| 1 | /* | 
|---|
| 2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. | 
|---|
| 3 | * | 
|---|
| 4 | * Licensed under the Apache License 2.0 (the "License").  You may not use | 
|---|
| 5 | * this file except in compliance with the License.  You can obtain a copy | 
|---|
| 6 | * in the file LICENSE in the source distribution or at | 
|---|
| 7 | * https://www.openssl.org/source/license.html | 
|---|
| 8 | */ | 
|---|
| 9 |  | 
|---|
| 10 | #include "internal/cryptlib.h" | 
|---|
| 11 | #include "bn_local.h" | 
|---|
| 12 |  | 
|---|
| 13 | /* solves ax == 1 (mod n) */ | 
|---|
| 14 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, | 
|---|
| 15 | const BIGNUM *a, const BIGNUM *n, | 
|---|
| 16 | BN_CTX *ctx); | 
|---|
| 17 |  | 
|---|
| 18 | BIGNUM *BN_mod_inverse(BIGNUM *in, | 
|---|
| 19 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | 
|---|
| 20 | { | 
|---|
| 21 | BIGNUM *rv; | 
|---|
| 22 | int noinv; | 
|---|
| 23 | rv = int_bn_mod_inverse(in, a, n, ctx, &noinv); | 
|---|
| 24 | if (noinv) | 
|---|
| 25 | BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); | 
|---|
| 26 | return rv; | 
|---|
| 27 | } | 
|---|
| 28 |  | 
|---|
| 29 | BIGNUM *int_bn_mod_inverse(BIGNUM *in, | 
|---|
| 30 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, | 
|---|
| 31 | int *pnoinv) | 
|---|
| 32 | { | 
|---|
| 33 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | 
|---|
| 34 | BIGNUM *ret = NULL; | 
|---|
| 35 | int sign; | 
|---|
| 36 |  | 
|---|
| 37 | /* This is invalid input so we don't worry about constant time here */ | 
|---|
| 38 | if (BN_abs_is_word(n, 1) || BN_is_zero(n)) { | 
|---|
| 39 | if (pnoinv != NULL) | 
|---|
| 40 | *pnoinv = 1; | 
|---|
| 41 | return NULL; | 
|---|
| 42 | } | 
|---|
| 43 |  | 
|---|
| 44 | if (pnoinv != NULL) | 
|---|
| 45 | *pnoinv = 0; | 
|---|
| 46 |  | 
|---|
| 47 | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) | 
|---|
| 48 | || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { | 
|---|
| 49 | return BN_mod_inverse_no_branch(in, a, n, ctx); | 
|---|
| 50 | } | 
|---|
| 51 |  | 
|---|
| 52 | bn_check_top(a); | 
|---|
| 53 | bn_check_top(n); | 
|---|
| 54 |  | 
|---|
| 55 | BN_CTX_start(ctx); | 
|---|
| 56 | A = BN_CTX_get(ctx); | 
|---|
| 57 | B = BN_CTX_get(ctx); | 
|---|
| 58 | X = BN_CTX_get(ctx); | 
|---|
| 59 | D = BN_CTX_get(ctx); | 
|---|
| 60 | M = BN_CTX_get(ctx); | 
|---|
| 61 | Y = BN_CTX_get(ctx); | 
|---|
| 62 | T = BN_CTX_get(ctx); | 
|---|
| 63 | if (T == NULL) | 
|---|
| 64 | goto err; | 
|---|
| 65 |  | 
|---|
| 66 | if (in == NULL) | 
|---|
| 67 | R = BN_new(); | 
|---|
| 68 | else | 
|---|
| 69 | R = in; | 
|---|
| 70 | if (R == NULL) | 
|---|
| 71 | goto err; | 
|---|
| 72 |  | 
|---|
| 73 | BN_one(X); | 
|---|
| 74 | BN_zero(Y); | 
|---|
| 75 | if (BN_copy(B, a) == NULL) | 
|---|
| 76 | goto err; | 
|---|
| 77 | if (BN_copy(A, n) == NULL) | 
|---|
| 78 | goto err; | 
|---|
| 79 | A->neg = 0; | 
|---|
