| 1 | /* |
| 2 | * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <time.h> |
| 12 | #include "internal/cryptlib.h" |
| 13 | #include "bn_local.h" |
| 14 | |
| 15 | /* |
| 16 | * The quick sieve algorithm approach to weeding out primes is Philip |
| 17 | * Zimmermann's, as implemented in PGP. I have had a read of his comments |
| 18 | * and implemented my own version. |
| 19 | */ |
| 20 | #include "bn_prime.h" |
| 21 | |
| 22 | static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods, |
| 23 | BN_CTX *ctx); |
| 24 | static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, |
| 25 | const BIGNUM *add, const BIGNUM *rem, |
| 26 | BN_CTX *ctx); |
| 27 | static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx, |
| 28 | int do_trial_division, BN_GENCB *cb); |
| 29 | |
| 30 | #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x)) |
| 31 | |
| 32 | #if BN_BITS2 == 64 |
| 33 | # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo |
| 34 | #else |
| 35 | # define BN_DEF(lo, hi) lo, hi |
| 36 | #endif |
| 37 | |
| 38 | /* |
| 39 | * See SP800 89 5.3.3 (Step f) |
| 40 | * The product of the set of primes ranging from 3 to 751 |
| 41 | * Generated using process in test/bn_internal_test.c test_bn_small_factors(). |
| 42 | * This includes 751 (which is not currently included in SP 800-89). |
| 43 | */ |
| 44 | static const BN_ULONG small_prime_factors[] = { |
| 45 | BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6), |
| 46 | BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3), |
| 47 | BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817), |
| 48 | BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2), |
| 49 | BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3), |
| 50 | BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28), |
| 51 | BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112), |
| 52 | BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460), |
| 53 | (BN_ULONG)0x000017b1 |
| 54 | }; |
| 55 | |
| 56 | #define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors) |
| 57 | static const BIGNUM _bignum_small_prime_factors = { |
| 58 | (BN_ULONG *)small_prime_factors, |
| 59 | BN_SMALL_PRIME_FACTORS_TOP, |
| 60 | BN_SMALL_PRIME_FACTORS_TOP, |
| 61 | 0, |
| 62 | BN_FLG_STATIC_DATA |
| 63 | }; |
| 64 | |
| 65 | const BIGNUM *bn_get0_small_factors(void) |
| 66 | { |
| 67 | return &_bignum_small_prime_factors; |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | * Calculate the number of trial divisions that gives the best speed in |
| 72 | * combination with Miller-Rabin prime test, based on the sized of the prime. |
| 73 | */ |
| 74 | static int calc_trial_divisions(int bits) |
| 75 | { |
| 76 | if (bits <= 512) |
| 77 | return 64; |
| 78 | else if (bits <= 1024) |
| 79 | return 128; |
| 80 | else if (bits <= 2048) |
| 81 | return 384; |
| 82 | else if (bits <= 4096) |
| 83 | return 1024; |
| 84 | return NUMPRIMES; |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * Use a minimum of 64 rounds of Miller-Rabin, which should give a false |
| 89 | * positive rate of 2^-128. If the size of the prime is larger than 2048 |
| 90 | * the user probably wants a higher security level than 128, so switch |
| 91 | * to 128 rounds giving a false positive rate of 2^-256. |
| 92 | * Returns the number of rounds. |
