| 1 | #pragma once |
| 2 | |
| 3 | #include <Columns/ColumnVector.h> |
| 4 | #include <Columns/ColumnsCommon.h> |
| 5 | #include <Columns/ColumnsNumber.h> |
| 6 | #include <Common/typeid_cast.h> |
| 7 | #include <DataTypes/DataTypesNumber.h> |
| 8 | #include <DataTypes/DataTypeTuple.h> |
| 9 | #include <DataTypes/DataTypeArray.h> |
| 10 | #include "IAggregateFunction.h" |
| 11 | |
| 12 | namespace DB |
| 13 | { |
| 14 | namespace ErrorCodes |
| 15 | { |
| 16 | extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH; |
| 17 | extern const int BAD_ARGUMENTS; |
| 18 | extern const int BAD_CAST; |
| 19 | } |
| 20 | |
| 21 | /** |
| 22 | GradientComputer class computes gradient according to its loss function |
| 23 | */ |
| 24 | class IGradientComputer |
| 25 | { |
| 26 | public: |
| 27 | IGradientComputer() {} |
| 28 | |
| 29 | virtual ~IGradientComputer() = default; |
| 30 | |
| 31 | /// Adds computed gradient in new point (weights, bias) to batch_gradient |
| 32 | virtual void compute( |
| 33 | std::vector<Float64> & batch_gradient, |
| 34 | const std::vector<Float64> & weights, |
| 35 | Float64 bias, |
| 36 | Float64 l2_reg_coef, |
| 37 | Float64 target, |
| 38 | const IColumn ** columns, |
| 39 | size_t row_num) = 0; |
| 40 | |
| 41 | virtual void predict( |
| 42 | ColumnVector<Float64>::Container & container, |
| 43 | Block & block, |
| 44 | size_t offset, |
| 45 | size_t limit, |
| 46 | const ColumnNumbers & arguments, |
| 47 | const std::vector<Float64> & weights, |
| 48 | Float64 bias, |
| 49 | const Context & context) const = 0; |
| 50 | }; |
| 51 | |
| 52 | |
| 53 | class LinearRegression : public IGradientComputer |
| 54 | { |
| 55 | public: |
| 56 | LinearRegression() {} |
| 57 | |
| 58 | void compute( |
| 59 | std::vector<Float64> & batch_gradient, |
| 60 | const std::vector<Float64> & weights, |
| 61 | Float64 bias, |
| 62 | Float64 l2_reg_coef, |
| 63 | Float64 target, |
| 64 | const IColumn ** columns, |
| 65 | size_t row_num) override; |
| 66 | |
| 67 | void predict( |
| 68 | ColumnVector<Float64>::Container & container, |
| 69 | Block & block, |
| 70 | size_t offset, |
| 71 | size_t limit, |
| 72 | const ColumnNumbers & arguments, |
| 73 | const std::vector<Float64> & weights, |
| 74 | Float64 bias, |
| 75 | const Context & context) const override; |
| 76 | }; |
| 77 | |
| 78 | |
| 79 | class LogisticRegression : public IGradientComputer |
| 80 | { |
| 81 | public: |
| 82 | LogisticRegression() {} |
| 83 | |
| 84 | void compute( |
| 85 | std::vector<Float64> & batch_gradient, |
| 86 | const std::vector<Float64> & weights, |
| 87 | Float64 bias, |
| 88 | Float64 l2_reg_coef, |
| 89 | Float64 target, |
| 90 | const IColumn ** columns, |
| 91 | size_t row_num) override; |
| 92 | |
| 93 | void predict( |
| 94 | ColumnVector<Float64>::Container & container, |
| 95 | Block & block, |
| 96 | size_t offset, |
| 97 | size_t limit, |
| 98 | const ColumnNumbers & arguments, |
| 99 | const std::vector<Float64> & weights, |
| 100 | Float64 bias, |
| 101 | const Context & context) const override; |
| 102 | }; |
| 103 | |
| 104 | |
| 105 | /** |
| 106 | * IWeightsUpdater class defines the way to update current weights |
| 107 | * and uses GradientComputer class on each iteration |
| 108 | */ |
| 109 | class IWeightsUpdater |
| 110 | { |
| 111 | public: |
| 112 | virtual ~IWeightsUpdater() = default; |
| 113 | |
| 114 | /// Calls GradientComputer to update current mini-batch |
| 115 | virtual void add_to_batch( |
| 116 | std::vector<Float64> & batch_gradient, |
| 117 | IGradientComputer & gradient_computer, |
| 118 | const std::vector<Float64> & weights, |
| 119 | Float64 bias, |
| 120 | Float64 l2_reg_coef, |
