| 1 | // © 2017 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | |
| 4 | #include "unicode/utypes.h" |
| 5 | |
| 6 | #if !UCONFIG_NO_FORMATTING |
| 7 | |
| 8 | #include <cstdlib> |
| 9 | #include "number_scientific.h" |
| 10 | #include "number_utils.h" |
| 11 | #include "formatted_string_builder.h" |
| 12 | #include "unicode/unum.h" |
| 13 | #include "number_microprops.h" |
| 14 | |
| 15 | using namespace icu; |
| 16 | using namespace icu::number; |
| 17 | using namespace icu::number::impl; |
| 18 | |
| 19 | // NOTE: The object lifecycle of ScientificModifier and ScientificHandler differ greatly in Java and C++. |
| 20 | // |
| 21 | // During formatting, we need to provide an object with state (the exponent) as the inner modifier. |
| 22 | // |
| 23 | // In Java, where the priority is put on reducing object creations, the unsafe code path re-uses the |
| 24 | // ScientificHandler as a ScientificModifier, and the safe code path pre-computes 25 ScientificModifier |
| 25 | // instances. This scheme reduces the number of object creations by 1 in both safe and unsafe. |
| 26 | // |
| 27 | // In C++, MicroProps provides a pre-allocated ScientificModifier, and ScientificHandler simply populates |
| 28 | // the state (the exponent) into that ScientificModifier. There is no difference between safe and unsafe. |
| 29 | |
| 30 | ScientificModifier::ScientificModifier() : fExponent(0), fHandler(nullptr) {} |
| 31 | |
| 32 | void ScientificModifier::set(int32_t exponent, const ScientificHandler *handler) { |
| 33 | // ScientificModifier should be set only once. |
| 34 | U_ASSERT(fHandler == nullptr); |
| 35 | fExponent = exponent; |
| 36 | fHandler = handler; |
| 37 | } |
| 38 | |
| 39 | int32_t ScientificModifier::apply(FormattedStringBuilder &output, int32_t /*leftIndex*/, int32_t rightIndex, |
| 40 | UErrorCode &status) const { |
| 41 | // FIXME: Localized exponent separator location. |
| 42 | int i = rightIndex; |
| 43 | // Append the exponent separator and sign |
| 44 | i += output.insert( |
| 45 | i, |
| 46 | fHandler->fSymbols->getSymbol(DecimalFormatSymbols::ENumberFormatSymbol::kExponentialSymbol), |
| 47 | UNUM_EXPONENT_SYMBOL_FIELD, |
| 48 | status); |
| 49 | if (fExponent < 0 && fHandler->fSettings.fExponentSignDisplay != UNUM_SIGN_NEVER) { |
| 50 | i += output.insert( |
| 51 | i, |
| 52 | fHandler->fSymbols |
| 53 | ->getSymbol(DecimalFormatSymbols::ENumberFormatSymbol::kMinusSignSymbol), |
| 54 | UNUM_EXPONENT_SIGN_FIELD, |
| 55 | status); |
| 56 | } else if (fExponent >= 0 && fHandler->fSettings.fExponentSignDisplay == UNUM_SIGN_ALWAYS) { |
| 57 | i += output.insert( |
| 58 | i, |
| 59 | fHandler->fSymbols |
| 60 | ->getSymbol(DecimalFormatSymbols::ENumberFormatSymbol::kPlusSignSymbol), |
| 61 | UNUM_EXPONENT_SIGN_FIELD, |
| 62 | status); |
| 63 | } |
| 64 | // Append the exponent digits (using a simple inline algorithm) |
| 65 | int32_t disp = std::abs(fExponent); |
| 66 | for (int j = 0; j < fHandler->fSettings.fMinExponentDigits || disp > 0; j++, disp /= 10) { |
| 67 | auto d = static_cast<int8_t>(disp % 10); |
| 68 | i += utils::insertDigitFromSymbols( |
| 69 | output, |
| 70 | i - j, |
| 71 | d, |
| 72 | *fHandler->fSymbols, |
| 73 | UNUM_EXPONENT_FIELD, |
| 74 | status); |
| 75 | } |
| 76 | return i - rightIndex; |
| 77 | } |
| 78 | |
| 79 | int32_t ScientificModifier::getPrefixLength() const { |
| 80 | // TODO: Localized exponent separator location. |
| 81 | return 0; |
| 82 | } |
| 83 | |
| 84 | int32_t ScientificModifier::getCodePointCount() const { |
| 85 | // NOTE: This method is only called one place, NumberRangeFormatterImpl. |