| 80 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | 
|---|
| 81 | if (!BN_nnmod(B, B, A, ctx)) | 
|---|
| 82 | goto err; | 
|---|
| 83 | } | 
|---|
| 84 | sign = -1; | 
|---|
| 85 | /*- | 
|---|
| 86 | * From  B = a mod |n|,  A = |n|  it follows that | 
|---|
| 87 | * | 
|---|
| 88 | *      0 <= B < A, | 
|---|
| 89 | *     -sign*X*a  ==  B   (mod |n|), | 
|---|
| 90 | *      sign*Y*a  ==  A   (mod |n|). | 
|---|
| 91 | */ | 
|---|
| 92 |  | 
|---|
| 93 | if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) { | 
|---|
| 94 | /* | 
|---|
| 95 | * Binary inversion algorithm; requires odd modulus. This is faster | 
|---|
| 96 | * than the general algorithm if the modulus is sufficiently small | 
|---|
| 97 | * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit | 
|---|
| 98 | * systems) | 
|---|
| 99 | */ | 
|---|
| 100 | int shift; | 
|---|
| 101 |  | 
|---|
| 102 | while (!BN_is_zero(B)) { | 
|---|
| 103 | /*- | 
|---|
| 104 | *      0 < B < |n|, | 
|---|
| 105 | *      0 < A <= |n|, | 
|---|
| 106 | * (1) -sign*X*a  ==  B   (mod |n|), | 
|---|
| 107 | * (2)  sign*Y*a  ==  A   (mod |n|) | 
|---|
| 108 | */ | 
|---|
| 109 |  | 
|---|
| 110 | /* | 
|---|
| 111 | * Now divide B by the maximum possible power of two in the | 
|---|
| 112 | * integers, and divide X by the same value mod |n|. When we're | 
|---|
| 113 | * done, (1) still holds. | 
|---|
| 114 | */ | 
|---|
| 115 | shift = 0; | 
|---|
| 116 | while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ | 
|---|
| 117 | shift++; | 
|---|
| 118 |  | 
|---|
| 119 | if (BN_is_odd(X)) { | 
|---|
| 120 | if (!BN_uadd(X, X, n)) | 
|---|
| 121 | goto err; | 
|---|
| 122 | } | 
|---|
| 123 | /* | 
|---|
| 124 | * now X is even, so we can easily divide it by two | 
|---|
| 125 | */ | 
|---|
| 126 | if (!BN_rshift1(X, X)) | 
|---|
| 127 | goto err; | 
|---|
| 128 | } | 
|---|
| 129 | if (shift > 0) { | 
|---|
| 130 | if (!BN_rshift(B, B, shift)) | 
|---|
| 131 | goto err; | 
|---|
| 132 | } | 
|---|
| 133 |  | 
|---|
| 134 | /* | 
|---|
| 135 | * Same for A and Y.  Afterwards, (2) still holds. | 
|---|
| 136 | */ | 
|---|
| 137 | shift = 0; | 
|---|
| 138 | while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ | 
|---|
| 139 | shift++; | 
|---|
| 140 |  | 
|---|
| 141 | if (BN_is_odd(Y)) { | 
|---|
| 142 | if (!BN_uadd(Y, Y, n)) | 
|---|
| 143 | goto err; | 
|---|
| 144 | } | 
|---|
| 145 | /* now Y is even */ | 
|---|
| 146 | if (!BN_rshift1(Y, Y)) | 
|---|
| 147 | goto err; | 
|---|
| 148 | } | 
|---|
| 149 | if (shift > 0) { | 
|---|
| 150 | if (!BN_rshift(A, A, shift)) | 
|---|
| 151 | goto err; | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 | /*- | 
|---|
| 155 | * We still have (1) and (2). | 
|---|
| 156 | * Both  A  and  B  are odd. | 
|---|
| 157 | * The following computations ensure that | 
|---|
| 158 | * | 
|---|
| 159 | *     0 <= B < |n|, | 
|---|
| 160 | *      0 < A < |n|, | 
|---|
| 161 | * (1) -sign*X*a  ==  B   (mod |n|), | 
|---|
