1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ******************************************************************************* |
5 | * Copyright (C) 1997-2016, International Business Machines Corporation and |
6 | * others. All Rights Reserved. |
7 | ******************************************************************************* |
8 | * |
9 | * File FMTABLE.CPP |
10 | * |
11 | * Modification History: |
12 | * |
13 | * Date Name Description |
14 | * 03/25/97 clhuang Initial Implementation. |
15 | ******************************************************************************** |
16 | */ |
17 | |
18 | #include "unicode/utypes.h" |
19 | |
20 | #if !UCONFIG_NO_FORMATTING |
21 | |
22 | #include <cstdlib> |
23 | #include <math.h> |
24 | #include "unicode/fmtable.h" |
25 | #include "unicode/ustring.h" |
26 | #include "unicode/measure.h" |
27 | #include "unicode/curramt.h" |
28 | #include "unicode/uformattable.h" |
29 | #include "charstr.h" |
30 | #include "cmemory.h" |
31 | #include "cstring.h" |
32 | #include "fmtableimp.h" |
33 | #include "number_decimalquantity.h" |
34 | |
35 | // ***************************************************************************** |
36 | // class Formattable |
37 | // ***************************************************************************** |
38 | |
39 | U_NAMESPACE_BEGIN |
40 | |
41 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable) |
42 | |
43 | using number::impl::DecimalQuantity; |
44 | |
45 | |
46 | //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. |
47 | |
48 | // NOTE: As of 3.0, there are limitations to the UObject API. It does |
49 | // not (yet) support cloning, operator=, nor operator==. To |
50 | // work around this, I implement some simple inlines here. Later |
51 | // these can be modified or removed. [alan] |
52 | |
53 | // NOTE: These inlines assume that all fObjects are in fact instances |
54 | // of the Measure class, which is true as of 3.0. [alan] |
55 | |
56 | // Return TRUE if *a == *b. |
57 | static inline UBool objectEquals(const UObject* a, const UObject* b) { |
58 | // LATER: return *a == *b; |
59 | return *((const Measure*) a) == *((const Measure*) b); |
60 | } |
61 | |
62 | // Return a clone of *a. |
63 | static inline UObject* objectClone(const UObject* a) { |
64 | // LATER: return a->clone(); |
65 | return ((const Measure*) a)->clone(); |
66 | } |
67 | |
68 | // Return TRUE if *a is an instance of Measure. |
69 | static inline UBool instanceOfMeasure(const UObject* a) { |
70 | return dynamic_cast<const Measure*>(a) != NULL; |
71 | } |
72 | |
73 | /** |
74 | * Creates a new Formattable array and copies the values from the specified |
75 | * original. |
76 | * @param array the original array |
77 | * @param count the original array count |
78 | * @return the new Formattable array. |
79 | */ |
80 | static Formattable* createArrayCopy(const Formattable* array, int32_t count) { |
81 | Formattable *result = new Formattable[count]; |
82 | if (result != NULL) { |
83 | for (int32_t i=0; i<count; ++i) |
84 | result[i] = array[i]; // Don't memcpy! |
85 | } |
86 | return result; |
87 | } |
88 | |
89 | //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. |
90 | |
91 | /** |
92 | * Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode. |
93 | */ |
94 | static void setError(UErrorCode& ec, UErrorCode err) { |
95 | if (U_SUCCESS(ec)) { |
96 | ec = err; |
97 | } |
98 | } |
99 | |
100 | // |
101 | // Common initialization code, shared by constructors. |
102 | // Put everything into a known state. |
103 | // |
104 | void Formattable::init() { |
105 | fValue.fInt64 = 0; |
106 | fType = kLong; |
107 | fDecimalStr = NULL; |
108 | fDecimalQuantity = NULL; |
109 | fBogus.setToBogus(); |
110 | } |
111 | |
112 | // ------------------------------------- |
113 | // default constructor. |
114 | // Creates a formattable object with a long value 0. |
115 | |
116 | Formattable::Formattable() { |
117 | init(); |
118 | } |
119 | |
120 | // ------------------------------------- |