| 93 | */ |
| 94 | static int bn_mr_min_checks(int bits) |
| 95 | { |
| 96 | if (bits > 2048) |
| 97 | return 128; |
| 98 | return 64; |
| 99 | } |
| 100 | |
| 101 | int BN_GENCB_call(BN_GENCB *cb, int a, int b) |
| 102 | { |
| 103 | /* No callback means continue */ |
| 104 | if (!cb) |
| 105 | return 1; |
| 106 | switch (cb->ver) { |
| 107 | case 1: |
| 108 | /* Deprecated-style callbacks */ |
| 109 | if (!cb->cb.cb_1) |
| 110 | return 1; |
| 111 | cb->cb.cb_1(a, b, cb->arg); |
| 112 | return 1; |
| 113 | case 2: |
| 114 | /* New-style callbacks */ |
| 115 | return cb->cb.cb_2(a, b, cb); |
| 116 | default: |
| 117 | break; |
| 118 | } |
| 119 | /* Unrecognised callback type */ |
| 120 | return 0; |
| 121 | } |
| 122 | |
| 123 | int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe, |
| 124 | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb, |
| 125 | BN_CTX *ctx) |
| 126 | { |
| 127 | BIGNUM *t; |
| 128 | int found = 0; |
| 129 | int i, j, c1 = 0; |
| 130 | prime_t *mods = NULL; |
| 131 | int checks = bn_mr_min_checks(bits); |
| 132 | |
| 133 | if (bits < 2) { |
| 134 | /* There are no prime numbers this small. */ |
| 135 | BNerr(BN_F_BN_GENERATE_PRIME_EX2, BN_R_BITS_TOO_SMALL); |
| 136 | return 0; |
| 137 | } else if (add == NULL && safe && bits < 6 && bits != 3) { |
| 138 | /* |
| 139 | * The smallest safe prime (7) is three bits. |
| 140 | * But the following two safe primes with less than 6 bits (11, 23) |
| 141 | * are unreachable for BN_rand with BN_RAND_TOP_TWO. |
| 142 | */ |
| 143 | BNerr(BN_F_BN_GENERATE_PRIME_EX2, BN_R_BITS_TOO_SMALL); |
| 144 | return 0; |
| 145 | } |
| 146 | |
| 147 | mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES); |
| 148 | if (mods == NULL) |
| 149 | goto err; |
| 150 | |
| 151 | BN_CTX_start(ctx); |
| 152 | t = BN_CTX_get(ctx); |
| 153 | if (t == NULL) |
| 154 | goto err; |
| 155 | loop: |
| 156 | /* make a random number and set the top and bottom bits */ |
| 157 | if (add == NULL) { |
| 158 | if (!probable_prime(ret, bits, safe, mods, ctx)) |
| 159 | goto err; |
| 160 | } else { |
| 161 | if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx)) |
| 162 | goto err; |
| 163 | } |
| 164 | |
| 165 | if (!BN_GENCB_call(cb, 0, c1++)) |
| 166 | /* aborted */ |
| 167 | goto err; |
| 168 | |
| 169 | if (!safe) { |
| 170 | i = bn_is_prime_int(ret, checks, ctx, 0, cb); |
| 171 | if (i == -1) |
| 172 | goto err; |
| 173 | if (i == 0) |
| 174 | goto loop; |
| 175 | } else { |
| 176 | /* |
| 177 | * for "safe prime" generation, check that (p-1)/2 is prime. Since a |
| 178 | * prime is odd, We just need to divide by 2 |
| 179 | */ |
| 180 | if (!BN_rshift1(t, ret)) |
| 181 | goto err; |
| 182 | |
| 183 | for (i = 0; i < checks; i++) { |
| 184 | j = bn_is_prime_int(ret, 1, ctx, 0, cb); |
| 185 | if (j == -1) |
| 186 | goto err; |
| 187 | if (j == 0) |
| 188 | goto loop; |
| 189 | |
| 190 | j = bn_is_prime_int(t, 1, ctx, 0, cb); |
| 191 | if (j == -1) |
| 192 | goto err; |
| 193 | if (j == 0) |
| 194 | goto loop; |
| 195 | |
| 196 | if (!BN_GENCB_call(cb, 2, c1 - 1)) |
| 197 | goto err; |
| 198 | /* We have a safe prime test pass */ |
| 199 | } |
| 200 | } |
| 201 | /* we have a prime :-) */ |
| 202 | found = 1; |
| 203 | err: |
| 204 | OPENSSL_free(mods); |
| 205 | BN_CTX_end(ctx); |
