| 1 | #pragma once |
| 2 | |
| 3 | #include <AggregateFunctions/IAggregateFunction.h> |
| 4 | #include <Columns/ColumnVector.h> |
| 5 | #include <Columns/ColumnTuple.h> |
| 6 | #include <Common/assert_cast.h> |
| 7 | #include <DataTypes/DataTypeNullable.h> |
| 8 | #include <DataTypes/DataTypesNumber.h> |
| 9 | #include <DataTypes/DataTypeTuple.h> |
| 10 | #include <IO/ReadHelpers.h> |
| 11 | #include <IO/WriteHelpers.h> |
| 12 | #include <limits> |
| 13 | |
| 14 | namespace DB |
| 15 | { |
| 16 | |
| 17 | namespace ErrorCodes |
| 18 | { |
| 19 | extern const int ILLEGAL_TYPE_OF_ARGUMENT; |
| 20 | } |
| 21 | |
| 22 | template <typename X, typename Y, typename Ret> |
| 23 | struct AggregateFunctionSimpleLinearRegressionData final |
| 24 | { |
| 25 | size_t count = 0; |
| 26 | Ret sum_x = 0; |
| 27 | Ret sum_y = 0; |
| 28 | Ret sum_xx = 0; |
| 29 | Ret sum_xy = 0; |
| 30 | |
| 31 | void add(X x, Y y) |
| 32 | { |
| 33 | count += 1; |
| 34 | sum_x += x; |
| 35 | sum_y += y; |
| 36 | sum_xx += x * x; |
| 37 | sum_xy += x * y; |
| 38 | } |
| 39 | |
| 40 | void merge(const AggregateFunctionSimpleLinearRegressionData & other) |
| 41 | { |
| 42 | count += other.count; |
| 43 | sum_x += other.sum_x; |
| 44 | sum_y += other.sum_y; |
| 45 | sum_xx += other.sum_xx; |
| 46 | sum_xy += other.sum_xy; |
| 47 | } |
| 48 | |
| 49 | void serialize(WriteBuffer & buf) const |
| 50 | { |
| 51 | writeBinary(count, buf); |
| 52 | writeBinary(sum_x, buf); |
| 53 | writeBinary(sum_y, buf); |
| 54 | writeBinary(sum_xx, buf); |
| 55 | writeBinary(sum_xy, buf); |
| 56 | } |
| 57 | |
| 58 | void deserialize(ReadBuffer & buf) |
| 59 | { |
| 60 | readBinary(count, buf); |
| 61 | readBinary(sum_x, buf); |
| 62 | readBinary(sum_y, buf); |
| 63 | readBinary(sum_xx, buf); |
| 64 | readBinary(sum_xy, buf); |
| 65 | } |
| 66 | |
| 67 | Ret getK() const |
| 68 | { |
| 69 | Ret divisor = sum_xx * count - sum_x * sum_x; |
| 70 | |
| 71 | if (divisor == 0) |
| 72 | return std::numeric_limits<Ret>::quiet_NaN(); |
| 73 | |
| 74 | return (sum_xy * count - sum_x * sum_y) / divisor; |
| 75 | } |
| 76 | |
| 77 | Ret getB(Ret k) const |
| 78 | { |
| 79 | if (count == 0) |
| 80 | return std::numeric_limits<Ret>::quiet_NaN(); |
| 81 | |
| 82 | return (sum_y - k * sum_x) / count; |
| 83 | } |
| 84 | }; |
| 85 | |
| 86 | /// Calculates simple linear regression parameters. |
| 87 | /// Result is a tuple (k, b) for y = k * x + b equation, solved by least squares approximation. |
| 88 | template <typename X, typename Y, typename Ret = Float64> |
| 89 | class AggregateFunctionSimpleLinearRegression final : public IAggregateFunctionDataHelper< |
| 90 | AggregateFunctionSimpleLinearRegressionData<X, Y, Ret>, |
| 91 | AggregateFunctionSimpleLinearRegression<X, Y, Ret> |
| 92 | > |
| 93 | { |
| 94 | public: |
| 95 | AggregateFunctionSimpleLinearRegression( |
| 96 | const DataTypes & arguments, |
| 97 | const Array & params |
| 98 | ): |
| 99 | IAggregateFunctionDataHelper< |
| 100 | AggregateFunctionSimpleLinearRegressionData<X, Y, Ret>, |
| 101 | AggregateFunctionSimpleLinearRegression<X, Y, Ret> |
| 102 | > {arguments, params} |
| 103 | { |
| 104 | // notice: arguments has been checked before |
| 105 | } |
| 106 | |
| 107 | String getName() const override |
| 108 | { |
| 109 | return "simpleLinearRegression" ; |
| 110 | } |
| 111 | |
| 112 | void add( |
| 113 | AggregateDataPtr place, |
| 114 | const IColumn ** columns, |
| 115 | size_t row_num, |
| 116 | Arena * |
| 117 | ) const override |
| 118 | { |
| 119 | auto col_x = assert_cast<const ColumnVector<X> *>(columns[0]); |
| 120 | auto col_y = assert_cast<const ColumnVector<Y> *>(columns[1]); |
| 121 | |
| 122 | X x = col_x->getData()[row_num]; |
| 123 | Y y = col_y->getData()[row_num]; |
| 124 | |
| 125 | this->data(place).add(x, y); |
| 126 | } |
| 127 | |
| 128 | void merge( |
| 129 | AggregateDataPtr place, |
| 130 | ConstAggregateDataPtr rhs, Arena * |
| 131 | ) const override |
| 132 | { |
| 133 | this->data(place).merge(this->data(rhs)); |
| 134 | } |
| 135 | |
| 136 | void serialize( |
| 137 | ConstAggregateDataPtr place, |
| 138 | WriteBuffer & buf |
| 139 | ) const override |
| 140 | { |
| 141 | this->data(place).serialize(buf); |
| 142 | } |
| 143 | |
| 144 | void deserialize( |
| 145 | AggregateDataPtr place, |
| 146 | ReadBuffer & buf, Arena * |
| 147 | ) const override |
| 148 | { |
| 149 | this->data(place).deserialize(buf); |
| 150 | } |
| 151 | |
| 152 | DataTypePtr getReturnType() const override |
| 153 | { |
| 154 | DataTypes types |
| 155 | { |
| 156 | std::make_shared<DataTypeNumber<Ret>>(), |
| 157 | std::make_shared<DataTypeNumber<Ret>>(), |
| 158 | }; |
| 159 | |
| 160 | Strings names |
| 161 | { |
| 162 | "k" , |
| 163 | "b" , |
| 164 | }; |
| 165 | |
| 166 | return std::make_shared<DataTypeTuple>( |
| 167 | std::move(types), |
| 168 | std::move(names) |
| 169 | ); |
| 170 | } |
| 171 | |
| 172 | void insertResultInto( |
| 173 | ConstAggregateDataPtr place, |
| 174 | IColumn & to |
| 175 | ) const override |
| 176 | { |
| 177 | Ret k = this->data(place).getK(); |
| 178 | Ret b = this->data(place).getB(k); |
| 179 | |
| 180 | auto & col_tuple = assert_cast<ColumnTuple &>(to); |
| 181 | auto & col_k = assert_cast<ColumnVector<Ret> &>(col_tuple.getColumn(0)); |
| 182 | auto & col_b = assert_cast<ColumnVector<Ret> &>(col_tuple.getColumn(1)); |
| 183 | |
| 184 | col_k.getData().push_back(k); |
| 185 | col_b.getData().push_back(b); |
| 186 | } |
| 187 | }; |
| 188 | |
| 189 | } |
| 190 | |