121 | // Creates a formattable object with a Date instance. |
122 | |
123 | Formattable::Formattable(UDate date, ISDATE /*isDate*/) |
124 | { |
125 | init(); |
126 | fType = kDate; |
127 | fValue.fDate = date; |
128 | } |
129 | |
130 | // ------------------------------------- |
131 | // Creates a formattable object with a double value. |
132 | |
133 | Formattable::Formattable(double value) |
134 | { |
135 | init(); |
136 | fType = kDouble; |
137 | fValue.fDouble = value; |
138 | } |
139 | |
140 | // ------------------------------------- |
141 | // Creates a formattable object with an int32_t value. |
142 | |
143 | Formattable::Formattable(int32_t value) |
144 | { |
145 | init(); |
146 | fValue.fInt64 = value; |
147 | } |
148 | |
149 | // ------------------------------------- |
150 | // Creates a formattable object with an int64_t value. |
151 | |
152 | Formattable::Formattable(int64_t value) |
153 | { |
154 | init(); |
155 | fType = kInt64; |
156 | fValue.fInt64 = value; |
157 | } |
158 | |
159 | // ------------------------------------- |
160 | // Creates a formattable object with a decimal number value from a string. |
161 | |
162 | Formattable::Formattable(StringPiece number, UErrorCode &status) { |
163 | init(); |
164 | setDecimalNumber(number, status); |
165 | } |
166 | |
167 | |
168 | // ------------------------------------- |
169 | // Creates a formattable object with a UnicodeString instance. |
170 | |
171 | Formattable::Formattable(const UnicodeString& stringToCopy) |
172 | { |
173 | init(); |
174 | fType = kString; |
175 | fValue.fString = new UnicodeString(stringToCopy); |
176 | } |
177 | |
178 | // ------------------------------------- |
179 | // Creates a formattable object with a UnicodeString* value. |
180 | // (adopting symantics) |
181 | |
182 | Formattable::Formattable(UnicodeString* stringToAdopt) |
183 | { |
184 | init(); |
185 | fType = kString; |
186 | fValue.fString = stringToAdopt; |
187 | } |
188 | |
189 | Formattable::Formattable(UObject* objectToAdopt) |
190 | { |
191 | init(); |
192 | fType = kObject; |
193 | fValue.fObject = objectToAdopt; |
194 | } |
195 | |
196 | // ------------------------------------- |
197 | |
198 | Formattable::Formattable(const Formattable* arrayToCopy, int32_t count) |
199 | : UObject(), fType(kArray) |
200 | { |
201 | init(); |
202 | fType = kArray; |
203 | fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count); |
204 | fValue.fArrayAndCount.fCount = count; |
205 | } |
206 | |
207 | // ------------------------------------- |
208 | // copy constructor |
209 | |
210 | |
211 | Formattable::Formattable(const Formattable &source) |
212 | : UObject(*this) |
213 | { |
214 | init(); |
215 | *this = source; |
216 | } |
217 | |
218 | // ------------------------------------- |
219 | // assignment operator |
220 | |
221 | Formattable& |
222 | Formattable::operator=(const Formattable& source) |
223 | { |
224 | if (this != &source) |
225 | { |
226 | // Disposes the current formattable value/setting. |
227 | dispose(); |
228 | |
229 | // Sets the correct data type for this value. |
230 | fType = source.fType; |
231 | switch (fType) |
232 | { |
233 | case kArray: |
234 | // Sets each element in the array one by one and records the array count. |
235 | fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount; |
236 | fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray, |
237 | source.fValue.fArrayAndCount.fCount); |
238 | break; |
239 | case kString: |
240 | // Sets the string value. |
241 | fValue.fString = new UnicodeString(*source.fValue.fString); |
242 | break; |
243 | case kDouble: |
244 | // Sets the double value. |
245 | fValue.fDouble = source.fValue.fDouble; |
246 | break; |
247 | case kLong: |
248 | case kInt64: |
249 | // Sets the long value. |
250 | fValue.fInt64 = source.fValue.fInt64; |
251 | break; |
252 | case kDate: |
253 | // Sets the Date value. |
254 | fValue.fDate = source.fValue.fDate; |
255 | break; |
256 | case kObject: |