| 162 | * (2)  sign*Y*a  ==  A   (mod |n|), | 
|---|
| 163 | * | 
|---|
| 164 | * and that either  A  or  B  is even in the next iteration. | 
|---|
| 165 | */ | 
|---|
| 166 | if (BN_ucmp(B, A) >= 0) { | 
|---|
| 167 | /* -sign*(X + Y)*a == B - A  (mod |n|) */ | 
|---|
| 168 | if (!BN_uadd(X, X, Y)) | 
|---|
| 169 | goto err; | 
|---|
| 170 | /* | 
|---|
| 171 | * NB: we could use BN_mod_add_quick(X, X, Y, n), but that | 
|---|
| 172 | * actually makes the algorithm slower | 
|---|
| 173 | */ | 
|---|
| 174 | if (!BN_usub(B, B, A)) | 
|---|
| 175 | goto err; | 
|---|
| 176 | } else { | 
|---|
| 177 | /*  sign*(X + Y)*a == A - B  (mod |n|) */ | 
|---|
| 178 | if (!BN_uadd(Y, Y, X)) | 
|---|
| 179 | goto err; | 
|---|
| 180 | /* | 
|---|
| 181 | * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down | 
|---|
| 182 | */ | 
|---|
| 183 | if (!BN_usub(A, A, B)) | 
|---|
| 184 | goto err; | 
|---|
| 185 | } | 
|---|
| 186 | } | 
|---|
| 187 | } else { | 
|---|
| 188 | /* general inversion algorithm */ | 
|---|
| 189 |  | 
|---|
| 190 | while (!BN_is_zero(B)) { | 
|---|
| 191 | BIGNUM *tmp; | 
|---|
| 192 |  | 
|---|
| 193 | /*- | 
|---|
| 194 | *      0 < B < A, | 
|---|
| 195 | * (*) -sign*X*a  ==  B   (mod |n|), | 
|---|
| 196 | *      sign*Y*a  ==  A   (mod |n|) | 
|---|
| 197 | */ | 
|---|
| 198 |  | 
|---|
| 199 | /* (D, M) := (A/B, A%B) ... */ | 
|---|
| 200 | if (BN_num_bits(A) == BN_num_bits(B)) { | 
|---|
| 201 | if (!BN_one(D)) | 
|---|
| 202 | goto err; | 
|---|
| 203 | if (!BN_sub(M, A, B)) | 
|---|
| 204 | goto err; | 
|---|
| 205 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { | 
|---|
| 206 | /* A/B is 1, 2, or 3 */ | 
|---|
| 207 | if (!BN_lshift1(T, B)) | 
|---|
| 208 | goto err; | 
|---|
| 209 | if (BN_ucmp(A, T) < 0) { | 
|---|
| 210 | /* A < 2*B, so D=1 */ | 
|---|
| 211 | if (!BN_one(D)) | 
|---|
| 212 | goto err; | 
|---|
| 213 | if (!BN_sub(M, A, B)) | 
|---|
| 214 | goto err; | 
|---|
| 215 | } else { | 
|---|
| 216 | /* A >= 2*B, so D=2 or D=3 */ | 
|---|
| 217 | if (!BN_sub(M, A, T)) | 
|---|
| 218 | goto err; | 
|---|
| 219 | if (!BN_add(D, T, B)) | 
|---|
| 220 | goto err; /* use D (:= 3*B) as temp */ | 
|---|
| 221 | if (BN_ucmp(A, D) < 0) { | 
|---|
| 222 | /* A < 3*B, so D=2 */ | 
|---|
| 223 | if (!BN_set_word(D, 2)) | 
|---|
| 224 | goto err; | 
|---|
| 225 | /* | 
|---|
| 226 | * M (= A - 2*B) already has the correct value | 
|---|
| 227 | */ | 
|---|
| 228 | } else { | 
|---|
| 229 | /* only D=3 remains */ | 
|---|
| 230 | if (!BN_set_word(D, 3)) | 
|---|
| 231 | goto err; | 
|---|
| 232 | /* | 
|---|
| 233 | * currently M = A - 2*B, but we need M = A - 3*B | 
|---|
| 234 | */ | 
|---|
| 235 | if (!BN_sub(M, M, B)) | 
|---|
| 236 | goto err; | 
|---|
| 237 | } | 
|---|
| 238 | } | 
|---|
| 239 | } else { | 
|---|
| 240 | if (!BN_div(D, M, A, B, ctx)) | 
|---|
| 241 | goto err; | 
|---|
| 242 | } | 
|---|
| 243 |  | 
|---|
| 244 | /*- | 
|---|
| 245 | * Now | 
|---|
