1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | // |
3 | // Redistribution and use in source and binary forms, with or without |
4 | // modification, are permitted provided that the following conditions are |
5 | // met: |
6 | // |
7 | // * Redistributions of source code must retain the above copyright |
8 | // notice, this list of conditions and the following disclaimer. |
9 | // * Redistributions in binary form must reproduce the above |
10 | // copyright notice, this list of conditions and the following disclaimer |
11 | // in the documentation and/or other materials provided with the |
12 | // distribution. |
13 | // * Neither the name of Google Inc. nor the names of its |
14 | // contributors may be used to endorse or promote products derived from |
15 | // this software without specific prior written permission. |
16 | // |
17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
21 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
22 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
23 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
24 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
25 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
26 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | |
29 | #include "snappy.h" |
30 | #include "snappy-internal.h" |
31 | #include "snappy-sinksource.h" |
32 | |
33 | #if !defined(SNAPPY_HAVE_SSSE3) |
34 | // __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD |
35 | // support between SSE2 and AVX (so SSSE3 instructions require AVX support), and |
36 | // defines __AVX__ when AVX support is available. |
37 | #if defined(__SSSE3__) || defined(__AVX__) |
38 | #define SNAPPY_HAVE_SSSE3 1 |
39 | #else |
40 | #define SNAPPY_HAVE_SSSE3 0 |
41 | #endif |
42 | #endif // !defined(SNAPPY_HAVE_SSSE3) |
43 | |
44 | #if !defined(SNAPPY_HAVE_BMI2) |
45 | // __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2 |
46 | // specifically, but it does define __AVX2__ when AVX2 support is available. |
47 | // Fortunately, AVX2 was introduced in Haswell, just like BMI2. |
48 | // |
49 | // BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So, |
50 | // GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which |
51 | // case issuing BMI2 instructions results in a compiler error. |
52 | #if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__)) |
53 | #define SNAPPY_HAVE_BMI2 1 |
54 | #else |
55 | #define SNAPPY_HAVE_BMI2 0 |
56 | #endif |
57 | #endif // !defined(SNAPPY_HAVE_BMI2) |
58 | |
59 | #if SNAPPY_HAVE_SSSE3 |
60 | // Please do not replace with <x86intrin.h>. or with headers that assume more |
61 | // advanced SSE versions without checking with all the OWNERS. |
62 | #include <tmmintrin.h> |
63 | #endif |
64 | |
65 | #if SNAPPY_HAVE_BMI2 |
66 | // Please do not replace with <x86intrin.h>. or with headers that assume more |
67 | // advanced SSE versions without checking with all the OWNERS. |
68 | #include <immintrin.h> |
69 | #endif |
70 | |
71 | #include <stdio.h> |
72 | |
73 | #include <algorithm> |
74 | #include <string> |
75 | #include <vector> |
76 | |
77 | |
78 | namespace snappy { |
79 | |
80 | using internal::COPY_1_BYTE_OFFSET; |
81 | using internal::COPY_2_BYTE_OFFSET; |
82 | using internal::LITERAL; |
83 | using internal::char_table; |
84 | using internal::kMaximumTagLength; |
85 | |
86 | // Any hash function will produce a valid compressed bitstream, but a good |
87 | // hash function reduces the number of collisions and thus yields better |
88 | // compression for compressible input, and more speed for incompressible |
89 | // input. Of course, it doesn't hurt if the hash function is reasonably fast |
90 | // either, as it gets called a lot. |
91 | static inline uint32 HashBytes(uint32 bytes, int shift) { |
92 | uint32 kMul = 0x1e35a7bd; |
93 | return (bytes * kMul) >> shift; |
94 | } |
95 | static inline uint32 Hash(const char* p, int shift) { |
96 | return HashBytes(UNALIGNED_LOAD32(p), shift); |
97 | } |
98 | |
99 | size_t MaxCompressedLength(size_t source_len) { |
100 | // Compressed data can be defined as: |
101 | // compressed := item* literal* |
102 | // item := literal* copy |
103 | // |
104 | // The trailing literal sequence has a space blowup of at most 62/60 |
105 | // since a literal of length 60 needs one tag byte + one extra byte |
106 | // for length information. |
107 | // |
108 | // Item blowup is trickier to measure. Suppose the "copy" op copies |
109 | // 4 bytes of data. Because of a special check in the encoding code, |
110 | // we produce a 4-byte copy only if the offset is < 65536. Therefore |
111 | // the copy op takes 3 bytes to encode, and this type of item leads |
112 | // to at most the 62/60 blowup for representing literals. |
113 | // |
114 | // Suppose the "copy" op copies 5 bytes of data. If the offset is big |
115 | // enough, it will take 5 bytes to encode the copy op. Therefore the |
116 | // worst case here is a one-byte literal followed by a five-byte copy. |
117 | // I.e., 6 bytes of input turn into 7 bytes of "compressed" data. |
118 | // |
119 | // This last factor dominates the blowup, so the final estimate is: |
120 | return 32 + source_len + source_len/6; |
121 | } |
122 | |
123 | namespace { |
124 | |
125 | void UnalignedCopy64(const void* src, void* dst) { |
126 | char tmp[8]; |
127 | memcpy(tmp, src, 8); |
128 | memcpy(dst, tmp, 8); |
129 | } |
130 | |
131 | void UnalignedCopy128(const void* src, void* dst) { |
132 | // memcpy gets vectorized when the appropriate compiler options are used. |
133 | // For example, x86 compilers targeting SSE2+ will optimize to an SSE2 load |
134 | // and store. |
135 | char tmp[16]; |
136 | memcpy(tmp, src, 16); |
137 | memcpy(dst, tmp, 16); |
138 | } |
139 | |
140 | // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used |
141 | // for handling COPY operations where the input and output regions may overlap. |
142 | // For example, suppose: |
143 | // src == "ab" |
144 | // op == src + 2 |
145 | // op_limit == op + 20 |
146 | // After IncrementalCopySlow(src, op, op_limit), the result will have eleven |
147 | // copies of "ab" |
148 | // ababababababababababab |
149 | // Note that this does not match the semantics of either memcpy() or memmove(). |
150 | inline char* IncrementalCopySlow(const char* src, char* op, |
151 | char* const op_limit) { |
152 | // TODO: Remove pragma when LLVM is aware this function is only called in |
153 | // cold regions and when cold regions don't get vectorized or unrolled. |
154 | #ifdef __clang__ |
155 | #pragma clang loop unroll(disable) |
156 | #endif |
157 | while (op < op_limit) { |
158 | *op++ = *src++; |
159 | } |
160 | return op_limit; |
161 | } |
162 | |
163 | #if SNAPPY_HAVE_SSSE3 |
164 | |
165 | // This is a table of shuffle control masks that can be used as the source |
166 | // operand for PSHUFB to permute the contents of the destination XMM register |
167 | // into a repeating byte pattern. |
168 | alignas(16) const char pshufb_fill_patterns[7][16] = { |
169 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
170 | {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, |
171 | {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0}, |
172 | {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}, |
173 | {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0}, |
174 | {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3}, |
175 | {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1}, |
176 | }; |
177 | |
178 | #endif // SNAPPY_HAVE_SSSE3 |
179 | |
180 | // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than |
181 | // IncrementalCopySlow. buf_limit is the address past the end of the writable |
182 | // region of the buffer. |
183 | inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, |
184 | char* const buf_limit) { |
185 | // Terminology: |
186 | // |
187 | // slop = buf_limit - op |
188 | // pat = op - src |
189 | // len = limit - op |
190 | assert(src < op); |
191 | assert(op <= op_limit); |
192 | assert(op_limit <= buf_limit); |
193 | // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that |
194 | // to optimize this function but we have to also handle other cases in case |