257 | fValue.fObject = objectClone(source.fValue.fObject); |
258 | break; |
259 | } |
260 | |
261 | UErrorCode status = U_ZERO_ERROR; |
262 | if (source.fDecimalQuantity != NULL) { |
263 | fDecimalQuantity = new DecimalQuantity(*source.fDecimalQuantity); |
264 | } |
265 | if (source.fDecimalStr != NULL) { |
266 | fDecimalStr = new CharString(*source.fDecimalStr, status); |
267 | if (U_FAILURE(status)) { |
268 | delete fDecimalStr; |
269 | fDecimalStr = NULL; |
270 | } |
271 | } |
272 | } |
273 | return *this; |
274 | } |
275 | |
276 | // ------------------------------------- |
277 | |
278 | UBool |
279 | Formattable::operator==(const Formattable& that) const |
280 | { |
281 | int32_t i; |
282 | |
283 | if (this == &that) return TRUE; |
284 | |
285 | // Returns FALSE if the data types are different. |
286 | if (fType != that.fType) return FALSE; |
287 | |
288 | // Compares the actual data values. |
289 | UBool equal = TRUE; |
290 | switch (fType) { |
291 | case kDate: |
292 | equal = (fValue.fDate == that.fValue.fDate); |
293 | break; |
294 | case kDouble: |
295 | equal = (fValue.fDouble == that.fValue.fDouble); |
296 | break; |
297 | case kLong: |
298 | case kInt64: |
299 | equal = (fValue.fInt64 == that.fValue.fInt64); |
300 | break; |
301 | case kString: |
302 | equal = (*(fValue.fString) == *(that.fValue.fString)); |
303 | break; |
304 | case kArray: |
305 | if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) { |
306 | equal = FALSE; |
307 | break; |
308 | } |
309 | // Checks each element for equality. |
310 | for (i=0; i<fValue.fArrayAndCount.fCount; ++i) { |
311 | if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) { |
312 | equal = FALSE; |
313 | break; |
314 | } |
315 | } |
316 | break; |
317 | case kObject: |
318 | if (fValue.fObject == NULL || that.fValue.fObject == NULL) { |
319 | equal = FALSE; |
320 | } else { |
321 | equal = objectEquals(fValue.fObject, that.fValue.fObject); |
322 | } |
323 | break; |
324 | } |
325 | |
326 | // TODO: compare digit lists if numeric. |
327 | return equal; |
328 | } |
329 | |
330 | // ------------------------------------- |
331 | |
332 | Formattable::~Formattable() |
333 | { |
334 | dispose(); |
335 | } |
336 | |
337 | // ------------------------------------- |
338 | |
339 | void Formattable::dispose() |
340 | { |
341 | // Deletes the data value if necessary. |
342 | switch (fType) { |
343 | case kString: |
344 | delete fValue.fString; |
345 | break; |
346 | case kArray: |
347 | delete[] fValue.fArrayAndCount.fArray; |
348 | break; |
349 | case kObject: |
350 | delete fValue.fObject; |
351 | break; |
352 | default: |
353 | break; |
354 | } |
355 | |
356 | fType = kLong; |
357 | fValue.fInt64 = 0; |
358 | |
359 | delete fDecimalStr; |
360 | fDecimalStr = NULL; |
361 | |
362 | delete fDecimalQuantity; |
363 | fDecimalQuantity = NULL; |
364 | } |
365 | |
366 | Formattable * |
367 | Formattable::clone() const { |
368 | return new Formattable(*this); |
369 | } |
370 | |
371 | // ------------------------------------- |
372 | // Gets the data type of this Formattable object. |
373 | Formattable::Type |
374 | Formattable::getType() const |
375 | { |
376 | return fType; |
377 | } |
378 | |
379 | UBool |
380 | Formattable::isNumeric() const { |
381 | switch (fType) { |
382 | case kDouble: |
383 | case kLong: |
384 | case kInt64: |
385 | return TRUE; |
386 | default: |
387 | return FALSE; |
388 | } |
389 | } |
390 | |
391 | // ------------------------------------- |
392 | int32_t |
393 | //Formattable::getLong(UErrorCode* status) const |
394 | Formattable::getLong(UErrorCode& status) const |
395 | { |
396 | if (U_FAILURE(status)) { |
397 | return 0; |
398 | } |
399 | |
400 | switch (fType) { |
401 | case Formattable::kLong: |
402 | return (int32_t)fValue.fInt64; |
403 | case Formattable::kInt64: |
404 | if (fValue.fInt64 > INT32_MAX) { |
405 | status = U_INVALID_FORMAT_ERROR; |
406 | return INT32_MAX; |
407 | } else if (fValue.fInt64 < INT32_MIN) { |
408 | status = U_INVALID_FORMAT_ERROR; |
409 | return INT32_MIN; |
