1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * Copyright (C) 2003-2016, International Business Machines Corporation |
6 | * and others. All Rights Reserved. |
7 | ****************************************************************************** |
8 | * |
9 | * File HEBRWCAL.CPP |
10 | * |
11 | * Modification History: |
12 | * |
13 | * Date Name Description |
14 | * 12/03/2003 srl ported from java HebrewCalendar |
15 | ***************************************************************************** |
16 | */ |
17 | |
18 | #include "hebrwcal.h" |
19 | |
20 | #if !UCONFIG_NO_FORMATTING |
21 | |
22 | #include "cmemory.h" |
23 | #include "umutex.h" |
24 | #include <float.h> |
25 | #include "gregoimp.h" // Math |
26 | #include "astro.h" // CalendarAstronomer |
27 | #include "uhash.h" |
28 | #include "ucln_in.h" |
29 | |
30 | // Hebrew Calendar implementation |
31 | |
32 | /** |
33 | * The absolute date, in milliseconds since 1/1/1970 AD, Gregorian, |
34 | * of the start of the Hebrew calendar. In order to keep this calendar's |
35 | * time of day in sync with that of the Gregorian calendar, we use |
36 | * midnight, rather than sunset the day before. |
37 | */ |
38 | //static const double EPOCH_MILLIS = -180799862400000.; // 1/1/1 HY |
39 | |
40 | static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { |
41 | // Minimum Greatest Least Maximum |
42 | // Minimum Maximum |
43 | { 0, 0, 0, 0}, // ERA |
44 | { -5000000, -5000000, 5000000, 5000000}, // YEAR |
45 | { 0, 0, 12, 12}, // MONTH |
46 | { 1, 1, 51, 56}, // WEEK_OF_YEAR |
47 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH |
48 | { 1, 1, 29, 30}, // DAY_OF_MONTH |
49 | { 1, 1, 353, 385}, // DAY_OF_YEAR |
50 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK |
51 | { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH |
52 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM |
53 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR |
54 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY |
55 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE |
56 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND |
57 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND |
58 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET |
59 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET |
60 | { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY |
61 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL |
62 | { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR |
63 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY |
64 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY |
65 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH |
66 | }; |
67 | |
68 | /** |
69 | * The lengths of the Hebrew months. This is complicated, because there |
70 | * are three different types of years, or six if you count leap years. |
71 | * Due to the rules for postponing the start of the year to avoid having |
72 | * certain holidays fall on the sabbath, the year can end up being three |
73 | * different lengths, called "deficient", "normal", and "complete". |
74 | */ |
75 | static const int8_t MONTH_LENGTH[][3] = { |
76 | // Deficient Normal Complete |
77 | { 30, 30, 30 }, //Tishri |
78 | { 29, 29, 30 }, //Heshvan |
79 | { 29, 30, 30 }, //Kislev |
80 | { 29, 29, 29 }, //Tevet |
81 | { 30, 30, 30 }, //Shevat |
82 | { 30, 30, 30 }, //Adar I (leap years only) |
83 | { 29, 29, 29 }, //Adar |
84 | { 30, 30, 30 }, //Nisan |
85 | { 29, 29, 29 }, //Iyar |
86 | { 30, 30, 30 }, //Sivan |
87 | { 29, 29, 29 }, //Tammuz |
88 | { 30, 30, 30 }, //Av |
89 | { 29, 29, 29 }, //Elul |
90 | }; |
91 | |
92 | /** |
93 | * The cumulative # of days to the end of each month in a non-leap year |
94 | * Although this can be calculated from the MONTH_LENGTH table, |
95 | * keeping it around separately makes some calculations a lot faster |
96 | */ |
97 | |
98 | static const int16_t MONTH_START[][3] = { |
99 | // Deficient Normal Complete |
100 | { 0, 0, 0 }, // (placeholder) |