| 206 | bn_check_top(ret); |
| 207 | return found; |
| 208 | } |
| 209 | |
| 210 | #ifndef FIPS_MODE |
| 211 | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, |
| 212 | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb) |
| 213 | { |
| 214 | BN_CTX *ctx = BN_CTX_new(); |
| 215 | int retval; |
| 216 | |
| 217 | if (ctx == NULL) |
| 218 | return 0; |
| 219 | |
| 220 | retval = BN_generate_prime_ex2(ret, bits, safe, add, rem, cb, ctx); |
| 221 | |
| 222 | BN_CTX_free(ctx); |
| 223 | return retval; |
| 224 | } |
| 225 | #endif |
| 226 | |
| 227 | #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| 228 | int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, |
| 229 | BN_GENCB *cb) |
| 230 | { |
| 231 | return bn_check_prime_int(a, checks, ctx_passed, 0, cb); |
| 232 | } |
| 233 | |
| 234 | int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx, |
| 235 | int do_trial_division, BN_GENCB *cb) |
| 236 | { |
| 237 | return bn_check_prime_int(w, checks, ctx, do_trial_division, cb); |
| 238 | } |
| 239 | #endif |
| 240 | |
| 241 | /* Wrapper around bn_is_prime_int that sets the minimum number of checks */ |
| 242 | int bn_check_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx, |
| 243 | int do_trial_division, BN_GENCB *cb) |
| 244 | { |
| 245 | int min_checks = bn_mr_min_checks(BN_num_bits(w)); |
| 246 | |
| 247 | if (checks < min_checks) |
| 248 | checks = min_checks; |
| 249 | |
| 250 | return bn_is_prime_int(w, checks, ctx, do_trial_division, cb); |
| 251 | } |
| 252 | |
| 253 | int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb) |
| 254 | { |
| 255 | return bn_check_prime_int(p, 0, ctx, 1, cb); |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Tests that |w| is probably prime |
| 260 | * See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test. |
| 261 | * |
| 262 | * Returns 0 when composite, 1 when probable prime, -1 on error. |
| 263 | */ |
| 264 | static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx, |
| 265 | int do_trial_division, BN_GENCB *cb) |
| 266 | { |
| 267 | int i, status, ret = -1; |
| 268 | #ifndef FIPS_MODE |
| 269 | BN_CTX *ctxlocal = NULL; |
| 270 | #else |
| 271 | |
| 272 | if (ctx == NULL) |
| 273 | return -1; |
| 274 | #endif |
| 275 | |
| 276 | /* w must be bigger than 1 */ |
| 277 | if (BN_cmp(w, BN_value_one()) <= 0) |
| 278 | return 0; |
| 279 | |
| 280 | /* w must be odd */ |
| 281 | if (BN_is_odd(w)) { |
| 282 | /* Take care of the really small prime 3 */ |
| 283 | if (BN_is_word(w, 3)) |
| 284 | return 1; |
| 285 | } else { |
| 286 | /* 2 is the only even prime */ |
| 287 | return BN_is_word(w, 2); |
| 288 | } |
| 289 | |
| 290 | /* first look for small factors */ |
| 291 | if (do_trial_division) { |
| 292 | int trial_divisions = calc_trial_divisions(BN_num_bits(w)); |
| 293 | |
| 294 | for (i = 1; i < trial_divisions; i++) { |
| 295 | BN_ULONG mod = BN_mod_word(w, primes[i]); |
| 296 | if (mod == (BN_ULONG)-1) |
| 297 | return -1; |
| 298 | if (mod == 0) |
| 299 | return BN_is_word(w, primes[i]); |
| 300 | } |
| 301 | if (!BN_GENCB_call(cb, 1, -1)) |
| 302 | return -1; |
| 303 | } |
| 304 | #ifndef FIPS_MODE |
| 305 | if (ctx == NULL && (ctxlocal = ctx = BN_CTX_new()) == NULL) |
| 306 | goto err; |
| 307 | #endif |
| 308 | |
| 309 | ret = bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status); |