410 | } else { |
411 | return (int32_t)fValue.fInt64; |
412 | } |
413 | case Formattable::kDouble: |
414 | if (fValue.fDouble > INT32_MAX) { |
415 | status = U_INVALID_FORMAT_ERROR; |
416 | return INT32_MAX; |
417 | } else if (fValue.fDouble < INT32_MIN) { |
418 | status = U_INVALID_FORMAT_ERROR; |
419 | return INT32_MIN; |
420 | } else { |
421 | return (int32_t)fValue.fDouble; // loses fraction |
422 | } |
423 | case Formattable::kObject: |
424 | if (fValue.fObject == NULL) { |
425 | status = U_MEMORY_ALLOCATION_ERROR; |
426 | return 0; |
427 | } |
428 | // TODO Later replace this with instanceof call |
429 | if (instanceOfMeasure(fValue.fObject)) { |
430 | return ((const Measure*) fValue.fObject)-> |
431 | getNumber().getLong(status); |
432 | } |
433 | U_FALLTHROUGH; |
434 | default: |
435 | status = U_INVALID_FORMAT_ERROR; |
436 | return 0; |
437 | } |
438 | } |
439 | |
440 | // ------------------------------------- |
441 | // Maximum int that can be represented exactly in a double. (53 bits) |
442 | // Larger ints may be rounded to a near-by value as not all are representable. |
443 | // TODO: move this constant elsewhere, possibly configure it for different |
444 | // floating point formats, if any non-standard ones are still in use. |
445 | static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL; |
446 | |
447 | int64_t |
448 | Formattable::getInt64(UErrorCode& status) const |
449 | { |
450 | if (U_FAILURE(status)) { |
451 | return 0; |
452 | } |
453 | |
454 | switch (fType) { |
455 | case Formattable::kLong: |
456 | case Formattable::kInt64: |
457 | return fValue.fInt64; |
458 | case Formattable::kDouble: |
459 | if (fValue.fDouble > (double)U_INT64_MAX) { |
460 | status = U_INVALID_FORMAT_ERROR; |
461 | return U_INT64_MAX; |
462 | } else if (fValue.fDouble < (double)U_INT64_MIN) { |
463 | status = U_INVALID_FORMAT_ERROR; |
464 | return U_INT64_MIN; |
465 | } else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalQuantity != NULL) { |
466 | if (fDecimalQuantity->fitsInLong(true)) { |
467 | return fDecimalQuantity->toLong(); |
468 | } else { |
469 | // Unexpected |
470 | status = U_INVALID_FORMAT_ERROR; |
471 | return fDecimalQuantity->isNegative() ? U_INT64_MIN : U_INT64_MAX; |
472 | } |
473 | } else { |
474 | return (int64_t)fValue.fDouble; |
475 | } |
476 | case Formattable::kObject: |
477 | if (fValue.fObject == NULL) { |
478 | status = U_MEMORY_ALLOCATION_ERROR; |
479 | return 0; |
480 | } |
481 | if (instanceOfMeasure(fValue.fObject)) { |
482 | return ((const Measure*) fValue.fObject)-> |
483 | getNumber().getInt64(status); |
484 | } |
485 | U_FALLTHROUGH; |
486 | default: |
487 | status = U_INVALID_FORMAT_ERROR; |
488 | return 0; |
489 | } |
490 | } |
491 | |
492 | // ------------------------------------- |
493 | double |
494 | Formattable::getDouble(UErrorCode& status) const |
495 | { |
496 | if (U_FAILURE(status)) { |
497 | return 0; |
498 | } |
499 | |
500 | switch (fType) { |
501 | case Formattable::kLong: |
502 | case Formattable::kInt64: // loses precision |
503 | return (double)fValue.fInt64; |
504 | case Formattable::kDouble: |
505 | return fValue.fDouble; |
506 | case Formattable::kObject: |
507 | if (fValue.fObject == NULL) { |
508 | status = U_MEMORY_ALLOCATION_ERROR; |
509 | return 0; |
510 | } |
511 | // TODO Later replace this with instanceof call |
512 | if (instanceOfMeasure(fValue.fObject)) { |
513 | return ((const Measure*) fValue.fObject)-> |
514 | getNumber().getDouble(status); |
515 | } |
516 | U_FALLTHROUGH; |
517 | default: |
518 | status = U_INVALID_FORMAT_ERROR; |
519 | return 0; |
520 | } |
521 | } |
522 | |
523 | const UObject* |
524 | Formattable::getObject() const { |
525 | return (fType == kObject) ? fValue.fObject : NULL; |
526 | } |
527 | |
528 | // ------------------------------------- |
529 | // Sets the value to a double value d. |
530 | |
531 | void |
532 | Formattable::setDouble(double d) |
533 | { |
534 | dispose(); |
535 | fType = kDouble; |
536 | fValue.fDouble = d; |