101 | { 30, 30, 30 }, // Tishri |
102 | { 59, 59, 60 }, // Heshvan |
103 | { 88, 89, 90 }, // Kislev |
104 | { 117, 118, 119 }, // Tevet |
105 | { 147, 148, 149 }, // Shevat |
106 | { 147, 148, 149 }, // (Adar I placeholder) |
107 | { 176, 177, 178 }, // Adar |
108 | { 206, 207, 208 }, // Nisan |
109 | { 235, 236, 237 }, // Iyar |
110 | { 265, 266, 267 }, // Sivan |
111 | { 294, 295, 296 }, // Tammuz |
112 | { 324, 325, 326 }, // Av |
113 | { 353, 354, 355 }, // Elul |
114 | }; |
115 | |
116 | /** |
117 | * The cumulative # of days to the end of each month in a leap year |
118 | */ |
119 | static const int16_t LEAP_MONTH_START[][3] = { |
120 | // Deficient Normal Complete |
121 | { 0, 0, 0 }, // (placeholder) |
122 | { 30, 30, 30 }, // Tishri |
123 | { 59, 59, 60 }, // Heshvan |
124 | { 88, 89, 90 }, // Kislev |
125 | { 117, 118, 119 }, // Tevet |
126 | { 147, 148, 149 }, // Shevat |
127 | { 177, 178, 179 }, // Adar I |
128 | { 206, 207, 208 }, // Adar II |
129 | { 236, 237, 238 }, // Nisan |
130 | { 265, 266, 267 }, // Iyar |
131 | { 295, 296, 297 }, // Sivan |
132 | { 324, 325, 326 }, // Tammuz |
133 | { 354, 355, 356 }, // Av |
134 | { 383, 384, 385 }, // Elul |
135 | }; |
136 | |
137 | static icu::CalendarCache *gCache = NULL; |
138 | |
139 | U_CDECL_BEGIN |
140 | static UBool calendar_hebrew_cleanup(void) { |
141 | delete gCache; |
142 | gCache = NULL; |
143 | return TRUE; |
144 | } |
145 | U_CDECL_END |
146 | |
147 | U_NAMESPACE_BEGIN |
148 | //------------------------------------------------------------------------- |
149 | // Constructors... |
150 | //------------------------------------------------------------------------- |
151 | |
152 | /** |
153 | * Constructs a default <code>HebrewCalendar</code> using the current time |
154 | * in the default time zone with the default locale. |
155 | * @internal |
156 | */ |
157 | HebrewCalendar::HebrewCalendar(const Locale& aLocale, UErrorCode& success) |
158 | : Calendar(TimeZone::createDefault(), aLocale, success) |
159 | |
160 | { |
161 | setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. |
162 | } |
163 | |
164 | |
165 | HebrewCalendar::~HebrewCalendar() { |
166 | } |
167 | |
168 | const char *HebrewCalendar::getType() const { |
169 | return "hebrew" ; |
170 | } |
171 | |
172 | HebrewCalendar* HebrewCalendar::clone() const { |
173 | return new HebrewCalendar(*this); |
174 | } |
175 | |
176 | HebrewCalendar::HebrewCalendar(const HebrewCalendar& other) : Calendar(other) { |
177 | } |
178 | |
179 | |
180 | //------------------------------------------------------------------------- |
181 | // Rolling and adding functions overridden from Calendar |
182 | // |
183 | // These methods call through to the default implementation in IBMCalendar |
184 | // for most of the fields and only handle the unusual ones themselves. |
185 | //------------------------------------------------------------------------- |
186 | |
187 | /** |
188 | * Add a signed amount to a specified field, using this calendar's rules. |
189 | * For example, to add three days to the current date, you can call |
190 | * <code>add(Calendar.DATE, 3)</code>. |
191 | * <p> |
192 | * When adding to certain fields, the values of other fields may conflict and |
193 | * need to be changed. For example, when adding one to the {@link #MONTH MONTH} field |
194 | * for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field |
195 | * must be adjusted so that the result is "29 Elul 5758" rather than the invalid |
196 | * "30 Elul 5758". |
197 | * <p> |
198 | * This method is able to add to |
199 | * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, |
200 | * and {@link #ZONE_OFFSET ZONE_OFFSET}. |
201 | * <p> |
202 | * <b>Note:</b> You should always use {@link #roll roll} and add rather |
203 | * than attempting to perform arithmetic operations directly on the fields |
204 | * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves |
205 | * discontinuously in non-leap years, simple arithmetic can give invalid results. |
206 | * <p> |
