172 | |
173 | /* |
174 | * assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set |
175 | * otherwise this function must behave exactly as uprv_strCompare() |
176 | * not checking for that here makes testing this function easier |
177 | */ |
178 | |
179 | /* normalization/properties data loaded? */ |
180 | if((options&_COMPARE_EQUIV)!=0) { |
181 | nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode); |
182 | } else { |
183 | nfcImpl=NULL; |
184 | } |
185 | if(U_FAILURE(*pErrorCode)) { |
186 | return 0; |
187 | } |
188 | |
189 | /* initialize */ |
190 | start1=s1; |
191 | if(length1==-1) { |
192 | limit1=NULL; |
193 | } else { |
194 | limit1=s1+length1; |
195 | } |
196 | |
197 | start2=s2; |
198 | if(length2==-1) { |
199 | limit2=NULL; |
200 | } else { |
201 | limit2=s2+length2; |
202 | } |
203 | |
204 | level1=level2=0; |
205 | c1=c2=-1; |
206 | |
207 | /* comparison loop */ |
208 | for(;;) { |
209 | /* |
210 | * here a code unit value of -1 means "get another code unit" |
211 | * below it will mean "this source is finished" |
212 | */ |
213 | |
214 | if(c1<0) { |
215 | /* get next code unit from string 1, post-increment */ |
216 | for(;;) { |
217 | if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) { |
218 | if(level1==0) { |
219 | c1=-1; |
220 | break; |
221 | } |
222 | } else { |
223 | ++s1; |
224 | break; |
225 | } |
226 | |
227 | /* reached end of level buffer, pop one level */ |
228 | do { |
229 | --level1; |
230 | start1=stack1[level1].start; /*Not uninitialized*/ |
231 | } while(start1==NULL); |
232 | s1=stack1[level1].s; /*Not uninitialized*/ |
233 | limit1=stack1[level1].limit; /*Not uninitialized*/ |
234 | } |
235 | } |
236 | |
237 | if(c2<0) { |
238 | /* get next code unit from string 2, post-increment */ |
239 | for(;;) { |
240 | if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) { |
241 | if(level2==0) { |
242 | c2=-1; |
243 | break; |
244 | } |
245 | } else { |
246 | ++s2; |
247 | break; |
248 | } |
249 | |
250 | /* reached end of level buffer, pop one level */ |
251 | do { |
252 | --level2; |
253 | start2=stack2[level2].start; /*Not uninitialized*/ |
254 | } while(start2==NULL); |
255 | s2=stack2[level2].s; /*Not uninitialized*/ |
256 | limit2=stack2[level2].limit; /*Not uninitialized*/ |
257 | } |
258 | } |
259 | |
260 | /* |
261 | * compare c1 and c2 |
262 | * either variable c1, c2 is -1 only if the corresponding string is finished |
263 | */ |
264 | if(c1==c2) { |
265 | if(c1<0) { |
266 | return 0; /* c1==c2==-1 indicating end of strings */ |
267 | } |
268 | c1=c2=-1; /* make us fetch new code units */ |
269 | continue; |
270 | } else if(c1<0) { |
271 | return -1; /* string 1 ends before string 2 */ |
272 | } else if(c2<0) { |
273 | return 1; /* string 2 ends before string 1 */ |
274 | } |
275 | /* c1!=c2 && c1>=0 && c2>=0 */ |
276 | |
277 | /* get complete code points for c1, c2 for lookups if either is a surrogate */ |
278 | cp1=c1; |
279 | if(U_IS_SURROGATE(c1)) { |
280 | UChar c; |
281 | |
282 | if(U_IS_SURROGATE_LEAD(c1)) { |
283 | if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) { |
284 | /* advance ++s1; only below if cp1 decomposes/case-folds */ |
285 | cp1=U16_GET_SUPPLEMENTARY(c1, c); |
286 | } |
287 | } else /* isTrail(c1) */ { |
288 | if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) { |
289 | cp1=U16_GET_SUPPLEMENTARY(c, c1); |
290 | } |
291 | } |
292 | } |
293 | |
294 | cp2=c2; |
295 | if(U_IS_SURROGATE(c2)) { |
296 | UChar c; |
297 | |
298 | if(U_IS_SURROGATE_LEAD(c2)) { |
299 | if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) { |
300 | /* advance ++s2; only below if cp2 decomposes/case-folds */ |
301 | cp2=U16_GET_SUPPLEMENTARY(c2, c); |
302 | } |
303 | } else /* isTrail(c2) */ { |
304 | if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) { |
305 | cp2=U16_GET_SUPPLEMENTARY(c, c2); |
306 | } |
307 | } |
308 | } |
309 | |
310 | /* |