| 246 | *      A = D*B + M; | 
|---|
| 247 | * thus we have | 
|---|
| 248 | * (**)  sign*Y*a  ==  D*B + M   (mod |n|). | 
|---|
| 249 | */ | 
|---|
| 250 |  | 
|---|
| 251 | tmp = A;    /* keep the BIGNUM object, the value does not matter */ | 
|---|
| 252 |  | 
|---|
| 253 | /* (A, B) := (B, A mod B) ... */ | 
|---|
| 254 | A = B; | 
|---|
| 255 | B = M; | 
|---|
| 256 | /* ... so we have  0 <= B < A  again */ | 
|---|
| 257 |  | 
|---|
| 258 | /*- | 
|---|
| 259 | * Since the former  M  is now  B  and the former  B  is now  A, | 
|---|
| 260 | * (**) translates into | 
|---|
| 261 | *       sign*Y*a  ==  D*A + B    (mod |n|), | 
|---|
| 262 | * i.e. | 
|---|
| 263 | *       sign*Y*a - D*A  ==  B    (mod |n|). | 
|---|
| 264 | * Similarly, (*) translates into | 
|---|
| 265 | *      -sign*X*a  ==  A          (mod |n|). | 
|---|
| 266 | * | 
|---|
| 267 | * Thus, | 
|---|
| 268 | *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|), | 
|---|
| 269 | * i.e. | 
|---|
| 270 | *        sign*(Y + D*X)*a  ==  B  (mod |n|). | 
|---|
| 271 | * | 
|---|
| 272 | * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | 
|---|
| 273 | *      -sign*X*a  ==  B   (mod |n|), | 
|---|
| 274 | *       sign*Y*a  ==  A   (mod |n|). | 
|---|
| 275 | * Note that  X  and  Y  stay non-negative all the time. | 
|---|
| 276 | */ | 
|---|
| 277 |  | 
|---|
| 278 | /* | 
|---|
| 279 | * most of the time D is very small, so we can optimize tmp := D*X+Y | 
|---|
| 280 | */ | 
|---|
| 281 | if (BN_is_one(D)) { | 
|---|
| 282 | if (!BN_add(tmp, X, Y)) | 
|---|
| 283 | goto err; | 
|---|
| 284 | } else { | 
|---|
| 285 | if (BN_is_word(D, 2)) { | 
|---|
| 286 | if (!BN_lshift1(tmp, X)) | 
|---|
| 287 | goto err; | 
|---|
| 288 | } else if (BN_is_word(D, 4)) { | 
|---|
| 289 | if (!BN_lshift(tmp, X, 2)) | 
|---|
| 290 | goto err; | 
|---|
| 291 | } else if (D->top == 1) { | 
|---|
| 292 | if (!BN_copy(tmp, X)) | 
|---|
| 293 | goto err; | 
|---|
| 294 | if (!BN_mul_word(tmp, D->d[0])) | 
|---|
| 295 | goto err; | 
|---|
| 296 | } else { | 
|---|
| 297 | if (!BN_mul(tmp, D, X, ctx)) | 
|---|
| 298 | goto err; | 
|---|
| 299 | } | 
|---|
| 300 | if (!BN_add(tmp, tmp, Y)) | 
|---|
| 301 | goto err; | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | M = Y;      /* keep the BIGNUM object, the value does not matter */ | 
|---|
| 305 | Y = X; | 
|---|
| 306 | X = tmp; | 
|---|
| 307 | sign = -sign; | 
|---|
| 308 | } | 
|---|
| 309 | } | 
|---|
| 310 |  | 
|---|
| 311 | /*- | 
|---|
| 312 | * The while loop (Euclid's algorithm) ends when | 
|---|
| 313 | *      A == gcd(a,n); | 
|---|
| 314 | * we have | 
|---|
| 315 | *       sign*Y*a  ==  A  (mod |n|), | 
|---|
| 316 | * where  Y  is non-negative. | 
|---|
| 317 | */ | 
|---|
| 318 |  | 
|---|
| 319 | if (sign < 0) { | 
|---|
| 320 | if (!BN_sub(Y, n, Y)) | 
|---|
| 321 | goto err; | 
|---|
| 322 | } | 
|---|
| 323 | /* Now  Y*a  ==  A  (mod |n|).  */ | 
|---|
| 324 |  | 
|---|