| 121 | Float64 target, |
| 122 | const IColumn ** columns, |
| 123 | size_t row_num); |
| 124 | |
| 125 | /// Updates current weights according to the gradient from the last mini-batch |
| 126 | virtual void update( |
| 127 | UInt64 batch_size, |
| 128 | std::vector<Float64> & weights, |
| 129 | Float64 & bias, |
| 130 | Float64 learning_rate, |
| 131 | const std::vector<Float64> & gradient) = 0; |
| 132 | |
| 133 | /// Used during the merge of two states |
| 134 | virtual void merge(const IWeightsUpdater &, Float64, Float64) {} |
| 135 | |
| 136 | /// Used for serialization when necessary |
| 137 | virtual void write(WriteBuffer &) const {} |
| 138 | |
| 139 | /// Used for serialization when necessary |
| 140 | virtual void read(ReadBuffer &) {} |
| 141 | }; |
| 142 | |
| 143 | |
| 144 | class StochasticGradientDescent : public IWeightsUpdater |
| 145 | { |
| 146 | public: |
| 147 | void update(UInt64 batch_size, std::vector<Float64> & weights, Float64 & bias, Float64 learning_rate, const std::vector<Float64> & batch_gradient) override; |
| 148 | }; |
| 149 | |
| 150 | |
| 151 | class Momentum : public IWeightsUpdater |
| 152 | { |
| 153 | public: |
| 154 | Momentum() {} |
| 155 | |
| 156 | Momentum(Float64 alpha) : alpha_(alpha) {} |
| 157 | |
| 158 | void update(UInt64 batch_size, std::vector<Float64> & weights, Float64 & bias, Float64 learning_rate, const std::vector<Float64> & batch_gradient) override; |
| 159 | |
| 160 | virtual void merge(const IWeightsUpdater & rhs, Float64 frac, Float64 rhs_frac) override; |
| 161 | |
| 162 | void write(WriteBuffer & buf) const override; |
| 163 | |
| 164 | void read(ReadBuffer & buf) override; |
| 165 | |
| 166 | private: |
| 167 | Float64 alpha_{0.1}; |
| 168 | std::vector<Float64> accumulated_gradient; |
| 169 | }; |
| 170 | |
| 171 | |
| 172 | class Nesterov : public IWeightsUpdater |
| 173 | { |
| 174 | public: |
| 175 | Nesterov() {} |
| 176 | |
| 177 | Nesterov(Float64 alpha) : alpha_(alpha) {} |
| 178 | |
| 179 | void add_to_batch( |
| 180 | std::vector<Float64> & batch_gradient, |
| 181 | IGradientComputer & gradient_computer, |
| 182 | const std::vector<Float64> & weights, |
| 183 | Float64 bias, |
| 184 | Float64 l2_reg_coef, |
| 185 | Float64 target, |
| 186 | const IColumn ** columns, |
| 187 | size_t row_num) override; |
| 188 | |
| 189 | void update(UInt64 batch_size, std::vector<Float64> & weights, Float64 & bias, Float64 learning_rate, const std::vector<Float64> & batch_gradient) override; |
| 190 | |
| 191 | virtual void merge(const IWeightsUpdater & rhs, Float64 frac, Float64 rhs_frac) override; |
| 192 | |
| 193 | void write(WriteBuffer & buf) const override; |
| 194 | |
| 195 | void read(ReadBuffer & buf) override; |
| 196 | |
| 197 | private: |
| 198 | const Float64 alpha_ = 0.9; |
| 199 | std::vector<Float64> accumulated_gradient; |
| 200 | }; |
| 201 | |
| 202 | |
| 203 | class Adam : public IWeightsUpdater |
| 204 | { |
| 205 | public: |
| 206 | Adam() |
| 207 | { |
| 208 | beta1_powered_ = beta1_; |
| 209 | beta2_powered_ = beta2_; |
| 210 | } |
| 211 | |
| 212 | void add_to_batch( |
| 213 | std::vector<Float64> & batch_gradient, |
| 214 | IGradientComputer & gradient_computer, |
| 215 | const std::vector<Float64> & weights, |
| 216 | Float64 bias, |
| 217 | Float64 l2_reg_coef, |
| 218 | Float64 target, |
| 219 | const IColumn ** columns, |
| 220 | size_t row_num) override; |
| 221 | |
| 222 | void update(UInt64 batch_size, std::vector<Float64> & weights, Float64 & bias, Float64 learning_rate, const std::vector<Float64> & batch_gradient) override; |
| 223 | |
| 224 | virtual void merge(const IWeightsUpdater & rhs, Float64 frac, Float64 rhs_frac) override; |
