| 1 | /* |
| 2 | * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | * According to NIST SP800-131A "Transitioning the use of cryptographic |
| 13 | * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer |
| 14 | * allowed for signatures (Table 2) or key transport (Table 5). In the code |
| 15 | * below any attempt to generate 1024 bit RSA keys will result in an error (Note |
| 16 | * that digital signature verification can still use deprecated 1024 bit keys). |
| 17 | * |
| 18 | * Also see FIPS1402IG A.14 |
| 19 | * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that |
| 20 | * must be generated before the module generates the RSA primes p and q. |
| 21 | * Table B.1 in FIPS 186-4 specifies, for RSA modulus lengths of 2048 and |
| 22 | * 3072 bits only, the min/max total length of the auxiliary primes. |
| 23 | * When implementing the RSA signature generation algorithm |
| 24 | * with other approved RSA modulus sizes, the vendor shall use the limitations |
| 25 | * from Table B.1 that apply to the longest RSA modulus shown in Table B.1 of |
| 26 | * FIPS 186-4 whose length does not exceed that of the implementation's RSA |
| 27 | * modulus. In particular, when generating the primes for the 4096-bit RSA |
| 28 | * modulus the limitations stated for the 3072-bit modulus shall apply. |
| 29 | */ |
| 30 | #include <stdio.h> |
| 31 | #include <openssl/bn.h> |
| 32 | #include "bn_local.h" |
| 33 | #include "crypto/bn.h" |
| 34 | #include "internal/nelem.h" |
| 35 | |
| 36 | #if BN_BITS2 == 64 |
| 37 | # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo |
| 38 | #else |
| 39 | # define BN_DEF(lo, hi) lo, hi |
| 40 | #endif |
| 41 | |
| 42 | /* 1 / sqrt(2) * 2^256, rounded up */ |
| 43 | static const BN_ULONG inv_sqrt_2_val[] = { |
| 44 | BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL), |
| 45 | BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL) |
| 46 | }; |
| 47 | |
| 48 | const BIGNUM bn_inv_sqrt_2 = { |
| 49 | (BN_ULONG *)inv_sqrt_2_val, |
| 50 | OSSL_NELEM(inv_sqrt_2_val), |
| 51 | OSSL_NELEM(inv_sqrt_2_val), |
| 52 | 0, |
| 53 | BN_FLG_STATIC_DATA |
| 54 | }; |
| 55 | |
| 56 | /* |
| 57 | * FIPS 186-4 Table B.1. "Min length of auxiliary primes p1, p2, q1, q2". |
| 58 | * |
| 59 | * Params: |
| 60 | * nbits The key size in bits. |
| 61 | * Returns: |
| 62 | * The minimum size of the auxiliary primes or 0 if nbits is invalid. |
| 63 | */ |
| 64 | static int bn_rsa_fips186_4_aux_prime_min_size(int nbits) |
| 65 | { |
| 66 | if (nbits >= 3072) |
| 67 | return 171; |
| 68 | if (nbits == 2048) |
| 69 | return 141; |
| 70 | return 0; |
| 71 | } |
| 72 | |
| 73 | /* |
| 74 | * FIPS 186-4 Table B.1 "Maximum length of len(p1) + len(p2) and |
| 75 | * len(q1) + len(q2) for p,q Probable Primes". |
| 76 | * |
| 77 | * Params: |
| 78 | * nbits The key size in bits. |
| 79 | * Returns: |
| 80 | * The maximum length or 0 if nbits is invalid. |
| 81 | */ |
| 82 | static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits) |
| 83 | { |
| 84 | if (nbits >= 3072) |
| 85 | return 1518; |
| 86 | if (nbits == 2048) |
| 87 | return 1007; |
| 88 | return 0; |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | * Find the first odd integer that is a probable prime. |
| 93 | * |
| 94 | * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2). |
| 95 | * |
| 96 | * Params: |
| 97 | * Xp1 The passed in starting point to find a probably prime. |
| 98 | * p1 The returned probable prime (first odd integer >= Xp1) |
| 99 | * ctx A BN_CTX object. |
| 100 | * cb An optional BIGNUM callback. |
| 101 | * Returns: 1 on success otherwise it returns 0. |
| 102 | */ |
| 103 | static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1, |
| 104 | BIGNUM *p1, BN_CTX *ctx, |
| 105 | BN_GENCB *cb) |
| 106 | { |
| 107 | int ret = 0; |
| 108 | int i = 0; |
| 109 | |
| 110 | if (BN_copy(p1, Xp1) == NULL) |
| 111 | return 0; |
| 112 | |
| 113 | /* Find the first odd number >= Xp1 that is probably prime */ |
| 114 | for(;;) { |
| 115 | i++; |
| 116 | BN_GENCB_call(cb, 0, i); |
| 117 | /* MR test with trial division */ |
| 118 | if (BN_check_prime(p1, ctx, cb)) |
| 119 | break; |