311 | * go down one level for each string |
312 | * continue with the main loop as soon as there is a real change |
313 | */ |
314 | |
315 | if( level1==0 && (options&U_COMPARE_IGNORE_CASE) && |
316 | (length=ucase_toFullFolding((UChar32)cp1, &p, options))>=0 |
317 | ) { |
318 | /* cp1 case-folds to the code point "length" or to p[length] */ |
319 | if(U_IS_SURROGATE(c1)) { |
320 | if(U_IS_SURROGATE_LEAD(c1)) { |
321 | /* advance beyond source surrogate pair if it case-folds */ |
322 | ++s1; |
323 | } else /* isTrail(c1) */ { |
324 | /* |
325 | * we got a supplementary code point when hitting its trail surrogate, |
326 | * therefore the lead surrogate must have been the same as in the other string; |
327 | * compare this decomposition with the lead surrogate in the other string |
328 | * remember that this simulates bulk text replacement: |
329 | * the decomposition would replace the entire code point |
330 | */ |
331 | --s2; |
332 | c2=*(s2-1); |
333 | } |
334 | } |
335 | |
336 | /* push current level pointers */ |
337 | stack1[0].start=start1; |
338 | stack1[0].s=s1; |
339 | stack1[0].limit=limit1; |
340 | ++level1; |
341 | |
342 | /* copy the folding result to fold1[] */ |
343 | if(length<=UCASE_MAX_STRING_LENGTH) { |
344 | u_memcpy(fold1, p, length); |
345 | } else { |
346 | int32_t i=0; |
347 | U16_APPEND_UNSAFE(fold1, i, length); |
348 | length=i; |
349 | } |
350 | |
351 | /* set next level pointers to case folding */ |
352 | start1=s1=fold1; |
353 | limit1=fold1+length; |
354 | |
355 | /* get ready to read from decomposition, continue with loop */ |
356 | c1=-1; |
357 | continue; |
358 | } |
359 | |
360 | if( level2==0 && (options&U_COMPARE_IGNORE_CASE) && |
361 | (length=ucase_toFullFolding((UChar32)cp2, &p, options))>=0 |
362 | ) { |
363 | /* cp2 case-folds to the code point "length" or to p[length] */ |
364 | if(U_IS_SURROGATE(c2)) { |
365 | if(U_IS_SURROGATE_LEAD(c2)) { |
366 | /* advance beyond source surrogate pair if it case-folds */ |
367 | ++s2; |
368 | } else /* isTrail(c2) */ { |
369 | /* |
370 | * we got a supplementary code point when hitting its trail surrogate, |
371 | * therefore the lead surrogate must have been the same as in the other string; |
372 | * compare this decomposition with the lead surrogate in the other string |
373 | * remember that this simulates bulk text replacement: |
374 | * the decomposition would replace the entire code point |
375 | */ |
376 | --s1; |
377 | c1=*(s1-1); |
378 | } |
379 | } |
380 | |
381 | /* push current level pointers */ |
382 | stack2[0].start=start2; |
383 | stack2[0].s=s2; |
384 | stack2[0].limit=limit2; |
385 | ++level2; |
386 | |
387 | /* copy the folding result to fold2[] */ |
388 | if(length<=UCASE_MAX_STRING_LENGTH) { |
389 | u_memcpy(fold2, p, length); |
390 | } else { |
391 | int32_t i=0; |
392 | U16_APPEND_UNSAFE(fold2, i, length); |
393 | length=i; |
394 | } |
395 | |
396 | /* set next level pointers to case folding */ |
397 | start2=s2=fold2; |
398 | limit2=fold2+length; |
399 | |
400 | /* get ready to read from decomposition, continue with loop */ |
401 | c2=-1; |
402 | continue; |
403 | } |
404 | |
405 | if( level1<2 && (options&_COMPARE_EQUIV) && |
406 | 0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length)) |
407 | ) { |
408 | /* cp1 decomposes into p[length] */ |
409 | if(U_IS_SURROGATE(c1)) { |
410 | if(U_IS_SURROGATE_LEAD(c1)) { |
411 | /* advance beyond source surrogate pair if it decomposes */ |
412 | ++s1; |
413 | } else /* isTrail(c1) */ { |
414 | /* |
415 | * we got a supplementary code point when hitting its trail surrogate, |
416 | * therefore the lead surrogate must have been the same as in the other string; |
417 | * compare this decomposition with the lead surrogate in the other string |
418 | * remember that this simulates bulk text replacement: |
419 | * the decomposition would replace the entire code point |
