| 1 | /* |
| 2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <time.h> |
| 12 | #include "internal/cryptlib.h" |
| 13 | #include "crypto/rand.h" |
| 14 | #include "bn_local.h" |
| 15 | #include <openssl/rand.h> |
| 16 | #include <openssl/sha.h> |
| 17 | #include <openssl/evp.h> |
| 18 | |
| 19 | typedef enum bnrand_flag_e { |
| 20 | NORMAL, TESTING, PRIVATE |
| 21 | } BNRAND_FLAG; |
| 22 | |
| 23 | static int bnrand(BNRAND_FLAG flag, BIGNUM *rnd, int bits, int top, int bottom, |
| 24 | BN_CTX *ctx) |
| 25 | { |
| 26 | unsigned char *buf = NULL; |
| 27 | int b, ret = 0, bit, bytes, mask; |
| 28 | OPENSSL_CTX *libctx = bn_get_lib_ctx(ctx); |
| 29 | |
| 30 | if (bits == 0) { |
| 31 | if (top != BN_RAND_TOP_ANY || bottom != BN_RAND_BOTTOM_ANY) |
| 32 | goto toosmall; |
| 33 | BN_zero(rnd); |
| 34 | return 1; |
| 35 | } |
| 36 | if (bits < 0 || (bits == 1 && top > 0)) |
| 37 | goto toosmall; |
| 38 | |
| 39 | bytes = (bits + 7) / 8; |
| 40 | bit = (bits - 1) % 8; |
| 41 | mask = 0xff << (bit + 1); |
| 42 | |
| 43 | buf = OPENSSL_malloc(bytes); |
| 44 | if (buf == NULL) { |
| 45 | BNerr(BN_F_BNRAND, ERR_R_MALLOC_FAILURE); |
| 46 | goto err; |
| 47 | } |
| 48 | |
| 49 | /* make a random number and set the top and bottom bits */ |
| 50 | b = flag == NORMAL ? rand_bytes_ex(libctx, buf, bytes) |
| 51 | : rand_priv_bytes_ex(libctx, buf, bytes); |
| 52 | if (b <= 0) |
| 53 | goto err; |
| 54 | |
| 55 | if (flag == TESTING) { |
| 56 | /* |
| 57 | * generate patterns that are more likely to trigger BN library bugs |
| 58 | */ |
| 59 | int i; |
| 60 | unsigned char c; |
| 61 | |
| 62 | for (i = 0; i < bytes; i++) { |
| 63 | if (rand_bytes_ex(libctx, &c, 1) <= 0) |
| 64 | goto err; |
| 65 | if (c >= 128 && i > 0) |
| 66 | buf[i] = buf[i - 1]; |
| 67 | else if (c < 42) |
| 68 | buf[i] = 0; |
| 69 | else if (c < 84) |
| 70 | buf[i] = 255; |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | if (top >= 0) { |
| 75 | if (top) { |
| 76 | if (bit == 0) { |
| 77 | buf[0] = 1; |
| 78 | buf[1] |= 0x80; |
| 79 | } else { |
| 80 | buf[0] |= (3 << (bit - 1)); |
| 81 | } |
| 82 | } else { |
| 83 | buf[0] |= (1 << bit); |
| 84 | } |
| 85 | } |
| 86 | buf[0] &= ~mask; |
| 87 | if (bottom) /* set bottom bit if requested */ |
| 88 | buf[bytes - 1] |= 1; |
| 89 | if (!BN_bin2bn(buf, bytes, rnd)) |
| 90 | goto err; |
| 91 | ret = 1; |
| 92 | err: |
| 93 | OPENSSL_clear_free(buf, bytes); |
| 94 | bn_check_top(rnd); |
| 95 | return ret; |
| 96 | |
| 97 | toosmall: |
| 98 | BNerr(BN_F_BNRAND, BN_R_BITS_TOO_SMALL); |
| 99 | return 0; |
| 100 | } |
| 101 | |
| 102 | int BN_rand_ex(BIGNUM *rnd, int bits, int top, int bottom, BN_CTX *ctx) |
| 103 | { |
| 104 | return bnrand(NORMAL, rnd, bits, top, bottom, ctx); |
| 105 | } |
| 106 | #ifndef FIPS_MODE |
| 107 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom) |
| 108 | { |
| 109 | return bnrand(NORMAL, rnd, bits, top, bottom, NULL); |
| 110 | } |
| 111 | |
| 112 | int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom) |
| 113 | { |
| 114 | return bnrand(TESTING, rnd, bits, top, bottom, NULL); |
| 115 | } |
| 116 | #endif |
| 117 | |
| 118 | int BN_priv_rand_ex(BIGNUM *rnd, int bits, int top, int bottom, BN_CTX *ctx) |
| 119 | { |
| 120 | return bnrand(PRIVATE, rnd, bits, top, bottom, ctx); |
| 121 | } |