207 | * @param field the time field. |
208 | * @param amount the amount to add to the field. |
209 | * |
210 | * @exception IllegalArgumentException if the field is invalid or refers |
211 | * to a field that cannot be handled by this method. |
212 | * @internal |
213 | */ |
214 | void HebrewCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
215 | { |
216 | if(U_FAILURE(status)) { |
217 | return; |
218 | } |
219 | switch (field) { |
220 | case UCAL_MONTH: |
221 | { |
222 | // We can't just do a set(MONTH, get(MONTH) + amount). The |
223 | // reason is ADAR_1. Suppose amount is +2 and we land in |
224 | // ADAR_1 -- then we have to bump to ADAR_2 aka ADAR. But |
225 | // if amount is -2 and we land in ADAR_1, then we have to |
226 | // bump the other way -- down to SHEVAT. - Alan 11/00 |
227 | int32_t month = get(UCAL_MONTH, status); |
228 | int32_t year = get(UCAL_YEAR, status); |
229 | UBool acrossAdar1; |
230 | if (amount > 0) { |
231 | acrossAdar1 = (month < ADAR_1); // started before ADAR_1? |
232 | month += amount; |
233 | for (;;) { |
234 | if (acrossAdar1 && month>=ADAR_1 && !isLeapYear(year)) { |
235 | ++month; |
236 | } |
237 | if (month <= ELUL) { |
238 | break; |
239 | } |
240 | month -= ELUL+1; |
241 | ++year; |
242 | acrossAdar1 = TRUE; |
243 | } |
244 | } else { |
245 | acrossAdar1 = (month > ADAR_1); // started after ADAR_1? |
246 | month += amount; |
247 | for (;;) { |
248 | if (acrossAdar1 && month<=ADAR_1 && !isLeapYear(year)) { |
249 | --month; |
250 | } |
251 | if (month >= 0) { |
252 | break; |
253 | } |
254 | month += ELUL+1; |
255 | --year; |
256 | acrossAdar1 = TRUE; |
257 | } |
258 | } |
259 | set(UCAL_MONTH, month); |
260 | set(UCAL_YEAR, year); |
261 | pinField(UCAL_DAY_OF_MONTH, status); |
262 | break; |
263 | } |
264 | |
265 | default: |
266 | Calendar::add(field, amount, status); |
267 | break; |
268 | } |
269 | } |
270 | |
271 | /** |
272 | * @deprecated ICU 2.6 use UCalendarDateFields instead of EDateFields |
273 | */ |
274 | void HebrewCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) |
275 | { |
276 | add((UCalendarDateFields)field, amount, status); |
277 | } |
278 | |
279 | /** |
280 | * Rolls (up/down) a specified amount time on the given field. For |
281 | * example, to roll the current date up by three days, you can call |
282 | * <code>roll(Calendar.DATE, 3)</code>. If the |
283 | * field is rolled past its maximum allowable value, it will "wrap" back |
284 | * to its minimum and continue rolling. |
285 | * For example, calling <code>roll(Calendar.DATE, 10)</code> |
286 | * on a Hebrew calendar set to "25 Av 5758" will result in the date "5 Av 5758". |
287 | * <p> |
288 | * When rolling certain fields, the values of other fields may conflict and |
289 | * need to be changed. For example, when rolling the {@link #MONTH MONTH} field |
290 | * upward by one for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field |
291 | * must be adjusted so that the result is "29 Elul 5758" rather than the invalid |
292 | * "30 Elul". |
293 | * <p> |
294 | * This method is able to roll |
295 | * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, |
296 | * and {@link #ZONE_OFFSET ZONE_OFFSET}. Subclasses may, of course, add support for |
297 | * additional fields in their overrides of <code>roll</code>. |
298 | * <p> |
299 | * <b>Note:</b> You should always use roll and {@link #add add} rather |
300 | * than attempting to perform arithmetic operations directly on the fields |
301 | * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves |
302 | * discontinuously in non-leap years, simple arithmetic can give invalid results. |
303 | * <p> |
304 | * @param field the time field. |
305 | * @param amount the amount by which the field should be rolled. |
306 | * |
307 | * @exception IllegalArgumentException if the field is invalid or refers |
308 | * to a field that cannot be handled by this method. |
309 | * @internal |
310 | */ |
311 | void HebrewCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