| 325 | if (BN_is_one(A)) { | 
|---|
| 326 | /* Y*a == 1  (mod |n|) */ | 
|---|
| 327 | if (!Y->neg && BN_ucmp(Y, n) < 0) { | 
|---|
| 328 | if (!BN_copy(R, Y)) | 
|---|
| 329 | goto err; | 
|---|
| 330 | } else { | 
|---|
| 331 | if (!BN_nnmod(R, Y, n, ctx)) | 
|---|
| 332 | goto err; | 
|---|
| 333 | } | 
|---|
| 334 | } else { | 
|---|
| 335 | if (pnoinv) | 
|---|
| 336 | *pnoinv = 1; | 
|---|
| 337 | goto err; | 
|---|
| 338 | } | 
|---|
| 339 | ret = R; | 
|---|
| 340 | err: | 
|---|
| 341 | if ((ret == NULL) && (in == NULL)) | 
|---|
| 342 | BN_free(R); | 
|---|
| 343 | BN_CTX_end(ctx); | 
|---|
| 344 | bn_check_top(ret); | 
|---|
| 345 | return ret; | 
|---|
| 346 | } | 
|---|
| 347 |  | 
|---|
| 348 | /* | 
|---|
| 349 | * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does | 
|---|
| 350 | * not contain branches that may leak sensitive information. | 
|---|
| 351 | */ | 
|---|
| 352 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, | 
|---|
| 353 | const BIGNUM *a, const BIGNUM *n, | 
|---|
| 354 | BN_CTX *ctx) | 
|---|
| 355 | { | 
|---|
| 356 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | 
|---|
| 357 | BIGNUM *ret = NULL; | 
|---|
| 358 | int sign; | 
|---|
| 359 |  | 
|---|
| 360 | bn_check_top(a); | 
|---|
| 361 | bn_check_top(n); | 
|---|
| 362 |  | 
|---|
| 363 | BN_CTX_start(ctx); | 
|---|
| 364 | A = BN_CTX_get(ctx); | 
|---|
| 365 | B = BN_CTX_get(ctx); | 
|---|
| 366 | X = BN_CTX_get(ctx); | 
|---|
| 367 | D = BN_CTX_get(ctx); | 
|---|
| 368 | M = BN_CTX_get(ctx); | 
|---|
| 369 | Y = BN_CTX_get(ctx); | 
|---|
| 370 | T = BN_CTX_get(ctx); | 
|---|
| 371 | if (T == NULL) | 
|---|
| 372 | goto err; | 
|---|
| 373 |  | 
|---|
| 374 | if (in == NULL) | 
|---|
| 375 | R = BN_new(); | 
|---|
| 376 | else | 
|---|
| 377 | R = in; | 
|---|
| 378 | if (R == NULL) | 
|---|
| 379 | goto err; | 
|---|
| 380 |  | 
|---|
| 381 | BN_one(X); | 
|---|
| 382 | BN_zero(Y); | 
|---|
| 383 | if (BN_copy(B, a) == NULL) | 
|---|
| 384 | goto err; | 
|---|
| 385 | if (BN_copy(A, n) == NULL) | 
|---|
| 386 | goto err; | 
|---|
| 387 | A->neg = 0; | 
|---|
| 388 |  | 
|---|
| 389 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | 
|---|
| 390 | /* | 
|---|
| 391 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | 
|---|
| 392 | * BN_div_no_branch will be called eventually. | 
|---|
| 393 | */ | 
|---|
| 394 | { | 
|---|
| 395 | BIGNUM local_B; | 
|---|
| 396 | bn_init(&local_B); | 
|---|
| 397 | BN_with_flags(&local_B, B, BN_FLG_CONSTTIME); | 
|---|
| 398 | if (!BN_nnmod(B, &local_B, A, ctx)) | 
|---|
| 399 | goto err; | 
|---|
| 400 | /* Ensure local_B goes out of scope before any further use of B */ | 
|---|
| 401 | } | 
|---|
| 402 | } | 
|---|
| 403 | sign = -1; | 
|---|
| 404 | /*- | 
|---|
| 405 | * From  B = a mod |n|,  A = |n|  it follows that | 
|---|
| 406 | * | 
|---|
| 407 | *      0 <= B < A, | 
|---|
| 408 | *     -sign*X*a  ==  B   (mod |n|), | 
|---|
| 409 | *      sign*Y*a  ==  A   (mod |n|). | 