420 | */ |
421 | --s2; |
422 | c2=*(s2-1); |
423 | } |
424 | } |
425 | |
426 | /* push current level pointers */ |
427 | stack1[level1].start=start1; |
428 | stack1[level1].s=s1; |
429 | stack1[level1].limit=limit1; |
430 | ++level1; |
431 | |
432 | /* set empty intermediate level if skipped */ |
433 | if(level1<2) { |
434 | stack1[level1++].start=NULL; |
435 | } |
436 | |
437 | /* set next level pointers to decomposition */ |
438 | start1=s1=p; |
439 | limit1=p+length; |
440 | |
441 | /* get ready to read from decomposition, continue with loop */ |
442 | c1=-1; |
443 | continue; |
444 | } |
445 | |
446 | if( level2<2 && (options&_COMPARE_EQUIV) && |
447 | 0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length)) |
448 | ) { |
449 | /* cp2 decomposes into p[length] */ |
450 | if(U_IS_SURROGATE(c2)) { |
451 | if(U_IS_SURROGATE_LEAD(c2)) { |
452 | /* advance beyond source surrogate pair if it decomposes */ |
453 | ++s2; |
454 | } else /* isTrail(c2) */ { |
455 | /* |
456 | * we got a supplementary code point when hitting its trail surrogate, |
457 | * therefore the lead surrogate must have been the same as in the other string; |
458 | * compare this decomposition with the lead surrogate in the other string |
459 | * remember that this simulates bulk text replacement: |
460 | * the decomposition would replace the entire code point |
461 | */ |
462 | --s1; |
463 | c1=*(s1-1); |
464 | } |
465 | } |
466 | |
467 | /* push current level pointers */ |
468 | stack2[level2].start=start2; |
469 | stack2[level2].s=s2; |
470 | stack2[level2].limit=limit2; |
471 | ++level2; |
472 | |
473 | /* set empty intermediate level if skipped */ |
474 | if(level2<2) { |
475 | stack2[level2++].start=NULL; |
476 | } |
477 | |
478 | /* set next level pointers to decomposition */ |
479 | start2=s2=p; |
480 | limit2=p+length; |
481 | |
482 | /* get ready to read from decomposition, continue with loop */ |
483 | c2=-1; |
484 | continue; |
485 | } |
486 | |
487 | /* |
488 | * no decomposition/case folding, max level for both sides: |
489 | * return difference result |
490 | * |
491 | * code point order comparison must not just return cp1-cp2 |
492 | * because when single surrogates are present then the surrogate pairs |
493 | * that formed cp1 and cp2 may be from different string indexes |
494 | * |
495 | * example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units |
496 | * c1=d800 cp1=10001 c2=dc00 cp2=10000 |
497 | * cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 } |
498 | * |
499 | * therefore, use same fix-up as in ustring.c/uprv_strCompare() |
500 | * except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++ |
501 | * so we have slightly different pointer/start/limit comparisons here |
502 | */ |
503 | |
504 | if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) { |
505 | /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */ |
506 | if( |
507 | (c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) || |
508 | (U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2))) |
509 | ) { |
510 | /* part of a surrogate pair, leave >=d800 */ |
511 | } else { |
512 | /* BMP code point - may be surrogate code point - make <d800 */ |
513 | c1-=0x2800; |
514 | } |
515 | |
516 | if( |
517 | (c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) || |
518 | (U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2))) |
519 | ) { |
520 | /* part of a surrogate pair, leave >=d800 */ |
521 | } else { |
522 | /* BMP code point - may be surrogate code point - make <d800 */ |
523 | c2-=0x2800; |
524 | } |
525 | } |
526 | |
527 | return c1-c2; |
528 | } |
529 | } |
530 | |
531 | static |
532 | UBool _normalize(const Normalizer2 *n2, const UChar *s, int32_t length, |
533 | UnicodeString &normalized, UErrorCode *pErrorCode) { |
534 | UnicodeString str(length<0, s, length); |
535 | |
536 | // check if s fulfill the conditions |