| 310 | if (!ret) |
| 311 | goto err; |
| 312 | ret = (status == BN_PRIMETEST_PROBABLY_PRIME); |
| 313 | err: |
| 314 | #ifndef FIPS_MODE |
| 315 | BN_CTX_free(ctxlocal); |
| 316 | #endif |
| 317 | return ret; |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test. |
| 322 | * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero). |
| 323 | * The Step numbers listed in the code refer to the enhanced case. |
| 324 | * |
| 325 | * if enhanced is set, then status returns one of the following: |
| 326 | * BN_PRIMETEST_PROBABLY_PRIME |
| 327 | * BN_PRIMETEST_COMPOSITE_WITH_FACTOR |
| 328 | * BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME |
| 329 | * if enhanced is zero, then status returns either |
| 330 | * BN_PRIMETEST_PROBABLY_PRIME or |
| 331 | * BN_PRIMETEST_COMPOSITE |
| 332 | * |
| 333 | * returns 0 if there was an error, otherwise it returns 1. |
| 334 | */ |
| 335 | int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx, |
| 336 | BN_GENCB *cb, int enhanced, int *status) |
| 337 | { |
| 338 | int i, j, a, ret = 0; |
| 339 | BIGNUM *g, *w1, *w3, *x, *m, *z, *b; |
| 340 | BN_MONT_CTX *mont = NULL; |
| 341 | |
| 342 | /* w must be odd */ |
| 343 | if (!BN_is_odd(w)) |
| 344 | return 0; |
| 345 | |
| 346 | BN_CTX_start(ctx); |
| 347 | g = BN_CTX_get(ctx); |
| 348 | w1 = BN_CTX_get(ctx); |
| 349 | w3 = BN_CTX_get(ctx); |
| 350 | x = BN_CTX_get(ctx); |
| 351 | m = BN_CTX_get(ctx); |
| 352 | z = BN_CTX_get(ctx); |
| 353 | b = BN_CTX_get(ctx); |
| 354 | |
| 355 | if (!(b != NULL |
| 356 | /* w1 := w - 1 */ |
| 357 | && BN_copy(w1, w) |
| 358 | && BN_sub_word(w1, 1) |
| 359 | /* w3 := w - 3 */ |
| 360 | && BN_copy(w3, w) |
| 361 | && BN_sub_word(w3, 3))) |
| 362 | goto err; |
| 363 | |
| 364 | /* check w is larger than 3, otherwise the random b will be too small */ |
| 365 | if (BN_is_zero(w3) || BN_is_negative(w3)) |
| 366 | goto err; |
| 367 | |
| 368 | /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */ |
| 369 | a = 1; |
| 370 | while (!BN_is_bit_set(w1, a)) |
| 371 | a++; |
| 372 | /* (Step 2) m = (w-1) / 2^a */ |
| 373 | if (!BN_rshift(m, w1, a)) |
| 374 | goto err; |
| 375 | |
| 376 | /* Montgomery setup for computations mod a */ |
| 377 | mont = BN_MONT_CTX_new(); |
| 378 | if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx)) |
| 379 | goto err; |
| 380 | |
| 381 | if (iterations == 0) |
| 382 | iterations = bn_mr_min_checks(BN_num_bits(w)); |
| 383 | |
| 384 | /* (Step 4) */ |
| 385 | for (i = 0; i < iterations; ++i) { |
| 386 | /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */ |
| 387 | if (!BN_priv_rand_range_ex(b, w3, ctx) |
| 388 | || !BN_add_word(b, 2)) /* 1 < b < w-1 */ |
| 389 | goto err; |
| 390 | |
| 391 | if (enhanced) { |
| 392 | /* (Step 4.3) */ |
| 393 | if (!BN_gcd(g, b, w, ctx)) |
| 394 | goto err; |
| 395 | /* (Step 4.4) */ |
| 396 | if (!BN_is_one(g)) { |
| 397 | *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; |
| 398 | ret = 1; |
| 399 | goto err; |
| 400 | } |
| 401 | } |
| 402 | /* (Step 4.5) z = b^m mod w */ |
| 403 | if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) |
| 404 | goto err; |
| 405 | /* (Step 4.6) if (z = 1 or z = w-1) */ |
| 406 | if (BN_is_one(z) || BN_cmp(z, w1) == 0) |
| 407 | goto outer_loop; |
| 408 | /* (Step 4.7) for j = 1 to a-1 */ |