| 86 | // The call site only cares about != 0 and != 1. |
| 87 | // Return a very large value so that if this method is used elsewhere, we should notice. |
| 88 | return 999; |
| 89 | } |
| 90 | |
| 91 | bool ScientificModifier::isStrong() const { |
| 92 | // Scientific is always strong |
| 93 | return true; |
| 94 | } |
| 95 | |
| 96 | bool ScientificModifier::containsField(UNumberFormatFields field) const { |
| 97 | (void)field; |
| 98 | // This method is not used for inner modifiers. |
| 99 | UPRV_UNREACHABLE; |
| 100 | } |
| 101 | |
| 102 | void ScientificModifier::getParameters(Parameters& output) const { |
| 103 | // Not part of any plural sets |
| 104 | output.obj = nullptr; |
| 105 | } |
| 106 | |
| 107 | bool ScientificModifier::semanticallyEquivalent(const Modifier& other) const { |
| 108 | auto* _other = dynamic_cast<const ScientificModifier*>(&other); |
| 109 | if (_other == nullptr) { |
| 110 | return false; |
| 111 | } |
| 112 | // TODO: Check for locale symbols and settings as well? Could be less efficient. |
| 113 | return fExponent == _other->fExponent; |
| 114 | } |
| 115 | |
| 116 | // Note: Visual Studio does not compile this function without full name space. Why? |
| 117 | icu::number::impl::ScientificHandler::ScientificHandler(const Notation *notation, const DecimalFormatSymbols *symbols, |
| 118 | const MicroPropsGenerator *parent) : |
| 119 | fSettings(notation->fUnion.scientific), fSymbols(symbols), fParent(parent) {} |
| 120 | |
| 121 | void ScientificHandler::processQuantity(DecimalQuantity &quantity, MicroProps µs, |
| 122 | UErrorCode &status) const { |
| 123 | fParent->processQuantity(quantity, micros, status); |
| 124 | if (U_FAILURE(status)) { return; } |
| 125 | |
| 126 | // Do not apply scientific notation to special doubles |
| 127 | if (quantity.isInfinite() || quantity.isNaN()) { |
| 128 | micros.modInner = µs.helpers.emptyStrongModifier; |
| 129 | return; |
| 130 | } |
| 131 | |
| 132 | // Treat zero as if it had magnitude 0 |
| 133 | int32_t exponent; |
| 134 | if (quantity.isZeroish()) { |
| 135 | if (fSettings.fRequireMinInt && micros.rounder.isSignificantDigits()) { |
| 136 | // Show "00.000E0" on pattern "00.000E0" |
| 137 | micros.rounder.apply(quantity, fSettings.fEngineeringInterval, status); |
| 138 | exponent = 0; |
| 139 | } else { |
| 140 | micros.rounder.apply(quantity, status); |
| 141 | exponent = 0; |
| 142 | } |
| 143 | } else { |
| 144 | exponent = -micros.rounder.chooseMultiplierAndApply(quantity, *this, status); |
| 145 | } |
| 146 | |
| 147 | // Use MicroProps's helper ScientificModifier and save it as the modInner. |
| 148 | ScientificModifier &mod = micros.helpers.scientificModifier; |
| 149 | mod.set(exponent, this); |
| 150 | micros.modInner = &mod; |
| 151 | |
| 152 | // We already performed rounding. Do not perform it again. |
| 153 | micros.rounder = RoundingImpl::passThrough(); |
| 154 | } |
| 155 | |
| 156 | int32_t ScientificHandler::getMultiplier(int32_t magnitude) const { |
| 157 | int32_t interval = fSettings.fEngineeringInterval; |
| 158 | int32_t digitsShown; |
| 159 | if (fSettings.fRequireMinInt) { |
| 160 | // For patterns like "000.00E0" and ".00E0" |
| 161 | digitsShown = interval; |
| 162 | } else if (interval <= 1) { |
| 163 | // For patterns like "0.00E0" and "@@@E0" |
| 164 | digitsShown = 1; |
| 165 | } else { |
| 166 | // For patterns like "##0.00" |
| 167 | digitsShown = ((magnitude % interval + interval) % interval) + 1; |
| 168 | } |
| 169 | return digitsShown - magnitude - 1; |
| 170 | } |
| 171 | |
| 172 | #endif /* #if !UCONFIG_NO_FORMATTING */ |
| 173 | |