| 120 | /* Get next odd number */ |
| 121 | if (!BN_add_word(p1, 2)) |
| 122 | goto err; |
| 123 | } |
| 124 | BN_GENCB_call(cb, 2, i); |
| 125 | ret = 1; |
| 126 | err: |
| 127 | return ret; |
| 128 | } |
| 129 | |
| 130 | /* |
| 131 | * Generate a probable prime (p or q). |
| 132 | * |
| 133 | * See FIPS 186-4 B.3.6 (Steps 4 & 5) |
| 134 | * |
| 135 | * Params: |
| 136 | * p The returned probable prime. |
| 137 | * Xpout An optionally returned random number used during generation of p. |
| 138 | * p1, p2 The returned auxiliary primes. If NULL they are not returned. |
| 139 | * Xp An optional passed in value (that is random number used during |
| 140 | * generation of p). |
| 141 | * Xp1, Xp2 Optional passed in values that are normally generated |
| 142 | * internally. Used to find p1, p2. |
| 143 | * nlen The bit length of the modulus (the key size). |
| 144 | * e The public exponent. |
| 145 | * ctx A BN_CTX object. |
| 146 | * cb An optional BIGNUM callback. |
| 147 | * Returns: 1 on success otherwise it returns 0. |
| 148 | */ |
| 149 | int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout, |
| 150 | BIGNUM *p1, BIGNUM *p2, |
| 151 | const BIGNUM *Xp, const BIGNUM *Xp1, |
| 152 | const BIGNUM *Xp2, int nlen, |
| 153 | const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) |
| 154 | { |
| 155 | int ret = 0; |
| 156 | BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL; |
| 157 | int bitlen; |
| 158 | |
| 159 | if (p == NULL || Xpout == NULL) |
| 160 | return 0; |
| 161 | |
| 162 | BN_CTX_start(ctx); |
| 163 | |
| 164 | p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx); |
| 165 | p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx); |
| 166 | Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx); |
| 167 | Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx); |
| 168 | if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL) |
| 169 | goto err; |
| 170 | |
| 171 | bitlen = bn_rsa_fips186_4_aux_prime_min_size(nlen); |
| 172 | if (bitlen == 0) |
| 173 | goto err; |
| 174 | |
| 175 | /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */ |
| 176 | if (Xp1 == NULL) { |
| 177 | /* Set the top and bottom bits to make it odd and the correct size */ |
| 178 | if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, |
| 179 | ctx)) |
| 180 | goto err; |
| 181 | } |
| 182 | /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */ |
| 183 | if (Xp2 == NULL) { |
| 184 | /* Set the top and bottom bits to make it odd and the correct size */ |
| 185 | if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, |
| 186 | ctx)) |
| 187 | goto err; |
| 188 | } |
| 189 | |
| 190 | /* (Steps 4.2/5.2) - find first auxiliary probable primes */ |
| 191 | if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb) |
| 192 | || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb)) |
| 193 | goto err; |
| 194 | /* (Table B.1) auxiliary prime Max length check */ |
| 195 | if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >= |
| 196 | bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(nlen)) |
| 197 | goto err; |
| 198 | /* (Steps 4.3/5.3) - generate prime */ |
| 199 | if (!bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, ctx, cb)) |
| 200 | goto err; |
| 201 | ret = 1; |
| 202 | err: |
| 203 | /* Zeroize any internally generated values that are not returned */ |
| 204 | if (p1 == NULL) |
| 205 | BN_clear(p1i); |
| 206 | if (p2 == NULL) |
| 207 | BN_clear(p2i); |
| 208 | if (Xp1 == NULL) |
| 209 | BN_clear(Xp1i); |
| 210 | if (Xp2 == NULL) |
| 211 | BN_clear(Xp2i); |
| 212 | BN_CTX_end(ctx); |
| 213 | return ret; |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * Constructs a probable prime (a candidate for p or q) using 2 auxiliary |
| 218 | * prime numbers and the Chinese Remainder Theorem. |
| 219 | * |
| 220 | * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary |
| 221 | * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q. |
| 222 | * |
| 223 | * Params: |
| 224 | * Y The returned prime factor (private_prime_factor) of the modulus n. |
| 225 | * X The returned random number used during generation of the prime factor. |
