1 | // © 2017 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | |
4 | #include "unicode/utypes.h" |
5 | |
6 | #if !UCONFIG_NO_FORMATTING |
7 | |
8 | #include <cstdlib> |
9 | #include "number_scientific.h" |
10 | #include "number_utils.h" |
11 | #include "formatted_string_builder.h" |
12 | #include "unicode/unum.h" |
13 | #include "number_microprops.h" |
14 | |
15 | using namespace icu; |
16 | using namespace icu::number; |
17 | using namespace icu::number::impl; |
18 | |
19 | // NOTE: The object lifecycle of ScientificModifier and ScientificHandler differ greatly in Java and C++. |
20 | // |
21 | // During formatting, we need to provide an object with state (the exponent) as the inner modifier. |
22 | // |
23 | // In Java, where the priority is put on reducing object creations, the unsafe code path re-uses the |
24 | // ScientificHandler as a ScientificModifier, and the safe code path pre-computes 25 ScientificModifier |
25 | // instances. This scheme reduces the number of object creations by 1 in both safe and unsafe. |
26 | // |
27 | // In C++, MicroProps provides a pre-allocated ScientificModifier, and ScientificHandler simply populates |
28 | // the state (the exponent) into that ScientificModifier. There is no difference between safe and unsafe. |
29 | |
30 | ScientificModifier::ScientificModifier() : fExponent(0), fHandler(nullptr) {} |
31 | |
32 | void ScientificModifier::set(int32_t exponent, const ScientificHandler *handler) { |
33 | // ScientificModifier should be set only once. |
34 | U_ASSERT(fHandler == nullptr); |
35 | fExponent = exponent; |
36 | fHandler = handler; |
37 | } |
38 | |
39 | int32_t ScientificModifier::apply(FormattedStringBuilder &output, int32_t /*leftIndex*/, int32_t rightIndex, |
40 | UErrorCode &status) const { |
41 | // FIXME: Localized exponent separator location. |
42 | int i = rightIndex; |
43 | // Append the exponent separator and sign |
44 | i += output.insert( |
45 | i, |
46 | fHandler->fSymbols->getSymbol(DecimalFormatSymbols::ENumberFormatSymbol::kExponentialSymbol), |
47 | UNUM_EXPONENT_SYMBOL_FIELD, |
48 | status); |
49 | if (fExponent < 0 && fHandler->fSettings.fExponentSignDisplay != UNUM_SIGN_NEVER) { |
50 | i += output.insert( |
51 | i, |
52 | fHandler->fSymbols |
53 | ->getSymbol(DecimalFormatSymbols::ENumberFormatSymbol::kMinusSignSymbol), |
54 | UNUM_EXPONENT_SIGN_FIELD, |
55 | status); |
56 | } else if (fExponent >= 0 && fHandler->fSettings.fExponentSignDisplay == UNUM_SIGN_ALWAYS) { |
57 | i += output.insert( |
58 | i, |
59 | fHandler->fSymbols |
60 | ->getSymbol(DecimalFormatSymbols::ENumberFormatSymbol::kPlusSignSymbol), |
61 | UNUM_EXPONENT_SIGN_FIELD, |
62 | status); |
63 | } |
64 | // Append the exponent digits (using a simple inline algorithm) |
65 | int32_t disp = std::abs(fExponent); |
66 | for (int j = 0; j < fHandler->fSettings.fMinExponentDigits || disp > 0; j++, disp /= 10) { |
67 | auto d = static_cast<int8_t>(disp % 10); |
68 | i += utils::insertDigitFromSymbols( |
69 | output, |
70 | i - j, |
71 | d, |
72 | *fHandler->fSymbols, |
73 | UNUM_EXPONENT_FIELD, |
74 | status); |
75 | } |
76 | return i - rightIndex; |
77 | } |
78 | |
79 | int32_t ScientificModifier::getPrefixLength() const { |
80 | // TODO: Localized exponent separator location. |
81 | return 0; |
82 | } |
83 | |
84 | int32_t ScientificModifier::getCodePointCount() const { |
85 | // NOTE: This method is only called one place, NumberRangeFormatterImpl. |
