| 1 | /* |
| 2 | * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include "internal/cryptlib.h" |
| 11 | #include "bn_local.h" |
| 12 | |
| 13 | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| 14 | /* |
| 15 | * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks |
| 16 | * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number |
| 17 | * Theory", algorithm 1.5.1). 'p' must be prime! |
| 18 | */ |
| 19 | { |
| 20 | BIGNUM *ret = in; |
| 21 | int err = 1; |
| 22 | int r; |
| 23 | BIGNUM *A, *b, *q, *t, *x, *y; |
| 24 | int e, i, j; |
| 25 | |
| 26 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { |
| 27 | if (BN_abs_is_word(p, 2)) { |
| 28 | if (ret == NULL) |
| 29 | ret = BN_new(); |
| 30 | if (ret == NULL) |
| 31 | goto end; |
| 32 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { |
| 33 | if (ret != in) |
| 34 | BN_free(ret); |
| 35 | return NULL; |
| 36 | } |
| 37 | bn_check_top(ret); |
| 38 | return ret; |
| 39 | } |
| 40 | |
| 41 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
| 42 | return NULL; |
| 43 | } |
| 44 | |
| 45 | if (BN_is_zero(a) || BN_is_one(a)) { |
| 46 | if (ret == NULL) |
| 47 | ret = BN_new(); |
| 48 | if (ret == NULL) |
| 49 | goto end; |
| 50 | if (!BN_set_word(ret, BN_is_one(a))) { |
| 51 | if (ret != in) |
| 52 | BN_free(ret); |
| 53 | return NULL; |
| 54 | } |
| 55 | bn_check_top(ret); |
| 56 | return ret; |
| 57 | } |
| 58 | |
| 59 | BN_CTX_start(ctx); |
| 60 | A = BN_CTX_get(ctx); |
| 61 | b = BN_CTX_get(ctx); |
| 62 | q = BN_CTX_get(ctx); |
| 63 | t = BN_CTX_get(ctx); |
| 64 | x = BN_CTX_get(ctx); |
| 65 | y = BN_CTX_get(ctx); |
| 66 | if (y == NULL) |
| 67 | goto end; |
| 68 | |
| 69 | if (ret == NULL) |
| 70 | ret = BN_new(); |
| 71 | if (ret == NULL) |
| 72 | goto end; |
| 73 | |
| 74 | /* A = a mod p */ |
| 75 | if (!BN_nnmod(A, a, p, ctx)) |
| 76 | goto end; |
| 77 | |
| 78 | /* now write |p| - 1 as 2^e*q where q is odd */ |
| 79 | e = 1; |
| 80 | while (!BN_is_bit_set(p, e)) |
| 81 | e++; |
| 82 | /* we'll set q later (if needed) */ |
| 83 | |
| 84 | if (e == 1) { |
| 85 | /*- |
| 86 | * The easy case: (|p|-1)/2 is odd, so 2 has an inverse |
| 87 | * modulo (|p|-1)/2, and square roots can be computed |
| 88 | * directly by modular exponentiation. |
| 89 | * We have |
| 90 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), |
| 91 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. |
| 92 | */ |
| 93 | if (!BN_rshift(q, p, 2)) |
| 94 | goto end; |
| 95 | q->neg = 0; |
| 96 | if (!BN_add_word(q, 1)) |
| 97 | goto end; |
| 98 | if (!BN_mod_exp(ret, A, q, p, ctx)) |
| 99 | goto end; |
| 100 | err = 0; |
| 101 | goto vrfy; |
| 102 | } |
| 103 | |
| 104 | if (e == 2) { |
| 105 | /*- |
| 106 | * |p| == 5 (mod 8) |
| 107 | * |
| 108 | * In this case 2 is always a non-square since |
| 109 | * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. |
| 110 | * So if a really is a square, then 2*a is a non-square. |
| 111 | * Thus for |
| 112 | * b := (2*a)^((|p|-5)/8), |
| 113 | * i := (2*a)*b^2 |
| 114 | * we have |
| 115 | * i^2 = (2*a)^((1 + (|p|-5)/4)*2) |
| 116 | * = (2*a)^((p-1)/2) |
| 117 | * = -1; |
| 118 | * so if we set |
| 119 | * x := a*b*(i-1), |
| 120 | * then |
| 121 | * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) |
| 122 | * = a^2 * b^2 * (-2*i) |