195 | // the input does not satisfy these conditions. |
196 | |
197 | size_t pattern_size = op - src; |
198 | // The cases are split into different branches to allow the branch predictor, |
199 | // FDO, and static prediction hints to work better. For each input we list the |
200 | // ratio of invocations that match each condition. |
201 | // |
202 | // input slop < 16 pat < 8 len > 16 |
203 | // ------------------------------------------ |
204 | // html|html4|cp 0% 1.01% 27.73% |
205 | // urls 0% 0.88% 14.79% |
206 | // jpg 0% 64.29% 7.14% |
207 | // pdf 0% 2.56% 58.06% |
208 | // txt[1-4] 0% 0.23% 0.97% |
209 | // pb 0% 0.96% 13.88% |
210 | // bin 0.01% 22.27% 41.17% |
211 | // |
212 | // It is very rare that we don't have enough slop for doing block copies. It |
213 | // is also rare that we need to expand a pattern. Small patterns are common |
214 | // for incompressible formats and for those we are plenty fast already. |
215 | // Lengths are normally not greater than 16 but they vary depending on the |
216 | // input. In general if we always predict len <= 16 it would be an ok |
217 | // prediction. |
218 | // |
219 | // In order to be fast we want a pattern >= 8 bytes and an unrolled loop |
220 | // copying 2x 8 bytes at a time. |
221 | |
222 | // Handle the uncommon case where pattern is less than 8 bytes. |
223 | if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) { |
224 | #if SNAPPY_HAVE_SSSE3 |
225 | // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB |
226 | // to permute the register's contents in-place into a repeating sequence of |
227 | // the first "pattern_size" bytes. |
228 | // For example, suppose: |
229 | // src == "abc" |
230 | // op == op + 3 |
231 | // After _mm_shuffle_epi8(), "pattern" will have five copies of "abc" |
232 | // followed by one byte of slop: abcabcabcabcabca. |
233 | // |
234 | // The non-SSE fallback implementation suffers from store-forwarding stalls |
235 | // because its loads and stores partly overlap. By expanding the pattern |
236 | // in-place, we avoid the penalty. |
237 | if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) { |
238 | const __m128i shuffle_mask = _mm_load_si128( |
239 | reinterpret_cast<const __m128i*>(pshufb_fill_patterns) |
240 | + pattern_size - 1); |
241 | const __m128i pattern = _mm_shuffle_epi8( |
242 | _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask); |
243 | // Uninitialized bytes are masked out by the shuffle mask. |
244 | SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern)); |
245 | pattern_size *= 16 / pattern_size; |
246 | char* op_end = std::min(op_limit, buf_limit - 15); |
247 | while (op < op_end) { |
248 | _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern); |
249 | op += pattern_size; |
250 | } |
251 | if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; |
252 | } |
253 | return IncrementalCopySlow(src, op, op_limit); |
254 | #else // !SNAPPY_HAVE_SSSE3 |
255 | // If plenty of buffer space remains, expand the pattern to at least 8 |
256 | // bytes. The way the following loop is written, we need 8 bytes of buffer |
257 | // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10 |
258 | // bytes if pattern_size is 2. Precisely encoding that is probably not |
259 | // worthwhile; instead, invoke the slow path if we cannot write 11 bytes |
260 | // (because 11 are required in the worst case). |
261 | if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) { |
262 | while (pattern_size < 8) { |
263 | UnalignedCopy64(src, op); |
264 | op += pattern_size; |
265 | pattern_size *= 2; |
266 | } |
267 | if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; |
268 | } else { |
269 | return IncrementalCopySlow(src, op, op_limit); |
270 | } |
271 | #endif // SNAPPY_HAVE_SSSE3 |
272 | } |
273 | assert(pattern_size >= 8); |
274 | |
275 | // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single |
276 | // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe |
277 | // because expanding the pattern to at least 8 bytes guarantees that |
278 | // op - src >= 8. |
279 | // |
280 | // Typically, the op_limit is the gating factor so try to simplify the loop |
281 | // based on that. |
282 | if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) { |
283 | // Factor the displacement from op to the source into a variable. This helps |
284 | // simplify the loop below by only varying the op pointer which we need to |
285 | // test for the end. Note that this was done after carefully examining the |
286 | // generated code to allow the addressing modes in the loop below to |
287 | // maximize micro-op fusion where possible on modern Intel processors. The |
288 | // generated code should be checked carefully for new processors or with |
289 | // major changes to the compiler. |
290 | // TODO: Simplify this code when the compiler reliably produces the correct |
291 | // x86 instruction sequence. |
292 | ptrdiff_t op_to_src = src - op; |
293 | |
294 | // The trip count of this loop is not large and so unrolling will only hurt |
295 | // code size without helping performance. |
296 | // |
297 | // TODO: Replace with loop trip count hint. |
298 | #ifdef __clang__ |
299 | #pragma clang loop unroll(disable) |
300 | #endif |
301 | do { |
302 | UnalignedCopy64(op + op_to_src, op); |
303 | UnalignedCopy64(op + op_to_src + 8, op + 8); |
304 | op += 16; |
305 | } while (op < op_limit); |
306 | return op_limit; |
307 | } |
308 | |
309 | // Fall back to doing as much as we can with the available slop in the |
310 | // buffer. This code path is relatively cold however so we save code size by |
311 | // avoiding unrolling and vectorizing. |
312 | // |
313 | // TODO: Remove pragma when when cold regions don't get vectorized or |
314 | // unrolled. |
315 | #ifdef __clang__ |
316 | #pragma clang loop unroll(disable) |
317 | #endif |
318 | for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) { |
319 | UnalignedCopy64(src, op); |
320 | UnalignedCopy64(src + 8, op + 8); |
321 | } |
322 | if (op >= op_limit) |
323 | return op_limit; |
324 | |
325 | // We only take this branch if we didn't have enough slop and we can do a |
326 | // single 8 byte copy. |
327 | if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) { |
328 | UnalignedCopy64(src, op); |
329 | src += 8; |
330 | op += 8; |
331 | } |
332 | return IncrementalCopySlow(src, op, op_limit); |
333 | } |
334 | |
335 | } // namespace |
336 | |
337 | template <bool allow_fast_path> |
338 | static inline char* EmitLiteral(char* op, |
339 | const char* literal, |
340 | int len) { |
341 | // The vast majority of copies are below 16 bytes, for which a |
342 | // call to memcpy is overkill. This fast path can sometimes |
343 | // copy up to 15 bytes too much, but that is okay in the |
344 | // main loop, since we have a bit to go on for both sides: |
345 | // |
346 | // - The input will always have kInputMarginBytes = 15 extra |
347 | // available bytes, as long as we're in the main loop, and |
348 | // if not, allow_fast_path = false. |
349 | // - The output will always have 32 spare bytes (see |
350 | // MaxCompressedLength). |
351 | assert(len > 0); // Zero-length literals are disallowed |
352 | int n = len - 1; |
353 | if (allow_fast_path && len <= 16) { |
354 | // Fits in tag byte |
355 | *op++ = LITERAL | (n << 2); |
356 | |
357 | UnalignedCopy128(literal, op); |
358 | return op + len; |
359 | } |
360 | |
361 | if (n < 60) { |
362 | // Fits in tag byte |
363 | *op++ = LITERAL | (n << 2); |
364 | } else { |
365 | // Encode in upcoming bytes |
366 | char* base = op; |
367 | int count = 0; |
368 | op++; |
369 | while (n > 0) { |
370 | *op++ = n & 0xff; |
371 | n >>= 8; |
372 | count++; |
373 | } |
374 | assert(count >= 1); |
375 | assert(count <= 4); |
376 | *base = LITERAL | ((59+count) << 2); |
377 | } |
378 | memcpy(op, literal, len); |
379 | return op + len; |
380 | } |
381 | |
382 | template <bool len_less_than_12> |
383 | static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) { |
384 | assert(len <= 64); |
385 | assert(len >= 4); |
386 | assert(offset < 65536); |
387 | assert(len_less_than_12 == (len < 12)); |
388 | |