| 225 | |
| 226 | void write(WriteBuffer & buf) const override; |
| 227 | |
| 228 | void read(ReadBuffer & buf) override; |
| 229 | |
| 230 | private: |
| 231 | /// beta1 and beta2 hyperparameters have such recommended values |
| 232 | const Float64 beta1_ = 0.9; |
| 233 | const Float64 beta2_ = 0.999; |
| 234 | const Float64 eps_ = 0.000001; |
| 235 | Float64 beta1_powered_; |
| 236 | Float64 beta2_powered_; |
| 237 | |
| 238 | std::vector<Float64> average_gradient; |
| 239 | std::vector<Float64> average_squared_gradient; |
| 240 | }; |
| 241 | |
| 242 | |
| 243 | /** LinearModelData is a class which manages current state of learning |
| 244 | */ |
| 245 | class LinearModelData |
| 246 | { |
| 247 | public: |
| 248 | LinearModelData() {} |
| 249 | |
| 250 | LinearModelData( |
| 251 | Float64 learning_rate_, |
| 252 | Float64 l2_reg_coef_, |
| 253 | UInt64 param_num_, |
| 254 | UInt64 batch_capacity_, |
| 255 | std::shared_ptr<IGradientComputer> gradient_computer_, |
| 256 | std::shared_ptr<IWeightsUpdater> weights_updater_); |
| 257 | |
| 258 | void add(const IColumn ** columns, size_t row_num); |
| 259 | |
| 260 | void merge(const LinearModelData & rhs); |
| 261 | |
| 262 | void write(WriteBuffer & buf) const; |
| 263 | |
| 264 | void read(ReadBuffer & buf); |
| 265 | |
| 266 | void predict( |
| 267 | ColumnVector<Float64>::Container & container, |
| 268 | Block & block, |
| 269 | size_t offset, |
| 270 | size_t limit, |
| 271 | const ColumnNumbers & arguments, |
| 272 | const Context & context) const; |
| 273 | |
| 274 | void returnWeights(IColumn & to) const; |
| 275 | private: |
| 276 | std::vector<Float64> weights; |
| 277 | Float64 bias{0.0}; |
| 278 | |
| 279 | Float64 learning_rate; |
| 280 | Float64 l2_reg_coef; |
| 281 | UInt64 batch_capacity; |
| 282 | |
| 283 | UInt64 iter_num = 0; |
| 284 | std::vector<Float64> gradient_batch; |
| 285 | UInt64 batch_size; |
| 286 | |
| 287 | std::shared_ptr<IGradientComputer> gradient_computer; |
| 288 | std::shared_ptr<IWeightsUpdater> weights_updater; |
| 289 | |
| 290 | /** The function is called when we want to flush current batch and update our weights |
| 291 | */ |
| 292 | void update_state(); |
| 293 | }; |
| 294 | |
| 295 | |
| 296 | template < |
| 297 | /// Implemented Machine Learning method |
| 298 | typename Data, |
| 299 | /// Name of the method |
| 300 | typename Name> |
| 301 | class AggregateFunctionMLMethod final : public IAggregateFunctionDataHelper<Data, AggregateFunctionMLMethod<Data, Name>> |
| 302 | { |
| 303 | public: |
| 304 | String getName() const override { return Name::name; } |
| 305 | |
| 306 | explicit AggregateFunctionMLMethod( |
| 307 | UInt32 param_num_, |
| 308 | std::unique_ptr<IGradientComputer> gradient_computer_, |
| 309 | std::string weights_updater_name_, |
| 310 | Float64 learning_rate_, |
| 311 | Float64 l2_reg_coef_, |
| 312 | UInt64 batch_size_, |
| 313 | const DataTypes & arguments_types, |
| 314 | const Array & params) |
| 315 | : IAggregateFunctionDataHelper<Data, AggregateFunctionMLMethod<Data, Name>>(arguments_types, params) |
| 316 | , param_num(param_num_) |
| 317 | , learning_rate(learning_rate_) |
| 318 | , l2_reg_coef(l2_reg_coef_) |
| 319 | , batch_size(batch_size_) |
| 320 | , gradient_computer(std::move(gradient_computer_)) |
| 321 | , weights_updater_name(std::move(weights_updater_name_)) |
| 322 | { |
| 323 | } |
| 324 | |
| 325 | /// This function is called when SELECT linearRegression(...) is called |
| 326 | DataTypePtr getReturnType() const override |
| 327 | { |
| 328 | return std::make_shared<DataTypeArray>(std::make_shared<DataTypeFloat64>()); |
| 329 | } |
| 330 | |