537 | } |
538 | |
539 | // ------------------------------------- |
540 | // Sets the value to a long value l. |
541 | |
542 | void |
543 | Formattable::setLong(int32_t l) |
544 | { |
545 | dispose(); |
546 | fType = kLong; |
547 | fValue.fInt64 = l; |
548 | } |
549 | |
550 | // ------------------------------------- |
551 | // Sets the value to an int64 value ll. |
552 | |
553 | void |
554 | Formattable::setInt64(int64_t ll) |
555 | { |
556 | dispose(); |
557 | fType = kInt64; |
558 | fValue.fInt64 = ll; |
559 | } |
560 | |
561 | // ------------------------------------- |
562 | // Sets the value to a Date instance d. |
563 | |
564 | void |
565 | Formattable::setDate(UDate d) |
566 | { |
567 | dispose(); |
568 | fType = kDate; |
569 | fValue.fDate = d; |
570 | } |
571 | |
572 | // ------------------------------------- |
573 | // Sets the value to a string value stringToCopy. |
574 | |
575 | void |
576 | Formattable::setString(const UnicodeString& stringToCopy) |
577 | { |
578 | dispose(); |
579 | fType = kString; |
580 | fValue.fString = new UnicodeString(stringToCopy); |
581 | } |
582 | |
583 | // ------------------------------------- |
584 | // Sets the value to an array of Formattable objects. |
585 | |
586 | void |
587 | Formattable::setArray(const Formattable* array, int32_t count) |
588 | { |
589 | dispose(); |
590 | fType = kArray; |
591 | fValue.fArrayAndCount.fArray = createArrayCopy(array, count); |
592 | fValue.fArrayAndCount.fCount = count; |
593 | } |
594 | |
595 | // ------------------------------------- |
596 | // Adopts the stringToAdopt value. |
597 | |
598 | void |
599 | Formattable::adoptString(UnicodeString* stringToAdopt) |
600 | { |
601 | dispose(); |
602 | fType = kString; |
603 | fValue.fString = stringToAdopt; |
604 | } |
605 | |
606 | // ------------------------------------- |
607 | // Adopts the array value and its count. |
608 | |
609 | void |
610 | Formattable::adoptArray(Formattable* array, int32_t count) |
611 | { |
612 | dispose(); |
613 | fType = kArray; |
614 | fValue.fArrayAndCount.fArray = array; |
615 | fValue.fArrayAndCount.fCount = count; |
616 | } |
617 | |
618 | void |
619 | Formattable::adoptObject(UObject* objectToAdopt) { |
620 | dispose(); |
621 | fType = kObject; |
622 | fValue.fObject = objectToAdopt; |
623 | } |
624 | |
625 | // ------------------------------------- |
626 | UnicodeString& |
627 | Formattable::getString(UnicodeString& result, UErrorCode& status) const |
628 | { |
629 | if (fType != kString) { |
630 | setError(status, U_INVALID_FORMAT_ERROR); |
631 | result.setToBogus(); |
632 | } else { |
633 | if (fValue.fString == NULL) { |
634 | setError(status, U_MEMORY_ALLOCATION_ERROR); |
635 | } else { |
636 | result = *fValue.fString; |
637 | } |
638 | } |
639 | return result; |
640 | } |
641 | |
642 | // ------------------------------------- |
643 | const UnicodeString& |
644 | Formattable::getString(UErrorCode& status) const |
645 | { |
646 | if (fType != kString) { |
647 | setError(status, U_INVALID_FORMAT_ERROR); |
648 | return *getBogus(); |
649 | } |
650 | if (fValue.fString == NULL) { |
651 | setError(status, U_MEMORY_ALLOCATION_ERROR); |
652 | return *getBogus(); |
653 | } |
654 | return *fValue.fString; |
655 | } |
656 | |
657 | // ------------------------------------- |
658 | UnicodeString& |
659 | Formattable::getString(UErrorCode& status) |
660 | { |
661 | if (fType != kString) { |
662 | setError(status, U_INVALID_FORMAT_ERROR); |
663 | return *getBogus(); |
664 | } |
665 | if (fValue.fString == NULL) { |
666 | setError(status, U_MEMORY_ALLOCATION_ERROR); |
667 | return *getBogus(); |
668 | } |
669 | return *fValue.fString; |
670 | } |
671 | |
672 | // ------------------------------------- |
673 | const Formattable* |
674 | Formattable::getArray(int32_t& count, UErrorCode& status) const |
675 | { |
676 | if (fType != kArray) { |
677 | setError(status, U_INVALID_FORMAT_ERROR); |
678 | count = 0; |
679 | return NULL; |
680 | } |
681 | count = fValue.fArrayAndCount.fCount; |