389 | if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) { |
390 | // offset fits in 11 bits. The 3 highest go in the top of the first byte, |
391 | // and the rest go in the second byte. |
392 | *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0); |
393 | *op++ = offset & 0xff; |
394 | } else { |
395 | // Write 4 bytes, though we only care about 3 of them. The output buffer |
396 | // is required to have some slack, so the extra byte won't overrun it. |
397 | uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8); |
398 | LittleEndian::Store32(op, u); |
399 | op += 3; |
400 | } |
401 | return op; |
402 | } |
403 | |
404 | template <bool len_less_than_12> |
405 | static inline char* EmitCopy(char* op, size_t offset, size_t len) { |
406 | assert(len_less_than_12 == (len < 12)); |
407 | if (len_less_than_12) { |
408 | return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); |
409 | } else { |
410 | // A special case for len <= 64 might help, but so far measurements suggest |
411 | // it's in the noise. |
412 | |
413 | // Emit 64 byte copies but make sure to keep at least four bytes reserved. |
414 | while (SNAPPY_PREDICT_FALSE(len >= 68)) { |
415 | op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64); |
416 | len -= 64; |
417 | } |
418 | |
419 | // One or two copies will now finish the job. |
420 | if (len > 64) { |
421 | op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60); |
422 | len -= 60; |
423 | } |
424 | |
425 | // Emit remainder. |
426 | if (len < 12) { |
427 | op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); |
428 | } else { |
429 | op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len); |
430 | } |
431 | return op; |
432 | } |
433 | } |
434 | |
435 | bool GetUncompressedLength(const char* start, size_t n, size_t* result) { |
436 | uint32 v = 0; |
437 | const char* limit = start + n; |
438 | if (Varint::Parse32WithLimit(start, limit, &v) != NULL) { |
439 | *result = v; |
440 | return true; |
441 | } else { |
442 | return false; |
443 | } |
444 | } |
445 | |
446 | namespace { |
447 | uint32 CalculateTableSize(uint32 input_size) { |
448 | assert(kMaxHashTableSize >= 256); |
449 | if (input_size > kMaxHashTableSize) { |
450 | return kMaxHashTableSize; |
451 | } |
452 | if (input_size < 256) { |
453 | return 256; |
454 | } |
455 | // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1. |
456 | // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)). |
457 | return 2u << Bits::Log2Floor(input_size - 1); |
458 | } |
459 | } // namespace |
460 | |
461 | namespace internal { |
462 | WorkingMemory::WorkingMemory(size_t input_size) { |
463 | const size_t max_fragment_size = std::min(input_size, kBlockSize); |
464 | const size_t table_size = CalculateTableSize(max_fragment_size); |
465 | size_ = table_size * sizeof(*table_) + max_fragment_size + |
466 | MaxCompressedLength(max_fragment_size); |
467 | mem_ = std::allocator<char>().allocate(size_); |
468 | table_ = reinterpret_cast<uint16*>(mem_); |
469 | input_ = mem_ + table_size * sizeof(*table_); |
470 | output_ = input_ + max_fragment_size; |
471 | } |
472 | |
473 | WorkingMemory::~WorkingMemory() { |
474 | std::allocator<char>().deallocate(mem_, size_); |
475 | } |
476 | |
477 | uint16* WorkingMemory::GetHashTable(size_t fragment_size, |
478 | int* table_size) const { |
479 | const size_t htsize = CalculateTableSize(fragment_size); |
480 | memset(table_, 0, htsize * sizeof(*table_)); |
481 | *table_size = htsize; |
482 | return table_; |
483 | } |
484 | } // end namespace internal |
485 | |
486 | // For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will |
487 | // equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have |
488 | // empirically found that overlapping loads such as |
489 | // UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2) |
490 | // are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32. |
491 | // |
492 | // We have different versions for 64- and 32-bit; ideally we would avoid the |
493 | // two functions and just inline the UNALIGNED_LOAD64 call into |
494 | // GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever |
495 | // enough to avoid loading the value multiple times then. For 64-bit, the load |
496 | // is done when GetEightBytesAt() is called, whereas for 32-bit, the load is |
497 | // done at GetUint32AtOffset() time. |
498 | |
499 | #ifdef ARCH_K8 |
500 | |
501 | typedef uint64 EightBytesReference; |
502 | |
503 | static inline EightBytesReference GetEightBytesAt(const char* ptr) { |
504 | return UNALIGNED_LOAD64(ptr); |
505 | } |
506 | |
507 | static inline uint32 GetUint32AtOffset(uint64 v, int offset) { |
508 | assert(offset >= 0); |
509 | assert(offset <= 4); |
510 | return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset); |
511 | } |
512 | |
513 | #else |
514 | |
515 | typedef const char* EightBytesReference; |
516 | |
517 | static inline EightBytesReference GetEightBytesAt(const char* ptr) { |
518 | return ptr; |
519 | } |
520 | |
521 | static inline uint32 GetUint32AtOffset(const char* v, int offset) { |
522 | assert(offset >= 0); |
523 | assert(offset <= 4); |
524 | return UNALIGNED_LOAD32(v + offset); |
525 | } |
526 | |
527 | #endif |
528 | |
529 | // Flat array compression that does not emit the "uncompressed length" |
530 | // prefix. Compresses "input" string to the "*op" buffer. |
531 | // |
532 | // REQUIRES: "input" is at most "kBlockSize" bytes long. |
533 | // REQUIRES: "op" points to an array of memory that is at least |
534 | // "MaxCompressedLength(input.size())" in size. |
535 | // REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. |
536 | // REQUIRES: "table_size" is a power of two |
537 | // |
538 | // Returns an "end" pointer into "op" buffer. |
539 | // "end - op" is the compressed size of "input". |
540 | namespace internal { |
541 | char* CompressFragment(const char* input, |
542 | size_t input_size, |
543 | char* op, |
544 | uint16* table, |
545 | const int table_size) { |
546 | // "ip" is the input pointer, and "op" is the output pointer. |
547 | const char* ip = input; |
548 | assert(input_size <= kBlockSize); |
549 | assert((table_size & (table_size - 1)) == 0); // table must be power of two |
550 | const int shift = 32 - Bits::Log2Floor(table_size); |
551 | assert(static_cast<int>(kuint32max >> shift) == table_size - 1); |
552 | const char* ip_end = input + input_size; |
553 | const char* base_ip = ip; |
554 | // Bytes in [next_emit, ip) will be emitted as literal bytes. Or |
555 | // [next_emit, ip_end) after the main loop. |
556 | const char* next_emit = ip; |
557 | |
558 | const size_t kInputMarginBytes = 15; |
559 | if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) { |
560 | const char* ip_limit = input + input_size - kInputMarginBytes; |
561 | |
562 | for (uint32 next_hash = Hash(++ip, shift); ; ) { |
563 | assert(next_emit < ip); |
564 | // The body of this loop calls EmitLiteral once and then EmitCopy one or |
565 | // more times. (The exception is that when we're close to exhausting |
566 | // the input we goto emit_remainder.) |
567 | // |
568 | // In the first iteration of this loop we're just starting, so |
569 | // there's nothing to copy, so calling EmitLiteral once is |
570 | // necessary. And we only start a new iteration when the |
571 | // current iteration has determined that a call to EmitLiteral will |
572 | // precede the next call to EmitCopy (if any). |
573 | // |
574 | // Step 1: Scan forward in the input looking for a 4-byte-long match. |
575 | // If we get close to exhausting the input then goto emit_remainder. |
576 | // |
577 | // Heuristic match skipping: If 32 bytes are scanned with no matches |
578 | // found, start looking only at every other byte. If 32 more bytes are |
579 | // scanned (or skipped), look at every third byte, etc.. When a match is |
580 | // found, immediately go back to looking at every byte. This is a small |
581 | // loss (~5% performance, ~0.1% density) for compressible data due to more |
582 | // bookkeeping, but for non-compressible data (such as JPEG) it's a huge |
583 | // win since the compressor quickly "realizes" the data is incompressible |