| 331 | /// This function is called from evalMLMethod function for correct predictValues call |
| 332 | DataTypePtr getReturnTypeToPredict() const override |
| 333 | { |
| 334 | return std::make_shared<DataTypeNumber<Float64>>(); |
| 335 | } |
| 336 | |
| 337 | void create(AggregateDataPtr place) const override |
| 338 | { |
| 339 | std::shared_ptr<IWeightsUpdater> new_weights_updater; |
| 340 | if (weights_updater_name == "SGD" ) |
| 341 | new_weights_updater = std::make_shared<StochasticGradientDescent>(); |
| 342 | else if (weights_updater_name == "Momentum" ) |
| 343 | new_weights_updater = std::make_shared<Momentum>(); |
| 344 | else if (weights_updater_name == "Nesterov" ) |
| 345 | new_weights_updater = std::make_shared<Nesterov>(); |
| 346 | else if (weights_updater_name == "Adam" ) |
| 347 | new_weights_updater = std::make_shared<Adam>(); |
| 348 | else |
| 349 | throw Exception("Illegal name of weights updater (should have been checked earlier)" , ErrorCodes::LOGICAL_ERROR); |
| 350 | |
| 351 | new (place) Data(learning_rate, l2_reg_coef, param_num, batch_size, gradient_computer, new_weights_updater); |
| 352 | } |
| 353 | |
| 354 | void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override |
| 355 | { |
| 356 | this->data(place).add(columns, row_num); |
| 357 | } |
| 358 | |
| 359 | void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override { this->data(place).merge(this->data(rhs)); } |
| 360 | |
| 361 | void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override { this->data(place).write(buf); } |
| 362 | |
| 363 | void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override { this->data(place).read(buf); } |
| 364 | |
| 365 | void predictValues( |
| 366 | ConstAggregateDataPtr place, |
| 367 | IColumn & to, |
| 368 | Block & block, |
| 369 | size_t offset, |
| 370 | size_t limit, |
| 371 | const ColumnNumbers & arguments, |
| 372 | const Context & context) const override |
| 373 | { |
| 374 | if (arguments.size() != param_num + 1) |
| 375 | throw Exception( |
| 376 | "Predict got incorrect number of arguments. Got: " + std::to_string(arguments.size()) |
| 377 | + ". Required: " + std::to_string(param_num + 1), |
| 378 | ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH); |
| 379 | |
| 380 | /// This cast might be correct because column type is based on getReturnTypeToPredict. |
| 381 | auto * column = typeid_cast<ColumnFloat64 *>(&to); |
| 382 | if (!column) |
| 383 | throw Exception("Cast of column of predictions is incorrect. getReturnTypeToPredict must return same value as it is casted to" , |
| 384 | ErrorCodes::BAD_CAST); |
| 385 | |
| 386 | this->data(place).predict(column->getData(), block, offset, limit, arguments, context); |
| 387 | } |
| 388 | |
| 389 | /** This function is called if aggregate function without State modifier is selected in a query. |
| 390 | * Inserts all weights of the model into the column 'to', so user may use such information if needed |
| 391 | */ |
| 392 | void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override |
| 393 | { |
| 394 | this->data(place).returnWeights(to); |
| 395 | } |
| 396 | |
| 397 | private: |
| 398 | UInt64 param_num; |
| 399 | Float64 learning_rate; |
| 400 | Float64 l2_reg_coef; |
| 401 | UInt64 batch_size; |
| 402 | std::shared_ptr<IGradientComputer> gradient_computer; |
| 403 | std::string weights_updater_name; |
| 404 | }; |
| 405 | |
| 406 | struct NameLinearRegression |
| 407 | { |
| 408 | static constexpr auto name = "stochasticLinearRegression" ; |
| 409 | }; |
| 410 | struct NameLogisticRegression |
| 411 | { |
| 412 | static constexpr auto name = "stochasticLogisticRegression" ; |
| 413 | }; |
| 414 | |
| 415 | } |
| 416 | |