| 123 | * = a*(-i)*(2*a*b^2) |
| 124 | * = a*(-i)*i |
| 125 | * = a. |
| 126 | * |
| 127 | * (This is due to A.O.L. Atkin, |
| 128 | * Subject: Square Roots and Cognate Matters modulo p=8n+5. |
| 129 | * URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026 |
| 130 | * November 1992.) |
| 131 | */ |
| 132 | |
| 133 | /* t := 2*a */ |
| 134 | if (!BN_mod_lshift1_quick(t, A, p)) |
| 135 | goto end; |
| 136 | |
| 137 | /* b := (2*a)^((|p|-5)/8) */ |
| 138 | if (!BN_rshift(q, p, 3)) |
| 139 | goto end; |
| 140 | q->neg = 0; |
| 141 | if (!BN_mod_exp(b, t, q, p, ctx)) |
| 142 | goto end; |
| 143 | |
| 144 | /* y := b^2 */ |
| 145 | if (!BN_mod_sqr(y, b, p, ctx)) |
| 146 | goto end; |
| 147 | |
| 148 | /* t := (2*a)*b^2 - 1 */ |
| 149 | if (!BN_mod_mul(t, t, y, p, ctx)) |
| 150 | goto end; |
| 151 | if (!BN_sub_word(t, 1)) |
| 152 | goto end; |
| 153 | |
| 154 | /* x = a*b*t */ |
| 155 | if (!BN_mod_mul(x, A, b, p, ctx)) |
| 156 | goto end; |
| 157 | if (!BN_mod_mul(x, x, t, p, ctx)) |
| 158 | goto end; |
| 159 | |
| 160 | if (!BN_copy(ret, x)) |
| 161 | goto end; |
| 162 | err = 0; |
| 163 | goto vrfy; |
| 164 | } |
| 165 | |
| 166 | /* |
| 167 | * e > 2, so we really have to use the Tonelli/Shanks algorithm. First, |
| 168 | * find some y that is not a square. |
| 169 | */ |
| 170 | if (!BN_copy(q, p)) |
| 171 | goto end; /* use 'q' as temp */ |
| 172 | q->neg = 0; |
| 173 | i = 2; |
| 174 | do { |
| 175 | /* |
| 176 | * For efficiency, try small numbers first; if this fails, try random |
| 177 | * numbers. |
| 178 | */ |
| 179 | if (i < 22) { |
| 180 | if (!BN_set_word(y, i)) |
| 181 | goto end; |
| 182 | } else { |
| 183 | if (!BN_priv_rand_ex(y, BN_num_bits(p), 0, 0, ctx)) |
| 184 | goto end; |
| 185 | if (BN_ucmp(y, p) >= 0) { |
| 186 | if (!(p->neg ? BN_add : BN_sub) (y, y, p)) |
| 187 | goto end; |
| 188 | } |
| 189 | /* now 0 <= y < |p| */ |
| 190 | if (BN_is_zero(y)) |
| 191 | if (!BN_set_word(y, i)) |
| 192 | goto end; |
| 193 | } |
| 194 | |
| 195 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ |
| 196 | if (r < -1) |
| 197 | goto end; |
| 198 | if (r == 0) { |
| 199 | /* m divides p */ |
| 200 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
| 201 | goto end; |
| 202 | } |
| 203 | } |
| 204 | while (r == 1 && ++i < 82); |
| 205 | |
| 206 | if (r != -1) { |
| 207 | /* |
| 208 | * Many rounds and still no non-square -- this is more likely a bug |
| 209 | * than just bad luck. Even if p is not prime, we should have found |
| 210 | * some y such that r == -1. |
| 211 | */ |
| 212 | BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); |
| 213 | goto end; |
| 214 | } |
| 215 | |
| 216 | /* Here's our actual 'q': */ |
| 217 | if (!BN_rshift(q, q, e)) |
| 218 | goto end; |
| 219 | |
| 220 | /* |
| 221 | * Now that we have some non-square, we can find an element of order 2^e |
| 222 | * by computing its q'th power. |
| 223 | */ |
| 224 | if (!BN_mod_exp(y, y, q, p, ctx)) |
| 225 | goto end; |
| 226 | if (BN_is_one(y)) { |
| 227 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
| 228 | goto end; |
| 229 | } |
| 230 | |
| 231 | /*- |
| 232 | * Now we know that (if p is indeed prime) there is an integer |
| 233 | * k, 0 <= k < 2^e, such that |
| 234 | * |
| 235 | * a^q * y^k == 1 (mod p). |
| 236 | * |