584 | // and doesn't bother looking for matches everywhere. |
585 | // |
586 | // The "skip" variable keeps track of how many bytes there are since the |
587 | // last match; dividing it by 32 (ie. right-shifting by five) gives the |
588 | // number of bytes to move ahead for each iteration. |
589 | uint32 skip = 32; |
590 | |
591 | const char* next_ip = ip; |
592 | const char* candidate; |
593 | do { |
594 | ip = next_ip; |
595 | uint32 hash = next_hash; |
596 | assert(hash == Hash(ip, shift)); |
597 | uint32 bytes_between_hash_lookups = skip >> 5; |
598 | skip += bytes_between_hash_lookups; |
599 | next_ip = ip + bytes_between_hash_lookups; |
600 | if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) { |
601 | goto emit_remainder; |
602 | } |
603 | next_hash = Hash(next_ip, shift); |
604 | candidate = base_ip + table[hash]; |
605 | assert(candidate >= base_ip); |
606 | assert(candidate < ip); |
607 | |
608 | table[hash] = ip - base_ip; |
609 | } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) != |
610 | UNALIGNED_LOAD32(candidate))); |
611 | |
612 | // Step 2: A 4-byte match has been found. We'll later see if more |
613 | // than 4 bytes match. But, prior to the match, input |
614 | // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." |
615 | assert(next_emit + 16 <= ip_end); |
616 | op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit); |
617 | |
618 | // Step 3: Call EmitCopy, and then see if another EmitCopy could |
619 | // be our next move. Repeat until we find no match for the |
620 | // input immediately after what was consumed by the last EmitCopy call. |
621 | // |
622 | // If we exit this loop normally then we need to call EmitLiteral next, |
623 | // though we don't yet know how big the literal will be. We handle that |
624 | // by proceeding to the next iteration of the main loop. We also can exit |
625 | // this loop via goto if we get close to exhausting the input. |
626 | EightBytesReference input_bytes; |
627 | uint32 candidate_bytes = 0; |
628 | |
629 | do { |
630 | // We have a 4-byte match at ip, and no need to emit any |
631 | // "literal bytes" prior to ip. |
632 | const char* base = ip; |
633 | std::pair<size_t, bool> p = |
634 | FindMatchLength(candidate + 4, ip + 4, ip_end); |
635 | size_t matched = 4 + p.first; |
636 | ip += matched; |
637 | size_t offset = base - candidate; |
638 | assert(0 == memcmp(base, candidate, matched)); |
639 | if (p.second) { |
640 | op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched); |
641 | } else { |
642 | op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched); |
643 | } |
644 | next_emit = ip; |
645 | if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) { |
646 | goto emit_remainder; |
647 | } |
648 | // We are now looking for a 4-byte match again. We read |
649 | // table[Hash(ip, shift)] for that. To improve compression, |
650 | // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)]. |
651 | input_bytes = GetEightBytesAt(ip - 1); |
652 | uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift); |
653 | table[prev_hash] = ip - base_ip - 1; |
654 | uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift); |
655 | candidate = base_ip + table[cur_hash]; |
656 | candidate_bytes = UNALIGNED_LOAD32(candidate); |
657 | table[cur_hash] = ip - base_ip; |
658 | } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes); |
659 | |
660 | next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift); |
661 | ++ip; |
662 | } |
663 | } |
664 | |
665 | emit_remainder: |
666 | // Emit the remaining bytes as a literal |
667 | if (next_emit < ip_end) { |
668 | op = EmitLiteral</*allow_fast_path=*/false>(op, next_emit, |
669 | ip_end - next_emit); |
670 | } |
671 | |
672 | return op; |
673 | } |
674 | } // end namespace internal |
675 | |
676 | // Called back at avery compression call to trace parameters and sizes. |
677 | static inline void Report(const char *algorithm, size_t compressed_size, |
678 | size_t uncompressed_size) {} |
679 | |
680 | // Signature of output types needed by decompression code. |
681 | // The decompression code is templatized on a type that obeys this |
682 | // signature so that we do not pay virtual function call overhead in |
683 | // the middle of a tight decompression loop. |
684 | // |
685 | // class DecompressionWriter { |
686 | // public: |
687 | // // Called before decompression |
688 | // void SetExpectedLength(size_t length); |
689 | // |
690 | // // Called after decompression |
691 | // bool CheckLength() const; |
692 | // |
693 | // // Called repeatedly during decompression |
694 | // bool Append(const char* ip, size_t length); |
695 | // bool AppendFromSelf(uint32 offset, size_t length); |
696 | // |
697 | // // The rules for how TryFastAppend differs from Append are somewhat |
698 | // // convoluted: |
699 | // // |
700 | // // - TryFastAppend is allowed to decline (return false) at any |
701 | // // time, for any reason -- just "return false" would be |
702 | // // a perfectly legal implementation of TryFastAppend. |
703 | // // The intention is for TryFastAppend to allow a fast path |
704 | // // in the common case of a small append. |
705 | // // - TryFastAppend is allowed to read up to <available> bytes |
706 | // // from the input buffer, whereas Append is allowed to read |
707 | // // <length>. However, if it returns true, it must leave |
708 | // // at least five (kMaximumTagLength) bytes in the input buffer |
709 | // // afterwards, so that there is always enough space to read the |
710 | // // next tag without checking for a refill. |
711 | // // - TryFastAppend must always return decline (return false) |
712 | // // if <length> is 61 or more, as in this case the literal length is not |
713 | // // decoded fully. In practice, this should not be a big problem, |
714 | // // as it is unlikely that one would implement a fast path accepting |
715 | // // this much data. |
716 | // // |
717 | // bool TryFastAppend(const char* ip, size_t available, size_t length); |
718 | // }; |
719 | |
720 | static inline uint32 (uint32 v, int n) { |
721 | assert(n >= 0); |
722 | assert(n <= 4); |
723 | // TODO(b/121042345): Remove !defined(MEMORY_SANITIZER) once MSan |
724 | // handles _bzhi_u32() correctly. |
725 | #if SNAPPY_HAVE_BMI2 && !defined(MEMORY_SANITIZER) |
726 | return _bzhi_u32(v, 8 * n); |
727 | #else |
728 | // This needs to be wider than uint32 otherwise `mask << 32` will be |
729 | // undefined. |
730 | uint64 mask = 0xffffffff; |
731 | return v & ~(mask << (8 * n)); |
732 | #endif |
733 | } |
734 | |
735 | static inline bool LeftShiftOverflows(uint8 value, uint32 shift) { |
736 | assert(shift < 32); |
737 | static const uint8 masks[] = { |
738 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // |
739 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // |
740 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // |
741 | 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe}; |
742 | return (value & masks[shift]) != 0; |
743 | } |
744 | |
745 | // Helper class for decompression |
746 | class SnappyDecompressor { |
747 | private: |
748 | Source* reader_; // Underlying source of bytes to decompress |
749 | const char* ip_; // Points to next buffered byte |
750 | const char* ip_limit_; // Points just past buffered bytes |
751 | uint32 peeked_; // Bytes peeked from reader (need to skip) |
752 | bool eof_; // Hit end of input without an error? |
753 | char scratch_[kMaximumTagLength]; // See RefillTag(). |
754 | |
755 | // Ensure that all of the tag metadata for the next tag is available |
756 | // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even |
757 | // if (ip_limit_ - ip_ < 5). |
758 | // |
759 | // Returns true on success, false on error or end of input. |
760 | bool RefillTag(); |
761 | |
762 | public: |
763 | explicit SnappyDecompressor(Source* reader) |
764 | : reader_(reader), |
765 | ip_(NULL), |
766 | ip_limit_(NULL), |
767 | peeked_(0), |
768 | eof_(false) { |
769 | } |
770 | |
771 | ~SnappyDecompressor() { |
772 | // Advance past any bytes we peeked at from the reader |
773 | reader_->Skip(peeked_); |
774 | } |
775 | |