|---|
| 410 | */ | 
|---|
| 411 |  | 
|---|
| 412 | while (!BN_is_zero(B)) { | 
|---|
| 413 | BIGNUM *tmp; | 
|---|
| 414 |  | 
|---|
| 415 | /*- | 
|---|
| 416 | *      0 < B < A, | 
|---|
| 417 | * (*) -sign*X*a  ==  B   (mod |n|), | 
|---|
| 418 | *      sign*Y*a  ==  A   (mod |n|) | 
|---|
| 419 | */ | 
|---|
| 420 |  | 
|---|
| 421 | /* | 
|---|
| 422 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | 
|---|
| 423 | * BN_div_no_branch will be called eventually. | 
|---|
| 424 | */ | 
|---|
| 425 | { | 
|---|
| 426 | BIGNUM local_A; | 
|---|
| 427 | bn_init(&local_A); | 
|---|
| 428 | BN_with_flags(&local_A, A, BN_FLG_CONSTTIME); | 
|---|
| 429 |  | 
|---|
| 430 | /* (D, M) := (A/B, A%B) ... */ | 
|---|
| 431 | if (!BN_div(D, M, &local_A, B, ctx)) | 
|---|
| 432 | goto err; | 
|---|
| 433 | /* Ensure local_A goes out of scope before any further use of A */ | 
|---|
| 434 | } | 
|---|
| 435 |  | 
|---|
| 436 | /*- | 
|---|
| 437 | * Now | 
|---|
| 438 | *      A = D*B + M; | 
|---|
| 439 | * thus we have | 
|---|
| 440 | * (**)  sign*Y*a  ==  D*B + M   (mod |n|). | 
|---|
| 441 | */ | 
|---|
| 442 |  | 
|---|
| 443 | tmp = A;                /* keep the BIGNUM object, the value does not | 
|---|
| 444 | * matter */ | 
|---|
| 445 |  | 
|---|
| 446 | /* (A, B) := (B, A mod B) ... */ | 
|---|
| 447 | A = B; | 
|---|
| 448 | B = M; | 
|---|
| 449 | /* ... so we have  0 <= B < A  again */ | 
|---|
| 450 |  | 
|---|
| 451 | /*- | 
|---|
| 452 | * Since the former  M  is now  B  and the former  B  is now  A, | 
|---|
| 453 | * (**) translates into | 
|---|
| 454 | *       sign*Y*a  ==  D*A + B    (mod |n|), | 
|---|
| 455 | * i.e. | 
|---|
| 456 | *       sign*Y*a - D*A  ==  B    (mod |n|). | 
|---|
| 457 | * Similarly, (*) translates into | 
|---|
| 458 | *      -sign*X*a  ==  A          (mod |n|). | 
|---|
| 459 | * | 
|---|
| 460 | * Thus, | 
|---|
| 461 | *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|), | 
|---|
| 462 | * i.e. | 
|---|
| 463 | *        sign*(Y + D*X)*a  ==  B  (mod |n|). | 
|---|
| 464 | * | 
|---|
| 465 | * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | 
|---|
| 466 | *      -sign*X*a  ==  B   (mod |n|), | 
|---|
| 467 | *       sign*Y*a  ==  A   (mod |n|). | 
|---|
| 468 | * Note that  X  and  Y  stay non-negative all the time. | 
|---|
| 469 | */ | 
|---|
| 470 |  | 
|---|
| 471 | if (!BN_mul(tmp, D, X, ctx)) | 
|---|
| 472 | goto err; | 
|---|
| 473 | if (!BN_add(tmp, tmp, Y)) | 
|---|
| 474 | goto err; | 
|---|
| 475 |  | 
|---|
| 476 | M = Y;                  /* keep the BIGNUM object, the value does not | 
|---|
| 477 | * matter */ | 
|---|
| 478 | Y = X; | 
|---|
| 479 | X = tmp; | 
|---|
| 480 | sign = -sign; | 
|---|
| 481 | } | 
|---|
| 482 |  | 
|---|
| 483 | /*- | 
|---|
| 484 | * The while loop (Euclid's algorithm) ends when | 
|---|
| 485 | *      A == gcd(a,n); | 
|---|
| 486 | * we have | 
|---|
| 487 | *       sign*Y*a  ==  A  (mod |n|), | 