| 237 | * As a^q is a square and y is not, k must be even. |
| 238 | * q+1 is even, too, so there is an element |
| 239 | * |
| 240 | * X := a^((q+1)/2) * y^(k/2), |
| 241 | * |
| 242 | * and it satisfies |
| 243 | * |
| 244 | * X^2 = a^q * a * y^k |
| 245 | * = a, |
| 246 | * |
| 247 | * so it is the square root that we are looking for. |
| 248 | */ |
| 249 | |
| 250 | /* t := (q-1)/2 (note that q is odd) */ |
| 251 | if (!BN_rshift1(t, q)) |
| 252 | goto end; |
| 253 | |
| 254 | /* x := a^((q-1)/2) */ |
| 255 | if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */ |
| 256 | if (!BN_nnmod(t, A, p, ctx)) |
| 257 | goto end; |
| 258 | if (BN_is_zero(t)) { |
| 259 | /* special case: a == 0 (mod p) */ |
| 260 | BN_zero(ret); |
| 261 | err = 0; |
| 262 | goto end; |
| 263 | } else if (!BN_one(x)) |
| 264 | goto end; |
| 265 | } else { |
| 266 | if (!BN_mod_exp(x, A, t, p, ctx)) |
| 267 | goto end; |
| 268 | if (BN_is_zero(x)) { |
| 269 | /* special case: a == 0 (mod p) */ |
| 270 | BN_zero(ret); |
| 271 | err = 0; |
| 272 | goto end; |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | /* b := a*x^2 (= a^q) */ |
| 277 | if (!BN_mod_sqr(b, x, p, ctx)) |
| 278 | goto end; |
| 279 | if (!BN_mod_mul(b, b, A, p, ctx)) |
| 280 | goto end; |
| 281 | |
| 282 | /* x := a*x (= a^((q+1)/2)) */ |
| 283 | if (!BN_mod_mul(x, x, A, p, ctx)) |
| 284 | goto end; |
| 285 | |
| 286 | while (1) { |
| 287 | /*- |
| 288 | * Now b is a^q * y^k for some even k (0 <= k < 2^E |
| 289 | * where E refers to the original value of e, which we |
| 290 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). |
| 291 | * |
| 292 | * We have a*b = x^2, |
| 293 | * y^2^(e-1) = -1, |
| 294 | * b^2^(e-1) = 1. |
| 295 | */ |
| 296 | |
| 297 | if (BN_is_one(b)) { |
| 298 | if (!BN_copy(ret, x)) |
| 299 | goto end; |
| 300 | err = 0; |
| 301 | goto vrfy; |
| 302 | } |
| 303 | |
| 304 | /* find smallest i such that b^(2^i) = 1 */ |
| 305 | i = 1; |
| 306 | if (!BN_mod_sqr(t, b, p, ctx)) |
| 307 | goto end; |
| 308 | while (!BN_is_one(t)) { |
| 309 | i++; |
| 310 | if (i == e) { |
| 311 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
| 312 | goto end; |
| 313 | } |
| 314 | if (!BN_mod_mul(t, t, t, p, ctx)) |
| 315 | goto end; |
| 316 | } |
| 317 | |
| 318 | /* t := y^2^(e - i - 1) */ |
| 319 | if (!BN_copy(t, y)) |
| 320 | goto end; |
| 321 | for (j = e - i - 1; j > 0; j--) { |
| 322 | if (!BN_mod_sqr(t, t, p, ctx)) |
| 323 | goto end; |
| 324 | } |
| 325 | if (!BN_mod_mul(y, t, t, p, ctx)) |
| 326 | goto end; |
| 327 | if (!BN_mod_mul(x, x, t, p, ctx)) |
| 328 | goto end; |
| 329 | if (!BN_mod_mul(b, b, y, p, ctx)) |
| 330 | goto end; |
| 331 | e = i; |
| 332 | } |
| 333 | |
| 334 | vrfy: |
| 335 | if (!err) { |
| 336 | /* |
| 337 | * verify the result -- the input might have been not a square (test |
| 338 | * added in 0.9.8) |
| 339 | */ |
| 340 | |
| 341 | if (!BN_mod_sqr(x, ret, p, ctx)) |
| 342 | err = 1; |
| 343 | |
| 344 | if (!err && 0 != BN_cmp(x, A)) { |
| 345 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
| 346 | err = 1; |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | end: |
| 351 | if (err) { |
| 352 | if (ret != in) |
| 353 | BN_clear_free(ret); |
| 354 | ret = NULL; |
| 355 | } |
| 356 | BN_CTX_end(ctx); |
| 357 | bn_check_top(ret); |
| 358 | return ret; |
| 359 | } |
| 360 | |