| 226 | * Xin An optional passed in value for X used for testing purposes. |
| 227 | * r1 An auxiliary prime. |
| 228 | * r2 An auxiliary prime. |
| 229 | * nlen The desired length of n (the RSA modulus). |
| 230 | * e The public exponent. |
| 231 | * ctx A BN_CTX object. |
| 232 | * cb An optional BIGNUM callback object. |
| 233 | * Returns: 1 on success otherwise it returns 0. |
| 234 | * Assumptions: |
| 235 | * Y, X, r1, r2, e are not NULL. |
| 236 | */ |
| 237 | int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin, |
| 238 | const BIGNUM *r1, const BIGNUM *r2, int nlen, |
| 239 | const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) |
| 240 | { |
| 241 | int ret = 0; |
| 242 | int i, imax; |
| 243 | int bits = nlen >> 1; |
| 244 | BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2; |
| 245 | BIGNUM *base, *range; |
| 246 | |
| 247 | BN_CTX_start(ctx); |
| 248 | |
| 249 | base = BN_CTX_get(ctx); |
| 250 | range = BN_CTX_get(ctx); |
| 251 | R = BN_CTX_get(ctx); |
| 252 | tmp = BN_CTX_get(ctx); |
| 253 | r1r2x2 = BN_CTX_get(ctx); |
| 254 | y1 = BN_CTX_get(ctx); |
| 255 | r1x2 = BN_CTX_get(ctx); |
| 256 | if (r1x2 == NULL) |
| 257 | goto err; |
| 258 | |
| 259 | if (Xin != NULL && BN_copy(X, Xin) == NULL) |
| 260 | goto err; |
| 261 | |
| 262 | /* |
| 263 | * We need to generate a random number X in the range |
| 264 | * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2). |
| 265 | * We can rewrite that as: |
| 266 | * base = 1/sqrt(2) * 2^(nlen/2) |
| 267 | * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2)) |
| 268 | * X = base + random(range) |
| 269 | * We only have the first 256 bit of 1/sqrt(2) |
| 270 | */ |
| 271 | if (Xin == NULL) { |
| 272 | if (bits < BN_num_bits(&bn_inv_sqrt_2)) |
| 273 | goto err; |
| 274 | if (!BN_lshift(base, &bn_inv_sqrt_2, bits - BN_num_bits(&bn_inv_sqrt_2)) |
| 275 | || !BN_lshift(range, BN_value_one(), bits) |
| 276 | || !BN_sub(range, range, base)) |
| 277 | goto err; |
| 278 | } |
| 279 | |
| 280 | if (!(BN_lshift1(r1x2, r1) |
| 281 | /* (Step 1) GCD(2r1, r2) = 1 */ |
| 282 | && BN_gcd(tmp, r1x2, r2, ctx) |
| 283 | && BN_is_one(tmp) |
| 284 | /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */ |
| 285 | && BN_mod_inverse(R, r2, r1x2, ctx) |
| 286 | && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */ |
| 287 | && BN_mod_inverse(tmp, r1x2, r2, ctx) |
| 288 | && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */ |
| 289 | && BN_sub(R, R, tmp) |
| 290 | /* Calculate 2r1r2 */ |
| 291 | && BN_mul(r1r2x2, r1x2, r2, ctx))) |
| 292 | goto err; |
| 293 | /* Make positive by adding the modulus */ |
| 294 | if (BN_is_negative(R) && !BN_add(R, R, r1r2x2)) |
| 295 | goto err; |
| 296 | |
| 297 | imax = 5 * bits; /* max = 5/2 * nbits */ |
| 298 | for (;;) { |
| 299 | if (Xin == NULL) { |
| 300 | /* |
| 301 | * (Step 3) Choose Random X such that |
| 302 | * sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1. |
| 303 | */ |
| 304 | if (!BN_priv_rand_range_ex(X, range, ctx) || !BN_add(X, X, base)) |
| 305 | goto end; |
| 306 | } |
| 307 | /* (Step 4) Y = X + ((R - X) mod 2r1r2) */ |
| 308 | if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X)) |
| 309 | goto err; |
| 310 | /* (Step 5) */ |
| 311 | i = 0; |
| 312 | for (;;) { |
| 313 | /* (Step 6) */ |
| 314 | if (BN_num_bits(Y) > bits) { |
| 315 | if (Xin == NULL) |
| 316 | break; /* Randomly Generated X so Go back to Step 3 */ |
| 317 | else |
| 318 | goto err; /* X is not random so it will always fail */ |
| 319 | } |
| 320 | BN_GENCB_call(cb, 0, 2); |
| 321 | |
| 322 | /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */ |
| 323 | if (BN_copy(y1, Y) == NULL |
| 324 | || !BN_sub_word(y1, 1) |
| 325 | || !BN_gcd(tmp, y1, e, ctx)) |
| 326 | goto err; |
| 327 | if (BN_is_one(tmp) && BN_check_prime(Y, ctx, cb)) |
| 328 | goto end; |
| 329 | /* (Step 8-10) */ |
| 330 | if (++i >= imax || !BN_add(Y, Y, r1r2x2)) |
| 331 | goto err; |
| 332 | } |
| 333 | } |
| 334 | end: |
| 335 | ret = 1; |
| 336 | BN_GENCB_call(cb, 3, 0); |
| 337 | err: |
| 338 | BN_clear(y1); |
| 339 | BN_CTX_end(ctx); |
| 340 | return ret; |
| 341 | } |
| 342 | |