312 | { |
313 | if(U_FAILURE(status)) { |
314 | return; |
315 | } |
316 | switch (field) { |
317 | case UCAL_MONTH: |
318 | { |
319 | int32_t month = get(UCAL_MONTH, status); |
320 | int32_t year = get(UCAL_YEAR, status); |
321 | |
322 | UBool leapYear = isLeapYear(year); |
323 | int32_t yearLength = monthsInYear(year); |
324 | int32_t newMonth = month + (amount % yearLength); |
325 | // |
326 | // If it's not a leap year and we're rolling past the missing month |
327 | // of ADAR_1, we need to roll an extra month to make up for it. |
328 | // |
329 | if (!leapYear) { |
330 | if (amount > 0 && month < ADAR_1 && newMonth >= ADAR_1) { |
331 | newMonth++; |
332 | } else if (amount < 0 && month > ADAR_1 && newMonth <= ADAR_1) { |
333 | newMonth--; |
334 | } |
335 | } |
336 | set(UCAL_MONTH, (newMonth + 13) % 13); |
337 | pinField(UCAL_DAY_OF_MONTH, status); |
338 | return; |
339 | } |
340 | default: |
341 | Calendar::roll(field, amount, status); |
342 | } |
343 | } |
344 | |
345 | void HebrewCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { |
346 | roll((UCalendarDateFields)field, amount, status); |
347 | } |
348 | |
349 | //------------------------------------------------------------------------- |
350 | // Support methods |
351 | //------------------------------------------------------------------------- |
352 | |
353 | // Hebrew date calculations are performed in terms of days, hours, and |
354 | // "parts" (or halakim), which are 1/1080 of an hour, or 3 1/3 seconds. |
355 | static const int32_t HOUR_PARTS = 1080; |
356 | static const int32_t DAY_PARTS = 24*HOUR_PARTS; |
357 | |
358 | // An approximate value for the length of a lunar month. |
359 | // It is used to calculate the approximate year and month of a given |
360 | // absolute date. |
361 | static const int32_t MONTH_DAYS = 29; |
362 | static const int32_t MONTH_FRACT = 12*HOUR_PARTS + 793; |
363 | static const int32_t MONTH_PARTS = MONTH_DAYS*DAY_PARTS + MONTH_FRACT; |
364 | |
365 | // The time of the new moon (in parts) on 1 Tishri, year 1 (the epoch) |
366 | // counting from noon on the day before. BAHARAD is an abbreviation of |
367 | // Bet (Monday), Hey (5 hours from sunset), Resh-Daled (204). |
368 | static const int32_t BAHARAD = 11*HOUR_PARTS + 204; |
369 | |
370 | /** |
371 | * Finds the day # of the first day in the given Hebrew year. |
372 | * To do this, we want to calculate the time of the Tishri 1 new moon |
373 | * in that year. |
374 | * <p> |
375 | * The algorithm here is similar to ones described in a number of |
376 | * references, including: |
377 | * <ul> |
378 | * <li>"Calendrical Calculations", by Nachum Dershowitz & Edward Reingold, |
379 | * Cambridge University Press, 1997, pages 85-91. |
380 | * |
381 | * <li>Hebrew Calendar Science and Myths, |
382 | * <a href="http://www.geocities.com/Athens/1584/"> |
383 | * http://www.geocities.com/Athens/1584/</a> |
384 | * |
385 | * <li>The Calendar FAQ, |
386 | * <a href="http://www.faqs.org/faqs/calendars/faq/"> |
387 | * http://www.faqs.org/faqs/calendars/faq/</a> |
388 | * </ul> |
389 | */ |
390 | int32_t HebrewCalendar::startOfYear(int32_t year, UErrorCode &status) |
391 | { |
392 | ucln_i18n_registerCleanup(UCLN_I18N_HEBREW_CALENDAR, calendar_hebrew_cleanup); |
393 | int32_t day = CalendarCache::get(&gCache, year, status); |
394 | |
395 | if (day == 0) { |
396 | int32_t months = (235 * year - 234) / 19; // # of months before year |
397 | |
398 | int64_t frac = (int64_t)months * MONTH_FRACT + BAHARAD; // Fractional part of day # |
399 | day = months * 29 + (int32_t)(frac / DAY_PARTS); // Whole # part of calculation |
400 | frac = frac % DAY_PARTS; // Time of day |
401 | |
402 | int32_t wd = (day % 7); // Day of week (0 == Monday) |
403 | |
404 | if (wd == 2 || wd == 4 || wd == 6) { |
405 | // If the 1st is on Sun, Wed, or Fri, postpone to the next day |
406 | day += 1; |
407 | wd = (day % 7); |
408 | } |
409 | if (wd == 1 && frac > 15*HOUR_PARTS+204 && !isLeapYear(year) ) { |