682 | return fValue.fArrayAndCount.fArray; |
683 | } |
684 | |
685 | // ------------------------------------- |
686 | // Gets the bogus string, ensures mondo bogosity. |
687 | |
688 | UnicodeString* |
689 | Formattable::getBogus() const |
690 | { |
691 | return (UnicodeString*)&fBogus; /* cast away const :-( */ |
692 | } |
693 | |
694 | |
695 | // -------------------------------------- |
696 | StringPiece Formattable::getDecimalNumber(UErrorCode &status) { |
697 | if (U_FAILURE(status)) { |
698 | return "" ; |
699 | } |
700 | if (fDecimalStr != NULL) { |
701 | return fDecimalStr->toStringPiece(); |
702 | } |
703 | |
704 | CharString *decimalStr = internalGetCharString(status); |
705 | if(decimalStr == NULL) { |
706 | return "" ; // getDecimalNumber returns "" for error cases |
707 | } else { |
708 | return decimalStr->toStringPiece(); |
709 | } |
710 | } |
711 | |
712 | CharString *Formattable::internalGetCharString(UErrorCode &status) { |
713 | if(fDecimalStr == NULL) { |
714 | if (fDecimalQuantity == NULL) { |
715 | // No decimal number for the formattable yet. Which means the value was |
716 | // set directly by the user as an int, int64 or double. If the value came |
717 | // from parsing, or from the user setting a decimal number, fDecimalNum |
718 | // would already be set. |
719 | // |
720 | LocalPointer<DecimalQuantity> dq(new DecimalQuantity(), status); |
721 | if (U_FAILURE(status)) { return nullptr; } |
722 | populateDecimalQuantity(*dq, status); |
723 | if (U_FAILURE(status)) { return nullptr; } |
724 | fDecimalQuantity = dq.orphan(); |
725 | } |
726 | |
727 | fDecimalStr = new CharString(); |
728 | if (fDecimalStr == NULL) { |
729 | status = U_MEMORY_ALLOCATION_ERROR; |
730 | return NULL; |
731 | } |
732 | // Older ICUs called uprv_decNumberToString here, which is not exactly the same as |
733 | // DecimalQuantity::toScientificString(). The biggest difference is that uprv_decNumberToString does |
734 | // not print scientific notation for magnitudes greater than -5 and smaller than some amount (+5?). |
735 | if (fDecimalQuantity->isInfinite()) { |
736 | fDecimalStr->append("Infinity" , status); |
737 | } else if (fDecimalQuantity->isNaN()) { |
738 | fDecimalStr->append("NaN" , status); |
739 | } else if (fDecimalQuantity->isZeroish()) { |
740 | fDecimalStr->append("0" , -1, status); |
741 | } else if (fType==kLong || fType==kInt64 || // use toPlainString for integer types |
742 | (fDecimalQuantity->getMagnitude() != INT32_MIN && std::abs(fDecimalQuantity->getMagnitude()) < 5)) { |
743 | fDecimalStr->appendInvariantChars(fDecimalQuantity->toPlainString(), status); |
744 | } else { |
745 | fDecimalStr->appendInvariantChars(fDecimalQuantity->toScientificString(), status); |
746 | } |
747 | } |
748 | return fDecimalStr; |
749 | } |
750 | |
751 | void |
752 | Formattable::populateDecimalQuantity(number::impl::DecimalQuantity& output, UErrorCode& status) const { |
753 | if (fDecimalQuantity != nullptr) { |
754 | output = *fDecimalQuantity; |
755 | return; |
756 | } |
757 | |
758 | switch (fType) { |
759 | case kDouble: |
760 | output.setToDouble(this->getDouble()); |
761 | output.roundToInfinity(); |
762 | break; |
763 | case kLong: |
764 | output.setToInt(this->getLong()); |
765 | break; |
766 | case kInt64: |
767 | output.setToLong(this->getInt64()); |
768 | break; |
769 | default: |
770 | // The formattable's value is not a numeric type. |
771 | status = U_INVALID_STATE_ERROR; |
772 | } |
773 | } |
774 | |
775 | // --------------------------------------- |
776 | void |
777 | Formattable::adoptDecimalQuantity(DecimalQuantity *dq) { |
778 | if (fDecimalQuantity != NULL) { |
779 | delete fDecimalQuantity; |
780 | } |
781 | fDecimalQuantity = dq; |
782 | if (dq == NULL) { // allow adoptDigitList(NULL) to clear |
783 | return; |
784 | } |
785 | |
786 | // Set the value into the Union of simple type values. |
787 | // Cannot use the set() functions because they would delete the fDecimalNum value. |