86 | // The call site only cares about != 0 and != 1. |
87 | // Return a very large value so that if this method is used elsewhere, we should notice. |
88 | return 999; |
89 | } |
90 | |
91 | bool ScientificModifier::isStrong() const { |
92 | // Scientific is always strong |
93 | return true; |
94 | } |
95 | |
96 | bool ScientificModifier::containsField(UNumberFormatFields field) const { |
97 | (void)field; |
98 | // This method is not used for inner modifiers. |
99 | UPRV_UNREACHABLE; |
100 | } |
101 | |
102 | void ScientificModifier::getParameters(Parameters& output) const { |
103 | // Not part of any plural sets |
104 | output.obj = nullptr; |
105 | } |
106 | |
107 | bool ScientificModifier::semanticallyEquivalent(const Modifier& other) const { |
108 | auto* _other = dynamic_cast<const ScientificModifier*>(&other); |
109 | if (_other == nullptr) { |
110 | return false; |
111 | } |
112 | // TODO: Check for locale symbols and settings as well? Could be less efficient. |
113 | return fExponent == _other->fExponent; |
114 | } |
115 | |
116 | // Note: Visual Studio does not compile this function without full name space. Why? |
117 | icu::number::impl::ScientificHandler::ScientificHandler(const Notation *notation, const DecimalFormatSymbols *symbols, |
118 | const MicroPropsGenerator *parent) : |
119 | fSettings(notation->fUnion.scientific), fSymbols(symbols), fParent(parent) {} |
120 | |
121 | void ScientificHandler::processQuantity(DecimalQuantity &quantity, MicroProps µs, |
122 | UErrorCode &status) const { |
123 | fParent->processQuantity(quantity, micros, status); |
124 | if (U_FAILURE(status)) { return; } |
125 | |
126 | // Do not apply scientific notation to special doubles |
127 | if (quantity.isInfinite() || quantity.isNaN()) { |
128 | micros.modInner = µs.helpers.emptyStrongModifier; |
129 | return; |
130 | } |
131 | |
132 | // Treat zero as if it had magnitude 0 |
133 | int32_t exponent; |
134 | if (quantity.isZeroish()) { |
135 | if (fSettings.fRequireMinInt && micros.rounder.isSignificantDigits()) { |
136 | // Show "00.000E0" on pattern "00.000E0" |
137 | micros.rounder.apply(quantity, fSettings.fEngineeringInterval, status); |
138 | exponent = 0; |
139 | } else { |
140 | micros.rounder.apply(quantity, status); |
141 | exponent = 0; |
142 | } |
143 | } else { |
144 | exponent = -micros.rounder.chooseMultiplierAndApply(quantity, *this, status); |
145 | } |
146 | |
147 | // Use MicroProps's helper ScientificModifier and save it as the modInner. |
148 | ScientificModifier &mod = micros.helpers.scientificModifier; |
149 | mod.set(exponent, this); |
150 | micros.modInner = &mod; |
151 | |
152 | // We already performed rounding. Do not perform it again. |
153 | micros.rounder = RoundingImpl::passThrough(); |
154 | } |
155 | |
156 | int32_t ScientificHandler::getMultiplier(int32_t magnitude) const { |
157 | int32_t interval = fSettings.fEngineeringInterval; |
158 | int32_t digitsShown; |
159 | if (fSettings.fRequireMinInt) { |
160 | // For patterns like "000.00E0" and ".00E0" |
161 | digitsShown = interval; |
162 | } else if (interval <= 1) { |
163 | // For patterns like "0.00E0" and "@@@E0" |
164 | digitsShown = 1; |
165 | } else { |
166 | // For patterns like "##0.00" |
167 | digitsShown = ((magnitude % interval + interval) % interval) + 1; |
168 | } |
169 | return digitsShown - magnitude - 1; |
170 | } |
171 | |
172 | #endif /* #if !UCONFIG_NO_FORMATTING */ |
173 | |