410 | // If the new moon falls after 3:11:20am (15h204p from the previous noon) |
411 | // on a Tuesday and it is not a leap year, postpone by 2 days. |
412 | // This prevents 356-day years. |
413 | day += 2; |
414 | } |
415 | else if (wd == 0 && frac > 21*HOUR_PARTS+589 && isLeapYear(year-1) ) { |
416 | // If the new moon falls after 9:32:43 1/3am (21h589p from yesterday noon) |
417 | // on a Monday and *last* year was a leap year, postpone by 1 day. |
418 | // Prevents 382-day years. |
419 | day += 1; |
420 | } |
421 | CalendarCache::put(&gCache, year, day, status); |
422 | } |
423 | return day; |
424 | } |
425 | |
426 | /** |
427 | * Find the day of the week for a given day |
428 | * |
429 | * @param day The # of days since the start of the Hebrew calendar, |
430 | * 1-based (i.e. 1/1/1 AM is day 1). |
431 | */ |
432 | int32_t HebrewCalendar::absoluteDayToDayOfWeek(int32_t day) |
433 | { |
434 | // We know that 1/1/1 AM is a Monday, which makes the math easy... |
435 | return (day % 7) + 1; |
436 | } |
437 | |
438 | /** |
439 | * Returns the the type of a given year. |
440 | * 0 "Deficient" year with 353 or 383 days |
441 | * 1 "Normal" year with 354 or 384 days |
442 | * 2 "Complete" year with 355 or 385 days |
443 | */ |
444 | int32_t HebrewCalendar::yearType(int32_t year) const |
445 | { |
446 | int32_t yearLength = handleGetYearLength(year); |
447 | |
448 | if (yearLength > 380) { |
449 | yearLength -= 30; // Subtract length of leap month. |
450 | } |
451 | |
452 | int type = 0; |
453 | |
454 | switch (yearLength) { |
455 | case 353: |
456 | type = 0; break; |
457 | case 354: |
458 | type = 1; break; |
459 | case 355: |
460 | type = 2; break; |
461 | default: |
462 | //throw new RuntimeException("Illegal year length " + yearLength + " in year " + year); |
463 | type = 1; |
464 | } |
465 | return type; |
466 | } |
467 | |
468 | /** |
469 | * Determine whether a given Hebrew year is a leap year |
470 | * |
471 | * The rule here is that if (year % 19) == 0, 3, 6, 8, 11, 14, or 17. |
472 | * The formula below performs the same test, believe it or not. |
473 | */ |
474 | UBool HebrewCalendar::isLeapYear(int32_t year) { |
475 | //return (year * 12 + 17) % 19 >= 12; |
476 | int32_t x = (year*12 + 17) % 19; |
477 | return x >= ((x < 0) ? -7 : 12); |
478 | } |
479 | |
480 | int32_t HebrewCalendar::monthsInYear(int32_t year) { |
481 | return isLeapYear(year) ? 13 : 12; |
482 | } |
483 | |
484 | //------------------------------------------------------------------------- |
485 | // Calendar framework |
486 | //------------------------------------------------------------------------- |
487 | |
488 | /** |
489 | * @internal |
490 | */ |
491 | int32_t HebrewCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { |
492 | return LIMITS[field][limitType]; |
493 | } |
494 | |
495 | /** |
496 | * Returns the length of the given month in the given year |
497 | * @internal |
498 | */ |
499 | int32_t HebrewCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const { |
500 | // Resolve out-of-range months. This is necessary in order to |
501 | // obtain the correct year. We correct to |
502 | // a 12- or 13-month year (add/subtract 12 or 13, depending |
503 | // on the year) but since we _always_ number from 0..12, and |
504 | // the leap year determines whether or not month 5 (Adar 1) |
505 | // is present, we allow 0..12 in any given year. |
506 | while (month < 0) { |
507 | month += monthsInYear(--extendedYear); |
508 | } |
509 | // Careful: allow 0..12 in all years |
510 | while (month > 12) { |
511 | month -= monthsInYear(extendedYear++); |
512 | } |
513 | |
514 | switch (month) { |
515 | case HESHVAN: |
516 | case KISLEV: |
517 | // These two month lengths can vary |
518 | return MONTH_LENGTH[month][yearType(extendedYear)]; |
519 | |
520 | default: |
521 | // The rest are a fixed length |
522 | return MONTH_LENGTH[month][0]; |
523 | } |
524 | } |
525 | |
526 | /** |
527 | * Returns the number of days in the given Hebrew year |
528 | * @internal |
529 | */ |