788 | if (fDecimalQuantity->fitsInLong()) { |
789 | fValue.fInt64 = fDecimalQuantity->toLong(); |
790 | if (fValue.fInt64 <= INT32_MAX && fValue.fInt64 >= INT32_MIN) { |
791 | fType = kLong; |
792 | } else { |
793 | fType = kInt64; |
794 | } |
795 | } else { |
796 | fType = kDouble; |
797 | fValue.fDouble = fDecimalQuantity->toDouble(); |
798 | } |
799 | } |
800 | |
801 | |
802 | // --------------------------------------- |
803 | void |
804 | Formattable::setDecimalNumber(StringPiece numberString, UErrorCode &status) { |
805 | if (U_FAILURE(status)) { |
806 | return; |
807 | } |
808 | dispose(); |
809 | |
810 | auto* dq = new DecimalQuantity(); |
811 | dq->setToDecNumber(numberString, status); |
812 | adoptDecimalQuantity(dq); |
813 | |
814 | // Note that we do not hang on to the caller's input string. |
815 | // If we are asked for the string, we will regenerate one from fDecimalQuantity. |
816 | } |
817 | |
818 | #if 0 |
819 | //---------------------------------------------------- |
820 | // console I/O |
821 | //---------------------------------------------------- |
822 | #ifdef _DEBUG |
823 | |
824 | #include <iostream> |
825 | using namespace std; |
826 | |
827 | #include "unicode/datefmt.h" |
828 | #include "unistrm.h" |
829 | |
830 | class FormattableStreamer /* not : public UObject because all methods are static */ { |
831 | public: |
832 | static void streamOut(ostream& stream, const Formattable& obj); |
833 | |
834 | private: |
835 | FormattableStreamer() {} // private - forbid instantiation |
836 | }; |
837 | |
838 | // This is for debugging purposes only. This will send a displayable |
839 | // form of the Formattable object to the output stream. |
840 | |
841 | void |
842 | FormattableStreamer::streamOut(ostream& stream, const Formattable& obj) |
843 | { |
844 | static DateFormat *defDateFormat = 0; |
845 | |
846 | UnicodeString buffer; |
847 | switch(obj.getType()) { |
848 | case Formattable::kDate : |
849 | // Creates a DateFormat instance for formatting the |
850 | // Date instance. |
851 | if (defDateFormat == 0) { |
852 | defDateFormat = DateFormat::createInstance(); |
853 | } |
854 | defDateFormat->format(obj.getDate(), buffer); |
855 | stream << buffer; |
856 | break; |
857 | case Formattable::kDouble : |
858 | // Output the double as is. |
859 | stream << obj.getDouble() << 'D'; |
860 | break; |
861 | case Formattable::kLong : |
862 | // Output the double as is. |
863 | stream << obj.getLong() << 'L'; |
864 | break; |
865 | case Formattable::kString: |
866 | // Output the double as is. Please see UnicodeString console |
867 | // I/O routine for more details. |
868 | stream << '"' << obj.getString(buffer) << '"'; |
869 | break; |
870 | case Formattable::kArray: |
871 | int32_t i, count; |
872 | const Formattable* array; |
873 | array = obj.getArray(count); |
874 | stream << '['; |
875 | // Recursively calling the console I/O routine for each element in the array. |
876 | for (i=0; i<count; ++i) { |
877 | FormattableStreamer::streamOut(stream, array[i]); |
878 | stream << ( (i==(count-1)) ? "" : ", " ); |
879 | } |
880 | stream << ']'; |
881 | break; |
882 | default: |
883 | // Not a recognizable Formattable object. |
884 | stream << "INVALID_Formattable" ; |
885 | } |
886 | stream.flush(); |
887 | } |
888 | #endif |
889 | |
890 | #endif |
891 | |
892 | U_NAMESPACE_END |
893 | |
894 | /* ---- UFormattable implementation ---- */ |
895 | |
896 | U_NAMESPACE_USE |
897 | |
898 | U_DRAFT UFormattable* U_EXPORT2 |
899 | ufmt_open(UErrorCode *status) { |
900 | if( U_FAILURE(*status) ) { |
901 | return NULL; |
902 | } |
903 | UFormattable *fmt = (new Formattable())->toUFormattable(); |
904 | |
905 | if( fmt == NULL ) { |
906 | *status = U_MEMORY_ALLOCATION_ERROR; |
907 | } |
908 | return fmt; |
909 | } |
910 | |
911 | U_DRAFT void U_EXPORT2 |
912 | ufmt_close(UFormattable *fmt) { |
913 | Formattable *obj = Formattable::fromUFormattable(fmt); |
914 | |
915 | delete obj; |
916 | } |
917 | |
918 | U_INTERNAL UFormattableType U_EXPORT2 |