|---|
| 488 | * where  Y  is non-negative. | 
|---|
| 489 | */ | 
|---|
| 490 |  | 
|---|
| 491 | if (sign < 0) { | 
|---|
| 492 | if (!BN_sub(Y, n, Y)) | 
|---|
| 493 | goto err; | 
|---|
| 494 | } | 
|---|
| 495 | /* Now  Y*a  ==  A  (mod |n|).  */ | 
|---|
| 496 |  | 
|---|
| 497 | if (BN_is_one(A)) { | 
|---|
| 498 | /* Y*a == 1  (mod |n|) */ | 
|---|
| 499 | if (!Y->neg && BN_ucmp(Y, n) < 0) { | 
|---|
| 500 | if (!BN_copy(R, Y)) | 
|---|
| 501 | goto err; | 
|---|
| 502 | } else { | 
|---|
| 503 | if (!BN_nnmod(R, Y, n, ctx)) | 
|---|
| 504 | goto err; | 
|---|
| 505 | } | 
|---|
| 506 | } else { | 
|---|
| 507 | BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE); | 
|---|
| 508 | goto err; | 
|---|
| 509 | } | 
|---|
| 510 | ret = R; | 
|---|
| 511 | err: | 
|---|
| 512 | if ((ret == NULL) && (in == NULL)) | 
|---|
| 513 | BN_free(R); | 
|---|
| 514 | BN_CTX_end(ctx); | 
|---|
| 515 | bn_check_top(ret); | 
|---|
| 516 | return ret; | 
|---|
| 517 | } | 
|---|
| 518 |  | 
|---|
| 519 | /*- | 
|---|
| 520 | * This function is based on the constant-time GCD work by Bernstein and Yang: | 
|---|
| 521 | * https://eprint.iacr.org/2019/266 | 
|---|
| 522 | * Generalized fast GCD function to allow even inputs. | 
|---|
| 523 | * The algorithm first finds the shared powers of 2 between | 
|---|
| 524 | * the inputs, and removes them, reducing at least one of the | 
|---|
| 525 | * inputs to an odd value. Then it proceeds to calculate the GCD. | 
|---|
| 526 | * Before returning the resulting GCD, we take care of adding | 
|---|
| 527 | * back the powers of two removed at the beginning. | 
|---|
| 528 | * Note 1: we assume the bit length of both inputs is public information, | 
|---|
| 529 | * since access to top potentially leaks this information. | 
|---|
| 530 | */ | 
|---|
| 531 | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | 
|---|
| 532 | { | 
|---|
| 533 | BIGNUM *g, *temp = NULL; | 
|---|
| 534 | BN_ULONG mask = 0; | 
|---|
| 535 | int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0; | 
|---|
| 536 |  | 
|---|
| 537 | /* Note 2: zero input corner cases are not constant-time since they are | 
|---|
| 538 | * handled immediately. An attacker can run an attack under this | 
|---|
| 539 | * assumption without the need of side-channel information. */ | 
|---|
| 540 | if (BN_is_zero(in_b)) { | 
|---|
| 541 | ret = BN_copy(r, in_a) != NULL; | 
|---|
| 542 | r->neg = 0; | 
|---|
| 543 | return ret; | 
|---|
| 544 | } | 
|---|
| 545 | if (BN_is_zero(in_a)) { | 
|---|
| 546 | ret = BN_copy(r, in_b) != NULL; | 
|---|
| 547 | r->neg = 0; | 
|---|
| 548 | return ret; | 
|---|
| 549 | } | 
|---|
| 550 |  | 
|---|
| 551 | bn_check_top(in_a); | 
|---|
| 552 | bn_check_top(in_b); | 
|---|
| 553 |  | 
|---|
| 554 | BN_CTX_start(ctx); | 
|---|
| 555 | temp = BN_CTX_get(ctx); | 
|---|
| 556 | g = BN_CTX_get(ctx); | 
|---|
| 557 |  | 
|---|
| 558 | /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */ | 