| 409 | for (j = 1; j < a ; ++j) { |
| 410 | /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */ |
| 411 | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) |
| 412 | goto err; |
| 413 | /* (Step 4.7.3) */ |
| 414 | if (BN_cmp(z, w1) == 0) |
| 415 | goto outer_loop; |
| 416 | /* (Step 4.7.4) */ |
| 417 | if (BN_is_one(z)) |
| 418 | goto composite; |
| 419 | } |
| 420 | /* At this point z = b^((w-1)/2) mod w */ |
| 421 | /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */ |
| 422 | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) |
| 423 | goto err; |
| 424 | /* (Step 4.10) */ |
| 425 | if (BN_is_one(z)) |
| 426 | goto composite; |
| 427 | /* (Step 4.11) x = b^(w-1) mod w */ |
| 428 | if (!BN_copy(x, z)) |
| 429 | goto err; |
| 430 | composite: |
| 431 | if (enhanced) { |
| 432 | /* (Step 4.1.2) g = GCD(x-1, w) */ |
| 433 | if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx)) |
| 434 | goto err; |
| 435 | /* (Steps 4.1.3 - 4.1.4) */ |
| 436 | if (BN_is_one(g)) |
| 437 | *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME; |
| 438 | else |
| 439 | *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; |
| 440 | } else { |
| 441 | *status = BN_PRIMETEST_COMPOSITE; |
| 442 | } |
| 443 | ret = 1; |
| 444 | goto err; |
| 445 | outer_loop: ; |
| 446 | /* (Step 4.1.5) */ |
| 447 | if (!BN_GENCB_call(cb, 1, i)) |
| 448 | goto err; |
| 449 | } |
| 450 | /* (Step 5) */ |
| 451 | *status = BN_PRIMETEST_PROBABLY_PRIME; |
| 452 | ret = 1; |
| 453 | err: |
| 454 | BN_clear(g); |
| 455 | BN_clear(w1); |
| 456 | BN_clear(w3); |
| 457 | BN_clear(x); |
| 458 | BN_clear(m); |
| 459 | BN_clear(z); |
| 460 | BN_clear(b); |
| 461 | BN_CTX_end(ctx); |
| 462 | BN_MONT_CTX_free(mont); |
| 463 | return ret; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * Generate a random number of |bits| bits that is probably prime by sieving. |
| 468 | * If |safe| != 0, it generates a safe prime. |
| 469 | * |mods| is a preallocated array that gets reused when called again. |
| 470 | * |
| 471 | * The probably prime is saved in |rnd|. |
| 472 | * |
| 473 | * Returns 1 on success and 0 on error. |
| 474 | */ |
| 475 | static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods, |
| 476 | BN_CTX *ctx) |
| 477 | { |
| 478 | int i; |
| 479 | BN_ULONG delta; |
| 480 | int trial_divisions = calc_trial_divisions(bits); |
| 481 | BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1]; |
| 482 | |
| 483 | again: |
| 484 | /* TODO: Not all primes are private */ |
| 485 | if (!BN_priv_rand_ex(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD, ctx)) |
| 486 | return 0; |
| 487 | if (safe && !BN_set_bit(rnd, 1)) |
| 488 | return 0; |
| 489 | /* we now have a random number 'rnd' to test. */ |
| 490 | for (i = 1; i < trial_divisions; i++) { |
| 491 | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); |
| 492 | if (mod == (BN_ULONG)-1) |
| 493 | return 0; |
| 494 | mods[i] = (prime_t) mod; |
| 495 | } |
| 496 | delta = 0; |
| 497 | loop: |
| 498 | for (i = 1; i < trial_divisions; i++) { |
| 499 | /* |
| 500 | * check that rnd is a prime and also that |
| 501 | * gcd(rnd-1,primes) == 1 (except for 2) |
| 502 | * do the second check only if we are interested in safe primes |
| 503 | * in the case that the candidate prime is a single word then |