919 | ufmt_getType(const UFormattable *fmt, UErrorCode *status) { |
920 | if(U_FAILURE(*status)) { |
921 | return (UFormattableType)UFMT_COUNT; |
922 | } |
923 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
924 | return (UFormattableType)obj->getType(); |
925 | } |
926 | |
927 | |
928 | U_INTERNAL UBool U_EXPORT2 |
929 | ufmt_isNumeric(const UFormattable *fmt) { |
930 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
931 | return obj->isNumeric(); |
932 | } |
933 | |
934 | U_DRAFT UDate U_EXPORT2 |
935 | ufmt_getDate(const UFormattable *fmt, UErrorCode *status) { |
936 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
937 | |
938 | return obj->getDate(*status); |
939 | } |
940 | |
941 | U_DRAFT double U_EXPORT2 |
942 | ufmt_getDouble(UFormattable *fmt, UErrorCode *status) { |
943 | Formattable *obj = Formattable::fromUFormattable(fmt); |
944 | |
945 | return obj->getDouble(*status); |
946 | } |
947 | |
948 | U_DRAFT int32_t U_EXPORT2 |
949 | ufmt_getLong(UFormattable *fmt, UErrorCode *status) { |
950 | Formattable *obj = Formattable::fromUFormattable(fmt); |
951 | |
952 | return obj->getLong(*status); |
953 | } |
954 | |
955 | |
956 | U_DRAFT const void *U_EXPORT2 |
957 | ufmt_getObject(const UFormattable *fmt, UErrorCode *status) { |
958 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
959 | |
960 | const void *ret = obj->getObject(); |
961 | if( ret==NULL && |
962 | (obj->getType() != Formattable::kObject) && |
963 | U_SUCCESS( *status )) { |
964 | *status = U_INVALID_FORMAT_ERROR; |
965 | } |
966 | return ret; |
967 | } |
968 | |
969 | U_DRAFT const UChar* U_EXPORT2 |
970 | ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { |
971 | Formattable *obj = Formattable::fromUFormattable(fmt); |
972 | |
973 | // avoid bogosity by checking the type first. |
974 | if( obj->getType() != Formattable::kString ) { |
975 | if( U_SUCCESS(*status) ){ |
976 | *status = U_INVALID_FORMAT_ERROR; |
977 | } |
978 | return NULL; |
979 | } |
980 | |
981 | // This should return a valid string |
982 | UnicodeString &str = obj->getString(*status); |
983 | if( U_SUCCESS(*status) && len != NULL ) { |
984 | *len = str.length(); |
985 | } |
986 | return str.getTerminatedBuffer(); |
987 | } |
988 | |
989 | U_DRAFT int32_t U_EXPORT2 |
990 | ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) { |
991 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
992 | |
993 | int32_t count; |
994 | (void)obj->getArray(count, *status); |
995 | return count; |
996 | } |
997 | |
998 | U_DRAFT UFormattable * U_EXPORT2 |
999 | ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) { |
1000 | Formattable *obj = Formattable::fromUFormattable(fmt); |
1001 | int32_t count; |
1002 | (void)obj->getArray(count, *status); |
1003 | if(U_FAILURE(*status)) { |
1004 | return NULL; |
1005 | } else if(n<0 || n>=count) { |
1006 | setError(*status, U_INDEX_OUTOFBOUNDS_ERROR); |
1007 | return NULL; |
1008 | } else { |
1009 | return (*obj)[n].toUFormattable(); // returns non-const Formattable |
1010 | } |
1011 | } |
1012 | |
1013 | U_DRAFT const char * U_EXPORT2 |
1014 | ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { |
1015 | if(U_FAILURE(*status)) { |
1016 | return "" ; |
1017 | } |
1018 | Formattable *obj = Formattable::fromUFormattable(fmt); |
1019 | CharString *charString = obj->internalGetCharString(*status); |
1020 | if(U_FAILURE(*status)) { |
1021 | return "" ; |
1022 | } |
1023 | if(charString == NULL) { |
1024 | *status = U_MEMORY_ALLOCATION_ERROR; |
1025 | return "" ; |
1026 | } else { |
1027 | if(len!=NULL) { |
1028 | *len = charString->length(); |
1029 | } |
1030 | return charString->data(); |
1031 | } |
1032 | } |
1033 | |
1034 | U_DRAFT int64_t U_EXPORT2 |
1035 | ufmt_getInt64(UFormattable *fmt, UErrorCode *status) { |
1036 | Formattable *obj = Formattable::fromUFormattable(fmt); |
1037 | return obj->getInt64(*status); |
1038 | } |
1039 | |
1040 | #endif /* #if !UCONFIG_NO_FORMATTING */ |
1041 | |
1042 | //eof |
1043 | |