776 | // Returns true iff we have hit the end of the input without an error. |
777 | bool eof() const { |
778 | return eof_; |
779 | } |
780 | |
781 | // Read the uncompressed length stored at the start of the compressed data. |
782 | // On success, stores the length in *result and returns true. |
783 | // On failure, returns false. |
784 | bool ReadUncompressedLength(uint32* result) { |
785 | assert(ip_ == NULL); // Must not have read anything yet |
786 | // Length is encoded in 1..5 bytes |
787 | *result = 0; |
788 | uint32 shift = 0; |
789 | while (true) { |
790 | if (shift >= 32) return false; |
791 | size_t n; |
792 | const char* ip = reader_->Peek(&n); |
793 | if (n == 0) return false; |
794 | const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); |
795 | reader_->Skip(1); |
796 | uint32 val = c & 0x7f; |
797 | if (LeftShiftOverflows(static_cast<uint8>(val), shift)) return false; |
798 | *result |= val << shift; |
799 | if (c < 128) { |
800 | break; |
801 | } |
802 | shift += 7; |
803 | } |
804 | return true; |
805 | } |
806 | |
807 | // Process the next item found in the input. |
808 | // Returns true if successful, false on error or end of input. |
809 | template <class Writer> |
810 | #if defined(__GNUC__) && defined(__x86_64__) |
811 | __attribute__((aligned(32))) |
812 | #endif |
813 | void DecompressAllTags(Writer* writer) { |
814 | // In x86, pad the function body to start 16 bytes later. This function has |
815 | // a couple of hotspots that are highly sensitive to alignment: we have |
816 | // observed regressions by more than 20% in some metrics just by moving the |
817 | // exact same code to a different position in the benchmark binary. |
818 | // |
819 | // Putting this code on a 32-byte-aligned boundary + 16 bytes makes us hit |
820 | // the "lucky" case consistently. Unfortunately, this is a very brittle |
821 | // workaround, and future differences in code generation may reintroduce |
822 | // this regression. If you experience a big, difficult to explain, benchmark |
823 | // performance regression here, first try removing this hack. |
824 | #if defined(__GNUC__) && defined(__x86_64__) |
825 | // Two 8-byte "NOP DWORD ptr [EAX + EAX*1 + 00000000H]" instructions. |
826 | asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00" ); |
827 | asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00" ); |
828 | #endif |
829 | |
830 | const char* ip = ip_; |
831 | // We could have put this refill fragment only at the beginning of the loop. |
832 | // However, duplicating it at the end of each branch gives the compiler more |
833 | // scope to optimize the <ip_limit_ - ip> expression based on the local |
834 | // context, which overall increases speed. |
835 | #define MAYBE_REFILL() \ |
836 | if (ip_limit_ - ip < kMaximumTagLength) { \ |
837 | ip_ = ip; \ |
838 | if (!RefillTag()) return; \ |
839 | ip = ip_; \ |
840 | } |
841 | |
842 | MAYBE_REFILL(); |
843 | for ( ;; ) { |
844 | const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++)); |
845 | |
846 | // Ratio of iterations that have LITERAL vs non-LITERAL for different |
847 | // inputs. |
848 | // |
849 | // input LITERAL NON_LITERAL |
850 | // ----------------------------------- |
851 | // html|html4|cp 23% 77% |
852 | // urls 36% 64% |
853 | // jpg 47% 53% |
854 | // pdf 19% 81% |
855 | // txt[1-4] 25% 75% |
856 | // pb 24% 76% |
857 | // bin 24% 76% |
858 | if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) { |
859 | size_t literal_length = (c >> 2) + 1u; |
860 | if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) { |
861 | assert(literal_length < 61); |
862 | ip += literal_length; |
863 | // NOTE(user): There is no MAYBE_REFILL() here, as TryFastAppend() |
864 | // will not return true unless there's already at least five spare |
865 | // bytes in addition to the literal. |
866 | continue; |
867 | } |
868 | if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) { |
869 | // Long literal. |
870 | const size_t literal_length_length = literal_length - 60; |
871 | literal_length = |
872 | ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) + |
873 | 1; |
874 | ip += literal_length_length; |
875 | } |
876 | |
877 | size_t avail = ip_limit_ - ip; |
878 | while (avail < literal_length) { |
879 | if (!writer->Append(ip, avail)) return; |
880 | literal_length -= avail; |
881 | reader_->Skip(peeked_); |
882 | size_t n; |
883 | ip = reader_->Peek(&n); |
884 | avail = n; |
885 | peeked_ = avail; |
886 | if (avail == 0) return; // Premature end of input |
887 | ip_limit_ = ip + avail; |
888 | } |
889 | if (!writer->Append(ip, literal_length)) { |
890 | return; |
891 | } |
892 | ip += literal_length; |
893 | MAYBE_REFILL(); |
894 | } else { |
895 | const size_t entry = char_table[c]; |
896 | const size_t trailer = |
897 | ExtractLowBytes(LittleEndian::Load32(ip), entry >> 11); |
898 | const size_t length = entry & 0xff; |
899 | ip += entry >> 11; |
900 | |
901 | // copy_offset/256 is encoded in bits 8..10. By just fetching |
902 | // those bits, we get copy_offset (since the bit-field starts at |
903 | // bit 8). |
904 | const size_t copy_offset = entry & 0x700; |
905 | if (!writer->AppendFromSelf(copy_offset + trailer, length)) { |
906 | return; |
907 | } |
908 | MAYBE_REFILL(); |
909 | } |
910 | } |
911 | |
912 | #undef MAYBE_REFILL |
913 | } |
914 | }; |
915 | |
916 | bool SnappyDecompressor::RefillTag() { |
917 | const char* ip = ip_; |
918 | if (ip == ip_limit_) { |
919 | // Fetch a new fragment from the reader |
920 | reader_->Skip(peeked_); // All peeked bytes are used up |
921 | size_t n; |
922 | ip = reader_->Peek(&n); |
923 | peeked_ = n; |
924 | eof_ = (n == 0); |
925 | if (eof_) return false; |
926 | ip_limit_ = ip + n; |
927 | } |
928 | |
929 | // Read the tag character |
930 | assert(ip < ip_limit_); |
931 | const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); |
932 | const uint32 entry = char_table[c]; |
933 | const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c' |
934 | assert(needed <= sizeof(scratch_)); |
935 | |
936 | // Read more bytes from reader if needed |
937 | uint32 nbuf = ip_limit_ - ip; |
938 | if (nbuf < needed) { |
939 | // Stitch together bytes from ip and reader to form the word |
940 | // contents. We store the needed bytes in "scratch_". They |
941 | // will be consumed immediately by the caller since we do not |
942 | // read more than we need. |
943 | memmove(scratch_, ip, nbuf); |
944 | reader_->Skip(peeked_); // All peeked bytes are used up |
945 | peeked_ = 0; |
946 | while (nbuf < needed) { |
947 | size_t length; |
948 | const char* src = reader_->Peek(&length); |
949 | if (length == 0) return false; |
950 | uint32 to_add = std::min<uint32>(needed - nbuf, length); |
951 | memcpy(scratch_ + nbuf, src, to_add); |
952 | nbuf += to_add; |
953 | reader_->Skip(to_add); |
954 | } |
955 | assert(nbuf == needed); |
956 | ip_ = scratch_; |
957 | ip_limit_ = scratch_ + needed; |
958 | } else if (nbuf < kMaximumTagLength) { |
959 | // Have enough bytes, but move into scratch_ so that we do not |
960 | // read past end of input |
961 | memmove(scratch_, ip, nbuf); |
962 | reader_->Skip(peeked_); // All peeked bytes are used up |
963 | peeked_ = 0; |
964 | ip_ = scratch_; |
965 | ip_limit_ = scratch_ + nbuf; |
966 | } else { |
967 | // Pass pointer to buffer returned by reader_. |
968 | ip_ = ip; |
969 | } |
970 | return true; |
971 | } |
972 | |
973 | template <typename Writer> |
974 | static bool InternalUncompress(Source* r, Writer* writer) { |
975 | // Read the uncompressed length from the front of the compressed input |
976 | SnappyDecompressor decompressor(r); |
977 | uint32 uncompressed_len = 0; |
978 | if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; |
979 | |
980 | return InternalUncompressAllTags(&decompressor, writer, r->Available(), |
981 | uncompressed_len); |
982 | } |
983 | |
984 | template <typename Writer> |
985 | static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, |
986 | Writer* writer, |
987 | uint32 compressed_len, |
988 | uint32 uncompressed_len) { |
989 | Report("snappy_uncompress" , compressed_len, uncompressed_len); |
990 | |
991 | writer->SetExpectedLength(uncompressed_len); |