530 | int32_t HebrewCalendar::handleGetYearLength(int32_t eyear) const { |
531 | UErrorCode status = U_ZERO_ERROR; |
532 | return startOfYear(eyear+1, status) - startOfYear(eyear, status); |
533 | } |
534 | |
535 | void HebrewCalendar::validateField(UCalendarDateFields field, UErrorCode &status) { |
536 | if (field == UCAL_MONTH && !isLeapYear(handleGetExtendedYear()) && internalGet(UCAL_MONTH) == ADAR_1) { |
537 | status = U_ILLEGAL_ARGUMENT_ERROR; |
538 | return; |
539 | } |
540 | Calendar::validateField(field, status); |
541 | } |
542 | //------------------------------------------------------------------------- |
543 | // Functions for converting from milliseconds to field values |
544 | //------------------------------------------------------------------------- |
545 | |
546 | /** |
547 | * Subclasses may override this method to compute several fields |
548 | * specific to each calendar system. These are: |
549 | * |
550 | * <ul><li>ERA |
551 | * <li>YEAR |
552 | * <li>MONTH |
553 | * <li>DAY_OF_MONTH |
554 | * <li>DAY_OF_YEAR |
555 | * <li>EXTENDED_YEAR</ul> |
556 | * |
557 | * Subclasses can refer to the DAY_OF_WEEK and DOW_LOCAL fields, |
558 | * which will be set when this method is called. Subclasses can |
559 | * also call the getGregorianXxx() methods to obtain Gregorian |
560 | * calendar equivalents for the given Julian day. |
561 | * |
562 | * <p>In addition, subclasses should compute any subclass-specific |
563 | * fields, that is, fields from BASE_FIELD_COUNT to |
564 | * getFieldCount() - 1. |
565 | * @internal |
566 | */ |
567 | void HebrewCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status) { |
568 | int32_t d = julianDay - 347997; |
569 | double m = ((d * (double)DAY_PARTS)/ (double) MONTH_PARTS); // Months (approx) |
570 | int32_t year = (int32_t)( ((19. * m + 234.) / 235.) + 1.); // Years (approx) |
571 | int32_t ys = startOfYear(year, status); // 1st day of year |
572 | int32_t dayOfYear = (d - ys); |
573 | |
574 | // Because of the postponement rules, it's possible to guess wrong. Fix it. |
575 | while (dayOfYear < 1) { |
576 | year--; |
577 | ys = startOfYear(year, status); |
578 | dayOfYear = (d - ys); |
579 | } |
580 | |
581 | // Now figure out which month we're in, and the date within that month |
582 | int32_t type = yearType(year); |
583 | UBool isLeap = isLeapYear(year); |
584 | |
585 | int32_t month = 0; |
586 | int32_t momax = UPRV_LENGTHOF(MONTH_START); |
587 | while (month < momax && dayOfYear > ( isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type] ) ) { |
588 | month++; |
589 | } |
590 | if (month >= momax || month<=0) { |
591 | // TODO: I found dayOfYear could be out of range when |
592 | // a large value is set to julianDay. I patched startOfYear |
593 | // to reduce the chace, but it could be still reproduced either |
594 | // by startOfYear or other places. For now, we check |
595 | // the month is in valid range to avoid out of array index |
596 | // access problem here. However, we need to carefully review |
597 | // the calendar implementation to check the extreme limit of |
598 | // each calendar field and the code works well for any values |
599 | // in the valid value range. -yoshito |
600 | status = U_ILLEGAL_ARGUMENT_ERROR; |
601 | return; |
602 | } |
603 | month--; |
604 | int dayOfMonth = dayOfYear - (isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type]); |
605 | |
606 | internalSet(UCAL_ERA, 0); |
607 | internalSet(UCAL_YEAR, year); |
608 | internalSet(UCAL_EXTENDED_YEAR, year); |
609 | internalSet(UCAL_MONTH, month); |
610 | internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); |
611 | internalSet(UCAL_DAY_OF_YEAR, dayOfYear); |
612 | } |
613 | |
614 | //------------------------------------------------------------------------- |
615 | // Functions for converting from field values to milliseconds |
616 | //------------------------------------------------------------------------- |
617 | |
618 | /** |
619 | * @internal |
620 | */ |