| 122 | |
| 123 | #ifndef FIPS_MODE |
| 124 | int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom) |
| 125 | { |
| 126 | return bnrand(PRIVATE, rnd, bits, top, bottom, NULL); |
| 127 | } |
| 128 | #endif |
| 129 | |
| 130 | /* random number r: 0 <= r < range */ |
| 131 | static int bnrand_range(BNRAND_FLAG flag, BIGNUM *r, const BIGNUM *range, |
| 132 | BN_CTX *ctx) |
| 133 | { |
| 134 | int n; |
| 135 | int count = 100; |
| 136 | |
| 137 | if (range->neg || BN_is_zero(range)) { |
| 138 | BNerr(BN_F_BNRAND_RANGE, BN_R_INVALID_RANGE); |
| 139 | return 0; |
| 140 | } |
| 141 | |
| 142 | n = BN_num_bits(range); /* n > 0 */ |
| 143 | |
| 144 | /* BN_is_bit_set(range, n - 1) always holds */ |
| 145 | |
| 146 | if (n == 1) |
| 147 | BN_zero(r); |
| 148 | else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3)) { |
| 149 | /* |
| 150 | * range = 100..._2, so 3*range (= 11..._2) is exactly one bit longer |
| 151 | * than range |
| 152 | */ |
| 153 | do { |
| 154 | if (!bnrand(flag, r, n + 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, |
| 155 | ctx)) |
| 156 | return 0; |
| 157 | |
| 158 | /* |
| 159 | * If r < 3*range, use r := r MOD range (which is either r, r - |
| 160 | * range, or r - 2*range). Otherwise, iterate once more. Since |
| 161 | * 3*range = 11..._2, each iteration succeeds with probability >= |
| 162 | * .75. |
| 163 | */ |
| 164 | if (BN_cmp(r, range) >= 0) { |
| 165 | if (!BN_sub(r, r, range)) |
| 166 | return 0; |
| 167 | if (BN_cmp(r, range) >= 0) |
| 168 | if (!BN_sub(r, r, range)) |
| 169 | return 0; |
| 170 | } |
| 171 | |
| 172 | if (!--count) { |
| 173 | BNerr(BN_F_BNRAND_RANGE, BN_R_TOO_MANY_ITERATIONS); |
| 174 | return 0; |
| 175 | } |
| 176 | |
| 177 | } |
| 178 | while (BN_cmp(r, range) >= 0); |
| 179 | } else { |
| 180 | do { |
| 181 | /* range = 11..._2 or range = 101..._2 */ |
| 182 | if (!bnrand(flag, r, n, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, ctx)) |
| 183 | return 0; |
| 184 | |
| 185 | if (!--count) { |
| 186 | BNerr(BN_F_BNRAND_RANGE, BN_R_TOO_MANY_ITERATIONS); |
| 187 | return 0; |
| 188 | } |
| 189 | } |
| 190 | while (BN_cmp(r, range) >= 0); |
| 191 | } |
| 192 | |
| 193 | bn_check_top(r); |
| 194 | return 1; |
| 195 | } |
| 196 | |
| 197 | int BN_rand_range_ex(BIGNUM *r, const BIGNUM *range, BN_CTX *ctx) |
| 198 | { |
| 199 | return bnrand_range(NORMAL, r, range, ctx); |
| 200 | } |
| 201 | |
| 202 | #ifndef FIPS_MODE |
| 203 | int BN_rand_range(BIGNUM *r, const BIGNUM *range) |
| 204 | { |
| 205 | return bnrand_range(NORMAL, r, range, NULL); |
| 206 | } |
| 207 | #endif |
| 208 | |
| 209 | int BN_priv_rand_range_ex(BIGNUM *r, const BIGNUM *range, BN_CTX *ctx) |
| 210 | { |
| 211 | return bnrand_range(PRIVATE, r, range, ctx); |
| 212 | } |
| 213 | |
| 214 | #ifndef FIPS_MODE |
| 215 | int BN_priv_rand_range(BIGNUM *r, const BIGNUM *range) |
| 216 | { |
| 217 | return bnrand_range(PRIVATE, r, range, NULL); |
| 218 | } |
| 219 | |
| 220 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom) |
| 221 | { |
| 222 | return BN_rand(rnd, bits, top, bottom); |
| 223 | } |
| 224 | |
| 225 | int BN_pseudo_rand_range(BIGNUM *r, const BIGNUM *range) |
| 226 | { |
| 227 | return BN_rand_range(r, range); |
| 228 | } |
| 229 | #endif |
| 230 | |
| 231 | /* |