992 | |
993 | // Process the entire input |
994 | decompressor->DecompressAllTags(writer); |
995 | writer->Flush(); |
996 | return (decompressor->eof() && writer->CheckLength()); |
997 | } |
998 | |
999 | bool GetUncompressedLength(Source* source, uint32* result) { |
1000 | SnappyDecompressor decompressor(source); |
1001 | return decompressor.ReadUncompressedLength(result); |
1002 | } |
1003 | |
1004 | size_t Compress(Source* reader, Sink* writer) { |
1005 | size_t written = 0; |
1006 | size_t N = reader->Available(); |
1007 | const size_t uncompressed_size = N; |
1008 | char ulength[Varint::kMax32]; |
1009 | char* p = Varint::Encode32(ulength, N); |
1010 | writer->Append(ulength, p-ulength); |
1011 | written += (p - ulength); |
1012 | |
1013 | internal::WorkingMemory wmem(N); |
1014 | |
1015 | while (N > 0) { |
1016 | // Get next block to compress (without copying if possible) |
1017 | size_t fragment_size; |
1018 | const char* fragment = reader->Peek(&fragment_size); |
1019 | assert(fragment_size != 0); // premature end of input |
1020 | const size_t num_to_read = std::min(N, kBlockSize); |
1021 | size_t bytes_read = fragment_size; |
1022 | |
1023 | size_t pending_advance = 0; |
1024 | if (bytes_read >= num_to_read) { |
1025 | // Buffer returned by reader is large enough |
1026 | pending_advance = num_to_read; |
1027 | fragment_size = num_to_read; |
1028 | } else { |
1029 | char* scratch = wmem.GetScratchInput(); |
1030 | memcpy(scratch, fragment, bytes_read); |
1031 | reader->Skip(bytes_read); |
1032 | |
1033 | while (bytes_read < num_to_read) { |
1034 | fragment = reader->Peek(&fragment_size); |
1035 | size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read); |
1036 | memcpy(scratch + bytes_read, fragment, n); |
1037 | bytes_read += n; |
1038 | reader->Skip(n); |
1039 | } |
1040 | assert(bytes_read == num_to_read); |
1041 | fragment = scratch; |
1042 | fragment_size = num_to_read; |
1043 | } |
1044 | assert(fragment_size == num_to_read); |
1045 | |
1046 | // Get encoding table for compression |
1047 | int table_size; |
1048 | uint16* table = wmem.GetHashTable(num_to_read, &table_size); |
1049 | |
1050 | // Compress input_fragment and append to dest |
1051 | const int max_output = MaxCompressedLength(num_to_read); |
1052 | |
1053 | // Need a scratch buffer for the output, in case the byte sink doesn't |
1054 | // have room for us directly. |
1055 | |
1056 | // Since we encode kBlockSize regions followed by a region |
1057 | // which is <= kBlockSize in length, a previously allocated |
1058 | // scratch_output[] region is big enough for this iteration. |
1059 | char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput()); |
1060 | char* end = internal::CompressFragment(fragment, fragment_size, dest, table, |
1061 | table_size); |
1062 | writer->Append(dest, end - dest); |
1063 | written += (end - dest); |
1064 | |
1065 | N -= num_to_read; |
1066 | reader->Skip(pending_advance); |
1067 | } |
1068 | |
1069 | Report("snappy_compress" , written, uncompressed_size); |
1070 | |
1071 | return written; |
1072 | } |
1073 | |
1074 | // ----------------------------------------------------------------------- |
1075 | // IOVec interfaces |
1076 | // ----------------------------------------------------------------------- |
1077 | |
1078 | // A type that writes to an iovec. |
1079 | // Note that this is not a "ByteSink", but a type that matches the |
1080 | // Writer template argument to SnappyDecompressor::DecompressAllTags(). |
1081 | class SnappyIOVecWriter { |
1082 | private: |
1083 | // output_iov_end_ is set to iov + count and used to determine when |
1084 | // the end of the iovs is reached. |
1085 | const struct iovec* output_iov_end_; |
1086 | |
1087 | #if !defined(NDEBUG) |
1088 | const struct iovec* output_iov_; |
1089 | #endif // !defined(NDEBUG) |
1090 | |
1091 | // Current iov that is being written into. |
1092 | const struct iovec* curr_iov_; |
1093 | |
1094 | // Pointer to current iov's write location. |
1095 | char* curr_iov_output_; |
1096 | |
1097 | // Remaining bytes to write into curr_iov_output. |
1098 | size_t curr_iov_remaining_; |
1099 | |
1100 | // Total bytes decompressed into output_iov_ so far. |
1101 | size_t total_written_; |
1102 | |
1103 | // Maximum number of bytes that will be decompressed into output_iov_. |
1104 | size_t output_limit_; |
1105 | |
1106 | static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) { |
1107 | return reinterpret_cast<char*>(iov->iov_base) + offset; |
1108 | } |
1109 | |
1110 | public: |
1111 | // Does not take ownership of iov. iov must be valid during the |
1112 | // entire lifetime of the SnappyIOVecWriter. |
1113 | inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count) |
1114 | : output_iov_end_(iov + iov_count), |
1115 | #if !defined(NDEBUG) |
1116 | output_iov_(iov), |
1117 | #endif // !defined(NDEBUG) |
1118 | curr_iov_(iov), |
1119 | curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base) |
1120 | : nullptr), |
1121 | curr_iov_remaining_(iov_count ? iov->iov_len : 0), |
1122 | total_written_(0), |
1123 | output_limit_(-1) {} |
1124 | |
1125 | inline void SetExpectedLength(size_t len) { |
1126 | output_limit_ = len; |
1127 | } |
1128 | |
1129 | inline bool CheckLength() const { |
1130 | return total_written_ == output_limit_; |
1131 | } |
1132 | |
1133 | inline bool Append(const char* ip, size_t len) { |
1134 | if (total_written_ + len > output_limit_) { |
1135 | return false; |
1136 | } |
1137 | |
1138 | return AppendNoCheck(ip, len); |
1139 | } |
1140 | |
1141 | inline bool AppendNoCheck(const char* ip, size_t len) { |
1142 | while (len > 0) { |
1143 | if (curr_iov_remaining_ == 0) { |
1144 | // This iovec is full. Go to the next one. |
1145 | if (curr_iov_ + 1 >= output_iov_end_) { |
1146 | return false; |
1147 | } |
1148 | ++curr_iov_; |
1149 | curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); |
1150 | curr_iov_remaining_ = curr_iov_->iov_len; |
1151 | } |
1152 | |
1153 | const size_t to_write = std::min(len, curr_iov_remaining_); |
1154 | memcpy(curr_iov_output_, ip, to_write); |
1155 | curr_iov_output_ += to_write; |
1156 | curr_iov_remaining_ -= to_write; |
1157 | total_written_ += to_write; |
1158 | ip += to_write; |
1159 | len -= to_write; |
1160 | } |
1161 | |
1162 | return true; |
1163 | } |
1164 | |
1165 | inline bool TryFastAppend(const char* ip, size_t available, size_t len) { |
1166 | const size_t space_left = output_limit_ - total_written_; |
1167 | if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 && |
1168 | curr_iov_remaining_ >= 16) { |
1169 | // Fast path, used for the majority (about 95%) of invocations. |
1170 | UnalignedCopy128(ip, curr_iov_output_); |
1171 | curr_iov_output_ += len; |
1172 | curr_iov_remaining_ -= len; |
1173 | total_written_ += len; |
1174 | return true; |
1175 | } |
1176 | |
1177 | return false; |
1178 | } |
1179 | |
1180 | inline bool AppendFromSelf(size_t offset, size_t len) { |
1181 | // See SnappyArrayWriter::AppendFromSelf for an explanation of |
1182 | // the "offset - 1u" trick. |
1183 | if (offset - 1u >= total_written_) { |
1184 | return false; |
1185 | } |
1186 | const size_t space_left = output_limit_ - total_written_; |
1187 | if (len > space_left) { |
1188 | return false; |
1189 | } |
1190 | |
1191 | // Locate the iovec from which we need to start the copy. |
1192 | const iovec* from_iov = curr_iov_; |
1193 | size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_; |
1194 | while (offset > 0) { |
1195 | if (from_iov_offset >= offset) { |
1196 | from_iov_offset -= offset; |
1197 | break; |
1198 | } |
1199 | |
1200 | offset -= from_iov_offset; |
1201 | --from_iov; |
1202 | #if !defined(NDEBUG) |
1203 | assert(from_iov >= output_iov_); |
1204 | #endif // !defined(NDEBUG) |
1205 | from_iov_offset = from_iov->iov_len; |
1206 | } |
1207 | |
1208 | // Copy <len> bytes starting from the iovec pointed to by from_iov_index to |
1209 | // the current iovec. |
1210 | while (len > 0) { |
1211 | assert(from_iov <= curr_iov_); |
1212 | if (from_iov != curr_iov_) { |
1213 | const size_t to_copy = |
1214 | std::min(from_iov->iov_len - from_iov_offset, len); |