| 504 | * we check only the primes up to sqrt(rnd) |
| 505 | */ |
| 506 | if (bits <= 31 && delta <= 0x7fffffff |
| 507 | && square(primes[i]) > BN_get_word(rnd) + delta) |
| 508 | break; |
| 509 | if (safe ? (mods[i] + delta) % primes[i] <= 1 |
| 510 | : (mods[i] + delta) % primes[i] == 0) { |
| 511 | delta += safe ? 4 : 2; |
| 512 | if (delta > maxdelta) |
| 513 | goto again; |
| 514 | goto loop; |
| 515 | } |
| 516 | } |
| 517 | if (!BN_add_word(rnd, delta)) |
| 518 | return 0; |
| 519 | if (BN_num_bits(rnd) != bits) |
| 520 | goto again; |
| 521 | bn_check_top(rnd); |
| 522 | return 1; |
| 523 | } |
| 524 | |
| 525 | /* |
| 526 | * Generate a random number |rnd| of |bits| bits that is probably prime |
| 527 | * and satisfies |rnd| % |add| == |rem| by sieving. |
| 528 | * If |safe| != 0, it generates a safe prime. |
| 529 | * |mods| is a preallocated array that gets reused when called again. |
| 530 | * |
| 531 | * Returns 1 on success and 0 on error. |
| 532 | */ |
| 533 | static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, |
| 534 | const BIGNUM *add, const BIGNUM *rem, |
| 535 | BN_CTX *ctx) |
| 536 | { |
| 537 | int i, ret = 0; |
| 538 | BIGNUM *t1; |
| 539 | BN_ULONG delta; |
| 540 | int trial_divisions = calc_trial_divisions(bits); |
| 541 | BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1]; |
| 542 | |
| 543 | BN_CTX_start(ctx); |
| 544 | if ((t1 = BN_CTX_get(ctx)) == NULL) |
| 545 | goto err; |
| 546 | |
| 547 | if (maxdelta > BN_MASK2 - BN_get_word(add)) |
| 548 | maxdelta = BN_MASK2 - BN_get_word(add); |
| 549 | |
| 550 | again: |
| 551 | if (!BN_rand_ex(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, ctx)) |
| 552 | goto err; |
| 553 | |
| 554 | /* we need ((rnd-rem) % add) == 0 */ |
| 555 | |
| 556 | if (!BN_mod(t1, rnd, add, ctx)) |
| 557 | goto err; |
| 558 | if (!BN_sub(rnd, rnd, t1)) |
| 559 | goto err; |
| 560 | if (rem == NULL) { |
| 561 | if (!BN_add_word(rnd, safe ? 3u : 1u)) |
| 562 | goto err; |
| 563 | } else { |
| 564 | if (!BN_add(rnd, rnd, rem)) |
| 565 | goto err; |
| 566 | } |
| 567 | |
| 568 | if (BN_num_bits(rnd) < bits |
| 569 | || BN_get_word(rnd) < (safe ? 5u : 3u)) { |
| 570 | if (!BN_add(rnd, rnd, add)) |
| 571 | goto err; |
| 572 | } |
| 573 | |
| 574 | /* we now have a random number 'rnd' to test. */ |
| 575 | for (i = 1; i < trial_divisions; i++) { |
| 576 | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); |
| 577 | if (mod == (BN_ULONG)-1) |
| 578 | goto err; |
| 579 | mods[i] = (prime_t) mod; |
| 580 | } |
| 581 | delta = 0; |
| 582 | loop: |
| 583 | for (i = 1; i < trial_divisions; i++) { |
| 584 | /* check that rnd is a prime */ |
| 585 | if (bits <= 31 && delta <= 0x7fffffff |
| 586 | && square(primes[i]) > BN_get_word(rnd) + delta) |
| 587 | break; |
| 588 | /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */ |
| 589 | if (safe ? (mods[i] + delta) % primes[i] <= 1 |
| 590 | : (mods[i] + delta) % primes[i] == 0) { |
| 591 | delta += BN_get_word(add); |
| 592 | if (delta > maxdelta) |
| 593 | goto again; |
| 594 | goto loop; |
| 595 | } |
| 596 | } |
| 597 | if (!BN_add_word(rnd, delta)) |
| 598 | goto err; |
| 599 | ret = 1; |
| 600 | |
| 601 | err: |
| 602 | BN_CTX_end(ctx); |
| 603 | bn_check_top(rnd); |
| 604 | return ret; |
| 605 | } |
| 606 | |