| 232 | * BN_generate_dsa_nonce generates a random number 0 <= out < range. Unlike |
| 233 | * BN_rand_range, it also includes the contents of |priv| and |message| in |
| 234 | * the generation so that an RNG failure isn't fatal as long as |priv| |
| 235 | * remains secret. This is intended for use in DSA and ECDSA where an RNG |
| 236 | * weakness leads directly to private key exposure unless this function is |
| 237 | * used. |
| 238 | */ |
| 239 | int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, |
| 240 | const BIGNUM *priv, const unsigned char *message, |
| 241 | size_t message_len, BN_CTX *ctx) |
| 242 | { |
| 243 | EVP_MD_CTX *mdctx = EVP_MD_CTX_new(); |
| 244 | /* |
| 245 | * We use 512 bits of random data per iteration to ensure that we have at |
| 246 | * least |range| bits of randomness. |
| 247 | */ |
| 248 | unsigned char random_bytes[64]; |
| 249 | unsigned char digest[SHA512_DIGEST_LENGTH]; |
| 250 | unsigned done, todo; |
| 251 | /* We generate |range|+8 bytes of random output. */ |
| 252 | const unsigned num_k_bytes = BN_num_bytes(range) + 8; |
| 253 | unsigned char private_bytes[96]; |
| 254 | unsigned char *k_bytes = NULL; |
| 255 | int ret = 0; |
| 256 | EVP_MD *md = NULL; |
| 257 | OPENSSL_CTX *libctx = bn_get_lib_ctx(ctx); |
| 258 | |
| 259 | if (mdctx == NULL) |
| 260 | goto err; |
| 261 | |
| 262 | k_bytes = OPENSSL_malloc(num_k_bytes); |
| 263 | if (k_bytes == NULL) |
| 264 | goto err; |
| 265 | |
| 266 | /* We copy |priv| into a local buffer to avoid exposing its length. */ |
| 267 | if (BN_bn2binpad(priv, private_bytes, sizeof(private_bytes)) < 0) { |
| 268 | /* |
| 269 | * No reasonable DSA or ECDSA key should have a private key this |
| 270 | * large and we don't handle this case in order to avoid leaking the |
| 271 | * length of the private key. |
| 272 | */ |
| 273 | BNerr(BN_F_BN_GENERATE_DSA_NONCE, BN_R_PRIVATE_KEY_TOO_LARGE); |
| 274 | goto err; |
| 275 | } |
| 276 | |
| 277 | md = EVP_MD_fetch(libctx, "SHA512" , NULL); |
| 278 | if (md == NULL) { |
| 279 | BNerr(BN_F_BN_GENERATE_DSA_NONCE, BN_R_NO_SUITABLE_DIGEST); |
| 280 | goto err; |
| 281 | } |
| 282 | for (done = 0; done < num_k_bytes;) { |
| 283 | if (!rand_priv_bytes_ex(libctx, random_bytes, sizeof(random_bytes))) |
| 284 | goto err; |
| 285 | |
| 286 | if (!EVP_DigestInit_ex(mdctx, md, NULL) |
| 287 | || !EVP_DigestUpdate(mdctx, &done, sizeof(done)) |
| 288 | || !EVP_DigestUpdate(mdctx, private_bytes, |
| 289 | sizeof(private_bytes)) |
| 290 | || !EVP_DigestUpdate(mdctx, message, message_len) |
| 291 | || !EVP_DigestUpdate(mdctx, random_bytes, sizeof(random_bytes)) |
| 292 | || !EVP_DigestFinal_ex(mdctx, digest, NULL)) |
| 293 | goto err; |
| 294 | |
| 295 | todo = num_k_bytes - done; |
| 296 | if (todo > SHA512_DIGEST_LENGTH) |
| 297 | todo = SHA512_DIGEST_LENGTH; |
| 298 | memcpy(k_bytes + done, digest, todo); |
| 299 | done += todo; |
| 300 | } |
| 301 | |
| 302 | if (!BN_bin2bn(k_bytes, num_k_bytes, out)) |
| 303 | goto err; |
| 304 | if (BN_mod(out, out, range, ctx) != 1) |
| 305 | goto err; |
| 306 | ret = 1; |
| 307 | |
| 308 | err: |
| 309 | EVP_MD_CTX_free(mdctx); |
| 310 | EVP_MD_free(md); |
| 311 | OPENSSL_free(k_bytes); |
| 312 | OPENSSL_cleanse(private_bytes, sizeof(private_bytes)); |
| 313 | return ret; |
| 314 | } |
| 315 | |