621 | int32_t HebrewCalendar::handleGetExtendedYear() { |
622 | int32_t year; |
623 | if (newerField(UCAL_EXTENDED_YEAR, UCAL_YEAR) == UCAL_EXTENDED_YEAR) { |
624 | year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 |
625 | } else { |
626 | year = internalGet(UCAL_YEAR, 1); // Default to year 1 |
627 | } |
628 | return year; |
629 | } |
630 | |
631 | /** |
632 | * Return JD of start of given month/year. |
633 | * @internal |
634 | */ |
635 | int32_t HebrewCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool /*useMonth*/) const { |
636 | UErrorCode status = U_ZERO_ERROR; |
637 | // Resolve out-of-range months. This is necessary in order to |
638 | // obtain the correct year. We correct to |
639 | // a 12- or 13-month year (add/subtract 12 or 13, depending |
640 | // on the year) but since we _always_ number from 0..12, and |
641 | // the leap year determines whether or not month 5 (Adar 1) |
642 | // is present, we allow 0..12 in any given year. |
643 | while (month < 0) { |
644 | month += monthsInYear(--eyear); |
645 | } |
646 | // Careful: allow 0..12 in all years |
647 | while (month > 12) { |
648 | month -= monthsInYear(eyear++); |
649 | } |
650 | |
651 | int32_t day = startOfYear(eyear, status); |
652 | |
653 | if(U_FAILURE(status)) { |
654 | return 0; |
655 | } |
656 | |
657 | if (month != 0) { |
658 | if (isLeapYear(eyear)) { |
659 | day += LEAP_MONTH_START[month][yearType(eyear)]; |
660 | } else { |
661 | day += MONTH_START[month][yearType(eyear)]; |
662 | } |
663 | } |
664 | |
665 | return (int) (day + 347997); |
666 | } |
667 | |
668 | UBool |
669 | HebrewCalendar::inDaylightTime(UErrorCode& status) const |
670 | { |
671 | // copied from GregorianCalendar |
672 | if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) |
673 | return FALSE; |
674 | |
675 | // Force an update of the state of the Calendar. |
676 | ((HebrewCalendar*)this)->complete(status); // cast away const |
677 | |
678 | return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); |
679 | } |
680 | |
681 | /** |
682 | * The system maintains a static default century start date and Year. They are |
683 | * initialized the first time they are used. Once the system default century date |
684 | * and year are set, they do not change. |
685 | */ |
686 | static UDate gSystemDefaultCenturyStart = DBL_MIN; |
687 | static int32_t gSystemDefaultCenturyStartYear = -1; |
688 | static icu::UInitOnce gSystemDefaultCenturyInit = U_INITONCE_INITIALIZER; |
689 | |
690 | UBool HebrewCalendar::haveDefaultCentury() const |
691 | { |
692 | return TRUE; |
693 | } |
694 | |
695 | static void U_CALLCONV initializeSystemDefaultCentury() |
696 | { |
697 | // initialize systemDefaultCentury and systemDefaultCenturyYear based |
698 | // on the current time. They'll be set to 80 years before |
699 | // the current time. |
700 | UErrorCode status = U_ZERO_ERROR; |
701 | HebrewCalendar calendar(Locale("@calendar=hebrew" ),status); |
702 | if (U_SUCCESS(status)) { |
703 | calendar.setTime(Calendar::getNow(), status); |
704 | calendar.add(UCAL_YEAR, -80, status); |
705 | |
706 | gSystemDefaultCenturyStart = calendar.getTime(status); |
707 | gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status); |
708 | } |
709 | // We have no recourse upon failure unless we want to propagate the failure |
710 | // out. |
711 | } |
712 | |
713 | |
714 | UDate HebrewCalendar::defaultCenturyStart() const { |
715 | // lazy-evaluate systemDefaultCenturyStart |
716 | umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury); |
717 | return gSystemDefaultCenturyStart; |
718 | } |
719 | |
720 | int32_t HebrewCalendar::defaultCenturyStartYear() const { |
721 | // lazy-evaluate systemDefaultCenturyStartYear |
722 | umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury); |
723 | return gSystemDefaultCenturyStartYear; |
724 | } |
725 | |
726 | |
727 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(HebrewCalendar) |
728 | |
729 | U_NAMESPACE_END |
730 | |
731 | #endif // UCONFIG_NO_FORMATTING |
732 | |
733 | |