|---|
| 559 | if (g == NULL | 
|---|
| 560 | || !BN_lshift1(g, in_b) | 
|---|
| 561 | || !BN_lshift1(r, in_a)) | 
|---|
| 562 | goto err; | 
|---|
| 563 |  | 
|---|
| 564 | /* find shared powers of two, i.e. "shifts" >= 1 */ | 
|---|
| 565 | for (i = 0; i < r->dmax && i < g->dmax; i++) { | 
|---|
| 566 | mask = ~(r->d[i] | g->d[i]); | 
|---|
| 567 | for (j = 0; j < BN_BITS2; j++) { | 
|---|
| 568 | bit &= mask; | 
|---|
| 569 | shifts += bit; | 
|---|
| 570 | mask >>= 1; | 
|---|
| 571 | } | 
|---|
| 572 | } | 
|---|
| 573 |  | 
|---|
| 574 | /* subtract shared powers of two; shifts >= 1 */ | 
|---|
| 575 | if (!BN_rshift(r, r, shifts) | 
|---|
| 576 | || !BN_rshift(g, g, shifts)) | 
|---|
| 577 | goto err; | 
|---|
| 578 |  | 
|---|
| 579 | /* expand to biggest nword, with room for a possible extra word */ | 
|---|
| 580 | top = 1 + ((r->top >= g->top) ? r->top : g->top); | 
|---|
| 581 | if (bn_wexpand(r, top) == NULL | 
|---|
| 582 | || bn_wexpand(g, top) == NULL | 
|---|
| 583 | || bn_wexpand(temp, top) == NULL) | 
|---|
| 584 | goto err; | 
|---|
| 585 |  | 
|---|
| 586 | /* re arrange inputs s.t. r is odd */ | 
|---|
| 587 | BN_consttime_swap((~r->d[0]) & 1, r, g, top); | 
|---|
| 588 |  | 
|---|
| 589 | /* compute the number of iterations */ | 
|---|
| 590 | rlen = BN_num_bits(r); | 
|---|
| 591 | glen = BN_num_bits(g); | 
|---|
| 592 | m = 4 + 3 * ((rlen >= glen) ? rlen : glen); | 
|---|
| 593 |  | 
|---|
| 594 | for (i = 0; i < m; i++) { | 
|---|
| 595 | /* conditionally flip signs if delta is positive and g is odd */ | 
|---|
| 596 | cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1 | 
|---|
| 597 | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ | 
|---|
| 598 | & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))); | 
|---|
| 599 | delta = (-cond & -delta) | ((cond - 1) & delta); | 
|---|
| 600 | r->neg ^= cond; | 
|---|
| 601 | /* swap */ | 
|---|
| 602 | BN_consttime_swap(cond, r, g, top); | 
|---|
| 603 |  | 
|---|
| 604 | /* elimination step */ | 
|---|
| 605 | delta++; | 
|---|
| 606 | if (!BN_add(temp, g, r)) | 
|---|
| 607 | goto err; | 
|---|
| 608 | BN_consttime_swap(g->d[0] & 1 /* g is odd */ | 
|---|
| 609 | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ | 
|---|
| 610 | & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))), | 
|---|
| 611 | g, temp, top); | 
|---|
| 612 | if (!BN_rshift1(g, g)) | 
|---|
| 613 | goto err; | 
|---|
| 614 | } | 
|---|
| 615 |  | 
|---|
| 616 | /* remove possible negative sign */ | 
|---|
| 617 | r->neg = 0; | 
|---|
| 618 | /* add powers of 2 removed, then correct the artificial shift */ | 
|---|
| 619 | if (!BN_lshift(r, r, shifts) | 
|---|
| 620 | || !BN_rshift1(r, r)) | 
|---|
| 621 | goto err; | 
|---|
| 622 |  | 
|---|
| 623 | ret = 1; | 
|---|
| 624 |  | 
|---|
| 625 | err: | 
|---|
| 626 | BN_CTX_end(ctx); | 
|---|
| 627 | bn_check_top(r); | 
|---|
| 628 | return ret; | 
|---|
| 629 | } | 
|---|
| 630 |  | 
|---|