1215 | AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy); |
1216 | len -= to_copy; |
1217 | if (len > 0) { |
1218 | ++from_iov; |
1219 | from_iov_offset = 0; |
1220 | } |
1221 | } else { |
1222 | size_t to_copy = curr_iov_remaining_; |
1223 | if (to_copy == 0) { |
1224 | // This iovec is full. Go to the next one. |
1225 | if (curr_iov_ + 1 >= output_iov_end_) { |
1226 | return false; |
1227 | } |
1228 | ++curr_iov_; |
1229 | curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); |
1230 | curr_iov_remaining_ = curr_iov_->iov_len; |
1231 | continue; |
1232 | } |
1233 | if (to_copy > len) { |
1234 | to_copy = len; |
1235 | } |
1236 | |
1237 | IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset), |
1238 | curr_iov_output_, curr_iov_output_ + to_copy, |
1239 | curr_iov_output_ + curr_iov_remaining_); |
1240 | curr_iov_output_ += to_copy; |
1241 | curr_iov_remaining_ -= to_copy; |
1242 | from_iov_offset += to_copy; |
1243 | total_written_ += to_copy; |
1244 | len -= to_copy; |
1245 | } |
1246 | } |
1247 | |
1248 | return true; |
1249 | } |
1250 | |
1251 | inline void Flush() {} |
1252 | }; |
1253 | |
1254 | bool RawUncompressToIOVec(const char* compressed, size_t compressed_length, |
1255 | const struct iovec* iov, size_t iov_cnt) { |
1256 | ByteArraySource reader(compressed, compressed_length); |
1257 | return RawUncompressToIOVec(&reader, iov, iov_cnt); |
1258 | } |
1259 | |
1260 | bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov, |
1261 | size_t iov_cnt) { |
1262 | SnappyIOVecWriter output(iov, iov_cnt); |
1263 | return InternalUncompress(compressed, &output); |
1264 | } |
1265 | |
1266 | // ----------------------------------------------------------------------- |
1267 | // Flat array interfaces |
1268 | // ----------------------------------------------------------------------- |
1269 | |
1270 | // A type that writes to a flat array. |
1271 | // Note that this is not a "ByteSink", but a type that matches the |
1272 | // Writer template argument to SnappyDecompressor::DecompressAllTags(). |
1273 | class SnappyArrayWriter { |
1274 | private: |
1275 | char* base_; |
1276 | char* op_; |
1277 | char* op_limit_; |
1278 | |
1279 | public: |
1280 | inline explicit SnappyArrayWriter(char* dst) |
1281 | : base_(dst), |
1282 | op_(dst), |
1283 | op_limit_(dst) { |
1284 | } |
1285 | |
1286 | inline void SetExpectedLength(size_t len) { |
1287 | op_limit_ = op_ + len; |
1288 | } |
1289 | |
1290 | inline bool CheckLength() const { |
1291 | return op_ == op_limit_; |
1292 | } |
1293 | |
1294 | inline bool Append(const char* ip, size_t len) { |
1295 | char* op = op_; |
1296 | const size_t space_left = op_limit_ - op; |
1297 | if (space_left < len) { |
1298 | return false; |
1299 | } |
1300 | memcpy(op, ip, len); |
1301 | op_ = op + len; |
1302 | return true; |
1303 | } |
1304 | |
1305 | inline bool TryFastAppend(const char* ip, size_t available, size_t len) { |
1306 | char* op = op_; |
1307 | const size_t space_left = op_limit_ - op; |
1308 | if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { |
1309 | // Fast path, used for the majority (about 95%) of invocations. |
1310 | UnalignedCopy128(ip, op); |
1311 | op_ = op + len; |
1312 | return true; |
1313 | } else { |
1314 | return false; |
1315 | } |
1316 | } |
1317 | |
1318 | inline bool AppendFromSelf(size_t offset, size_t len) { |
1319 | char* const op_end = op_ + len; |
1320 | |
1321 | // Check if we try to append from before the start of the buffer. |
1322 | // Normally this would just be a check for "produced < offset", |
1323 | // but "produced <= offset - 1u" is equivalent for every case |
1324 | // except the one where offset==0, where the right side will wrap around |
1325 | // to a very big number. This is convenient, as offset==0 is another |
1326 | // invalid case that we also want to catch, so that we do not go |
1327 | // into an infinite loop. |
1328 | if (Produced() <= offset - 1u || op_end > op_limit_) return false; |
1329 | op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_); |
1330 | |
1331 | return true; |
1332 | } |
1333 | inline size_t Produced() const { |
1334 | assert(op_ >= base_); |
1335 | return op_ - base_; |
1336 | } |
1337 | inline void Flush() {} |
1338 | }; |
1339 | |
1340 | bool RawUncompress(const char* compressed, size_t n, char* uncompressed) { |
1341 | ByteArraySource reader(compressed, n); |
1342 | return RawUncompress(&reader, uncompressed); |
1343 | } |
1344 | |
1345 | bool RawUncompress(Source* compressed, char* uncompressed) { |
1346 | SnappyArrayWriter output(uncompressed); |
1347 | return InternalUncompress(compressed, &output); |
1348 | } |
1349 | |
1350 | bool Uncompress(const char* compressed, size_t n, string* uncompressed) { |
1351 | size_t ulength; |
1352 | if (!GetUncompressedLength(compressed, n, &ulength)) { |
1353 | return false; |
1354 | } |
1355 | // On 32-bit builds: max_size() < kuint32max. Check for that instead |
1356 | // of crashing (e.g., consider externally specified compressed data). |
1357 | if (ulength > uncompressed->max_size()) { |
1358 | return false; |
1359 | } |
1360 | STLStringResizeUninitialized(uncompressed, ulength); |
1361 | return RawUncompress(compressed, n, string_as_array(uncompressed)); |
1362 | } |
1363 | |
1364 | // A Writer that drops everything on the floor and just does validation |
1365 | class SnappyDecompressionValidator { |
1366 | private: |
1367 | size_t expected_; |
1368 | size_t produced_; |
1369 | |
1370 | public: |
1371 | inline SnappyDecompressionValidator() : expected_(0), produced_(0) { } |
1372 | inline void SetExpectedLength(size_t len) { |
1373 | expected_ = len; |
1374 | } |
1375 | inline bool CheckLength() const { |
1376 | return expected_ == produced_; |
1377 | } |
1378 | inline bool Append(const char* ip, size_t len) { |
1379 | produced_ += len; |
1380 | return produced_ <= expected_; |
1381 | } |
1382 | inline bool TryFastAppend(const char* ip, size_t available, size_t length) { |
1383 | return false; |
1384 | } |
1385 | inline bool AppendFromSelf(size_t offset, size_t len) { |
1386 | // See SnappyArrayWriter::AppendFromSelf for an explanation of |
1387 | // the "offset - 1u" trick. |
1388 | if (produced_ <= offset - 1u) return false; |
1389 | produced_ += len; |
1390 | return produced_ <= expected_; |
1391 | } |
1392 | inline void Flush() {} |
1393 | }; |
1394 | |
1395 | bool IsValidCompressedBuffer(const char* compressed, size_t n) { |
1396 | ByteArraySource reader(compressed, n); |
1397 | SnappyDecompressionValidator writer; |
1398 | return InternalUncompress(&reader, &writer); |
1399 | } |
1400 | |
1401 | bool IsValidCompressed(Source* compressed) { |
1402 | SnappyDecompressionValidator writer; |
1403 | return InternalUncompress(compressed, &writer); |
1404 | } |
1405 | |
1406 | void RawCompress(const char* input, |
1407 | size_t input_length, |
1408 | char* compressed, |
1409 | size_t* compressed_length) { |
1410 | ByteArraySource reader(input, input_length); |
1411 | UncheckedByteArraySink writer(compressed); |
1412 | Compress(&reader, &writer); |
1413 | |
1414 | // Compute how many bytes were added |
1415 | *compressed_length = (writer.CurrentDestination() - compressed); |
1416 | } |
1417 | |
1418 | size_t Compress(const char* input, size_t input_length, string* compressed) { |
1419 | // Pre-grow the buffer to the max length of the compressed output |
1420 | STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length)); |
1421 | |
1422 | size_t compressed_length; |
1423 | RawCompress(input, input_length, string_as_array(compressed), |
1424 | &compressed_length); |
1425 | compressed->resize(compressed_length); |
1426 | return compressed_length; |
1427 | } |
1428 | |
1429 | // ----------------------------------------------------------------------- |
1430 | // Sink interface |
1431 | // ----------------------------------------------------------------------- |
1432 | |
1433 | // A type that decompresses into a Sink. The template parameter |
1434 | // Allocator must export one method "char* Allocate(int size);", which |
1435 | // allocates a buffer of "size" and appends that to the destination. |