537 | int32_t spanQCYes=n2->spanQuickCheckYes(str, *pErrorCode); |
538 | if (U_FAILURE(*pErrorCode)) { |
539 | return FALSE; |
540 | } |
541 | /* |
542 | * ICU 2.4 had a further optimization: |
543 | * If both strings were not in FCD, then they were both NFD'ed, |
544 | * and the _COMPARE_EQUIV option was turned off. |
545 | * It is not entirely clear that this is valid with the current |
546 | * definition of the canonical caseless match. |
547 | * Therefore, ICU 2.6 removes that optimization. |
548 | */ |
549 | if(spanQCYes<str.length()) { |
550 | UnicodeString unnormalized=str.tempSubString(spanQCYes); |
551 | normalized.setTo(FALSE, str.getBuffer(), spanQCYes); |
552 | n2->normalizeSecondAndAppend(normalized, unnormalized, *pErrorCode); |
553 | if (U_SUCCESS(*pErrorCode)) { |
554 | return TRUE; |
555 | } |
556 | } |
557 | return FALSE; |
558 | } |
559 | |
560 | U_CAPI int32_t U_EXPORT2 |
561 | unorm_compare(const UChar *s1, int32_t length1, |
562 | const UChar *s2, int32_t length2, |
563 | uint32_t options, |
564 | UErrorCode *pErrorCode) { |
565 | /* argument checking */ |
566 | if(U_FAILURE(*pErrorCode)) { |
567 | return 0; |
568 | } |
569 | if(s1==0 || length1<-1 || s2==0 || length2<-1) { |
570 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
571 | return 0; |
572 | } |
573 | |
574 | UnicodeString fcd1, fcd2; |
575 | int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT); |
576 | options|=_COMPARE_EQUIV; |
577 | |
578 | /* |
579 | * UAX #21 Case Mappings, as fixed for Unicode version 4 |
580 | * (see Jitterbug 2021), defines a canonical caseless match as |
581 | * |
582 | * A string X is a canonical caseless match |
583 | * for a string Y if and only if |
584 | * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y))) |
585 | * |
586 | * For better performance, we check for FCD (or let the caller tell us that |
587 | * both strings are in FCD) for the inner normalization. |
588 | * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that |
589 | * case-folding preserves the FCD-ness of a string. |
590 | * The outer normalization is then only performed by unorm_cmpEquivFold() |
591 | * when there is a difference. |
592 | * |
593 | * Exception: When using the Turkic case-folding option, we do perform |
594 | * full NFD first. This is because in the Turkic case precomposed characters |
595 | * with 0049 capital I or 0069 small i fold differently whether they |
596 | * are first decomposed or not, so an FCD check - a check only for |
597 | * canonical order - is not sufficient. |
598 | */ |
599 | if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) { |
600 | const Normalizer2 *n2; |
601 | if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) { |
602 | n2=Normalizer2::getNFDInstance(*pErrorCode); |
603 | } else { |
604 | n2=Normalizer2Factory::getFCDInstance(*pErrorCode); |
605 | } |
606 | if (U_FAILURE(*pErrorCode)) { |
607 | return 0; |
608 | } |
609 | |
610 | if(normOptions&UNORM_UNICODE_3_2) { |
611 | const UnicodeSet *uni32=uniset_getUnicode32Instance(*pErrorCode); |
612 | FilteredNormalizer2 fn2(*n2, *uni32); |
613 | if(_normalize(&fn2, s1, length1, fcd1, pErrorCode)) { |
614 | s1=fcd1.getBuffer(); |
615 | length1=fcd1.length(); |
616 | } |
617 | if(_normalize(&fn2, s2, length2, fcd2, pErrorCode)) { |
618 | s2=fcd2.getBuffer(); |
619 | length2=fcd2.length(); |
620 | } |
621 | } else { |
622 | if(_normalize(n2, s1, length1, fcd1, pErrorCode)) { |
623 | s1=fcd1.getBuffer(); |
624 | length1=fcd1.length(); |
625 | } |
626 | if(_normalize(n2, s2, length2, fcd2, pErrorCode)) { |
627 | s2=fcd2.getBuffer(); |
628 | length2=fcd2.length(); |
629 | } |
630 | } |
631 | } |
632 | |
633 | if(U_SUCCESS(*pErrorCode)) { |
634 | return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode); |
635 | } else { |
636 | return 0; |
637 | } |
638 | } |
639 | |
640 | #endif /* #if !UCONFIG_NO_NORMALIZATION */ |
641 | |