1436 | template <typename Allocator> |
1437 | class SnappyScatteredWriter { |
1438 | Allocator allocator_; |
1439 | |
1440 | // We need random access into the data generated so far. Therefore |
1441 | // we keep track of all of the generated data as an array of blocks. |
1442 | // All of the blocks except the last have length kBlockSize. |
1443 | std::vector<char*> blocks_; |
1444 | size_t expected_; |
1445 | |
1446 | // Total size of all fully generated blocks so far |
1447 | size_t full_size_; |
1448 | |
1449 | // Pointer into current output block |
1450 | char* op_base_; // Base of output block |
1451 | char* op_ptr_; // Pointer to next unfilled byte in block |
1452 | char* op_limit_; // Pointer just past block |
1453 | |
1454 | inline size_t Size() const { |
1455 | return full_size_ + (op_ptr_ - op_base_); |
1456 | } |
1457 | |
1458 | bool SlowAppend(const char* ip, size_t len); |
1459 | bool SlowAppendFromSelf(size_t offset, size_t len); |
1460 | |
1461 | public: |
1462 | inline explicit SnappyScatteredWriter(const Allocator& allocator) |
1463 | : allocator_(allocator), |
1464 | full_size_(0), |
1465 | op_base_(NULL), |
1466 | op_ptr_(NULL), |
1467 | op_limit_(NULL) { |
1468 | } |
1469 | |
1470 | inline void SetExpectedLength(size_t len) { |
1471 | assert(blocks_.empty()); |
1472 | expected_ = len; |
1473 | } |
1474 | |
1475 | inline bool CheckLength() const { |
1476 | return Size() == expected_; |
1477 | } |
1478 | |
1479 | // Return the number of bytes actually uncompressed so far |
1480 | inline size_t Produced() const { |
1481 | return Size(); |
1482 | } |
1483 | |
1484 | inline bool Append(const char* ip, size_t len) { |
1485 | size_t avail = op_limit_ - op_ptr_; |
1486 | if (len <= avail) { |
1487 | // Fast path |
1488 | memcpy(op_ptr_, ip, len); |
1489 | op_ptr_ += len; |
1490 | return true; |
1491 | } else { |
1492 | return SlowAppend(ip, len); |
1493 | } |
1494 | } |
1495 | |
1496 | inline bool TryFastAppend(const char* ip, size_t available, size_t length) { |
1497 | char* op = op_ptr_; |
1498 | const int space_left = op_limit_ - op; |
1499 | if (length <= 16 && available >= 16 + kMaximumTagLength && |
1500 | space_left >= 16) { |
1501 | // Fast path, used for the majority (about 95%) of invocations. |
1502 | UnalignedCopy128(ip, op); |
1503 | op_ptr_ = op + length; |
1504 | return true; |
1505 | } else { |
1506 | return false; |
1507 | } |
1508 | } |
1509 | |
1510 | inline bool AppendFromSelf(size_t offset, size_t len) { |
1511 | char* const op_end = op_ptr_ + len; |
1512 | // See SnappyArrayWriter::AppendFromSelf for an explanation of |
1513 | // the "offset - 1u" trick. |
1514 | if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ && |
1515 | op_end <= op_limit_)) { |
1516 | // Fast path: src and dst in current block. |
1517 | op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_); |
1518 | return true; |
1519 | } |
1520 | return SlowAppendFromSelf(offset, len); |
1521 | } |
1522 | |
1523 | // Called at the end of the decompress. We ask the allocator |
1524 | // write all blocks to the sink. |
1525 | inline void Flush() { allocator_.Flush(Produced()); } |
1526 | }; |
1527 | |
1528 | template<typename Allocator> |
1529 | bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) { |
1530 | size_t avail = op_limit_ - op_ptr_; |
1531 | while (len > avail) { |
1532 | // Completely fill this block |
1533 | memcpy(op_ptr_, ip, avail); |
1534 | op_ptr_ += avail; |
1535 | assert(op_limit_ - op_ptr_ == 0); |
1536 | full_size_ += (op_ptr_ - op_base_); |
1537 | len -= avail; |
1538 | ip += avail; |
1539 | |
1540 | // Bounds check |
1541 | if (full_size_ + len > expected_) { |
1542 | return false; |
1543 | } |
1544 | |
1545 | // Make new block |
1546 | size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_); |
1547 | op_base_ = allocator_.Allocate(bsize); |
1548 | op_ptr_ = op_base_; |
1549 | op_limit_ = op_base_ + bsize; |
1550 | blocks_.push_back(op_base_); |
1551 | avail = bsize; |
1552 | } |
1553 | |
1554 | memcpy(op_ptr_, ip, len); |
1555 | op_ptr_ += len; |
1556 | return true; |
1557 | } |
1558 | |
1559 | template<typename Allocator> |
1560 | bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset, |
1561 | size_t len) { |
1562 | // Overflow check |
1563 | // See SnappyArrayWriter::AppendFromSelf for an explanation of |
1564 | // the "offset - 1u" trick. |
1565 | const size_t cur = Size(); |
1566 | if (offset - 1u >= cur) return false; |
1567 | if (expected_ - cur < len) return false; |
1568 | |
1569 | // Currently we shouldn't ever hit this path because Compress() chops the |
1570 | // input into blocks and does not create cross-block copies. However, it is |
1571 | // nice if we do not rely on that, since we can get better compression if we |
1572 | // allow cross-block copies and thus might want to change the compressor in |
1573 | // the future. |
1574 | size_t src = cur - offset; |
1575 | while (len-- > 0) { |
1576 | char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)]; |
1577 | Append(&c, 1); |
1578 | src++; |
1579 | } |
1580 | return true; |
1581 | } |
1582 | |
1583 | class SnappySinkAllocator { |
1584 | public: |
1585 | explicit SnappySinkAllocator(Sink* dest): dest_(dest) {} |
1586 | ~SnappySinkAllocator() {} |
1587 | |
1588 | char* Allocate(int size) { |
1589 | Datablock block(new char[size], size); |
1590 | blocks_.push_back(block); |
1591 | return block.data; |
1592 | } |
1593 | |
1594 | // We flush only at the end, because the writer wants |
1595 | // random access to the blocks and once we hand the |
1596 | // block over to the sink, we can't access it anymore. |
1597 | // Also we don't write more than has been actually written |
1598 | // to the blocks. |
1599 | void Flush(size_t size) { |
1600 | size_t size_written = 0; |
1601 | size_t block_size; |
1602 | for (int i = 0; i < blocks_.size(); ++i) { |
1603 | block_size = std::min<size_t>(blocks_[i].size, size - size_written); |
1604 | dest_->AppendAndTakeOwnership(blocks_[i].data, block_size, |
1605 | &SnappySinkAllocator::Deleter, NULL); |
1606 | size_written += block_size; |
1607 | } |
1608 | blocks_.clear(); |
1609 | } |
1610 | |
1611 | private: |
1612 | struct Datablock { |
1613 | char* data; |
1614 | size_t size; |
1615 | Datablock(char* p, size_t s) : data(p), size(s) {} |
1616 | }; |
1617 | |
1618 | static void Deleter(void* arg, const char* bytes, size_t size) { |
1619 | delete[] bytes; |
1620 | } |
1621 | |
1622 | Sink* dest_; |
1623 | std::vector<Datablock> blocks_; |
1624 | |
1625 | // Note: copying this object is allowed |
1626 | }; |
1627 | |
1628 | size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) { |
1629 | SnappySinkAllocator allocator(uncompressed); |
1630 | SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); |
1631 | InternalUncompress(compressed, &writer); |
1632 | return writer.Produced(); |
1633 | } |
1634 | |
1635 | bool Uncompress(Source* compressed, Sink* uncompressed) { |
1636 | // Read the uncompressed length from the front of the compressed input |
1637 | SnappyDecompressor decompressor(compressed); |
1638 | uint32 uncompressed_len = 0; |
1639 | if (!decompressor.ReadUncompressedLength(&uncompressed_len)) { |
1640 | return false; |
1641 | } |
1642 | |
1643 | char c; |
1644 | size_t allocated_size; |
1645 | char* buf = uncompressed->GetAppendBufferVariable( |
1646 | 1, uncompressed_len, &c, 1, &allocated_size); |
1647 | |
1648 | const size_t compressed_len = compressed->Available(); |
1649 | // If we can get a flat buffer, then use it, otherwise do block by block |
1650 | // uncompression |
1651 | if (allocated_size >= uncompressed_len) { |
1652 | SnappyArrayWriter writer(buf); |
1653 | bool result = InternalUncompressAllTags(&decompressor, &writer, |
1654 | compressed_len, uncompressed_len); |
1655 | uncompressed->Append(buf, writer.Produced()); |
1656 | return result; |
1657 | } else { |
1658 | SnappySinkAllocator allocator(uncompressed); |
1659 | SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); |
1660 | return InternalUncompressAllTags(&decompressor, &writer, compressed_len, |
1661 | uncompressed_len); |
1662 | } |
1663 | } |
1664 | |
1665 | } // namespace snappy |
1666 | |