| 1 | #pragma once |
| 2 | |
| 3 | #include <IO/WriteHelpers.h> |
| 4 | #include <IO/ReadHelpers.h> |
| 5 | #include <DataTypes/DataTypesNumber.h> |
| 6 | #include <AggregateFunctions/IAggregateFunction.h> |
| 7 | #include <Columns/ColumnsNumber.h> |
| 8 | #include <Common/assert_cast.h> |
| 9 | |
| 10 | #include <cmath> |
| 11 | |
| 12 | |
| 13 | namespace DB |
| 14 | { |
| 15 | |
| 16 | namespace |
| 17 | { |
| 18 | |
| 19 | /// This function returns true if both values are large and comparable. |
| 20 | /// It is used to calculate the mean value by merging two sources. |
| 21 | /// It means that if the sizes of both sources are large and comparable, then we must apply a special |
| 22 | /// formula guaranteeing more stability. |
| 23 | bool areComparable(UInt64 a, UInt64 b) |
| 24 | { |
| 25 | const Float64 sensitivity = 0.001; |
| 26 | const UInt64 threshold = 10000; |
| 27 | |
| 28 | if ((a == 0) || (b == 0)) |
| 29 | return false; |
| 30 | |
| 31 | auto res = std::minmax(a, b); |
| 32 | return (((1 - static_cast<Float64>(res.first) / res.second) < sensitivity) && (res.first > threshold)); |
| 33 | } |
| 34 | |
| 35 | } |
| 36 | |
| 37 | /** Statistical aggregate functions |
| 38 | * varSamp - sample variance |
| 39 | * stddevSamp - mean sample quadratic deviation |
| 40 | * varPop - variance |
| 41 | * stddevPop - standard deviation |
| 42 | * covarSamp - selective covariance |
| 43 | * covarPop - covariance |
| 44 | * corr - correlation |
| 45 | */ |
| 46 | |
| 47 | /** Parallel and incremental algorithm for calculating variance. |
| 48 | * Source: "Updating formulae and a pairwise algorithm for computing sample variances" |
| 49 | * (Chan et al., Stanford University, 12.1979) |
| 50 | */ |
| 51 | template <typename T, typename Op> |
| 52 | class AggregateFunctionVarianceData |
| 53 | { |
| 54 | public: |
| 55 | void update(const IColumn & column, size_t row_num) |
| 56 | { |
| 57 | T received = assert_cast<const ColumnVector<T> &>(column).getData()[row_num]; |
| 58 | Float64 val = static_cast<Float64>(received); |
| 59 | Float64 delta = val - mean; |
| 60 | |
| 61 | ++count; |
| 62 | mean += delta / count; |
| 63 | m2 += delta * (val - mean); |
| 64 | } |
| 65 | |
| 66 | void mergeWith(const AggregateFunctionVarianceData & source) |
| 67 | { |
| 68 | UInt64 total_count = count + source.count; |
| 69 | if (total_count == 0) |
| 70 | return; |
| 71 | |
| 72 | Float64 factor = static_cast<Float64>(count * source.count) / total_count; |
| 73 | Float64 delta = mean - source.mean; |
| 74 | |
| 75 | if (areComparable(count, source.count)) |
| 76 | mean = (source.count * source.mean + count * mean) / total_count; |
| 77 | else |
| 78 | mean = source.mean + delta * (static_cast<Float64>(count) / total_count); |
| 79 | |
| 80 | m2 += source.m2 + delta * delta * factor; |
| 81 | count = total_count; |
| 82 | } |
| 83 | |
| 84 | void serialize(WriteBuffer & buf) const |
| 85 | { |
| 86 | writeVarUInt(count, buf); |
| 87 | writeBinary(mean, buf); |
| 88 | writeBinary(m2, buf); |
| 89 | } |
| 90 | |
| 91 | void deserialize(ReadBuffer & buf) |
| 92 | { |
| 93 | readVarUInt(count, buf); |
| 94 | readBinary(mean, buf); |
| 95 | readBinary(m2, buf); |
| 96 | } |
| 97 | |
| 98 | void publish(IColumn & to) const |
| 99 | { |
| 100 | assert_cast<ColumnFloat64 &>(to).getData().push_back(Op::apply(m2, count)); |
| 101 | } |
| 102 | |
| 103 | private: |
| 104 | UInt64 count = 0; |
| 105 | Float64 mean = 0.0; |
| 106 | Float64 m2 = 0.0; |
| 107 | }; |
| 108 | |
| 109 | /** The main code for the implementation of varSamp, stddevSamp, varPop, stddevPop. |
| 110 | */ |
| 111 | template <typename T, typename Op> |
| 112 | class AggregateFunctionVariance final |
| 113 | : public IAggregateFunctionDataHelper<AggregateFunctionVarianceData<T, Op>, AggregateFunctionVariance<T, Op>> |
| 114 | { |
| 115 | public: |
| 116 | AggregateFunctionVariance(const DataTypePtr & arg) |
| 117 | : IAggregateFunctionDataHelper<AggregateFunctionVarianceData<T, Op>, AggregateFunctionVariance<T, Op>>({arg}, {}) {} |
| 118 | |
| 119 | String getName() const override { return Op::name; } |
| 120 | |
| 121 | DataTypePtr getReturnType() const override |
| 122 | { |
| 123 | return std::make_shared<DataTypeFloat64>(); |
| 124 | } |
| 125 | |
| 126 | void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override |
| 127 | { |
| 128 | this->data(place).update(*columns[0], row_num); |
| 129 | } |
| 130 | |
| 131 | void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override |
| 132 | { |
| 133 | this->data(place).mergeWith(this->data(rhs)); |
| 134 | } |
| 135 | |
| 136 | void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override |
| 137 | { |
| 138 | this->data(place).serialize(buf); |
| 139 | } |
| 140 | |
| 141 | void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override |
| 142 | { |
| 143 | this->data(place).deserialize(buf); |
| 144 | } |
| 145 | |
| 146 | void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override |
| 147 | { |
| 148 | this->data(place).publish(to); |
| 149 | } |
| 150 | }; |
| 151 | |
| 152 | /** Implementing the varSamp function. |
| 153 | */ |
| 154 | struct AggregateFunctionVarSampImpl |
| 155 | { |
| 156 | static constexpr auto name = "varSamp" ; |
| 157 | |
| 158 | static inline Float64 apply(Float64 m2, UInt64 count) |
| 159 | { |
| 160 | if (count < 2) |
| 161 | return std::numeric_limits<Float64>::infinity(); |
| 162 | else |
| 163 | return m2 / (count - 1); |
| 164 | } |
| 165 | }; |
| 166 | |
| 167 | /** Implementing the stddevSamp function. |
| 168 | */ |
| 169 | struct AggregateFunctionStdDevSampImpl |
| 170 | { |
| 171 | static constexpr auto name = "stddevSamp" ; |
| 172 | |
| 173 | static inline Float64 apply(Float64 m2, UInt64 count) |
| 174 | { |
| 175 | return sqrt(AggregateFunctionVarSampImpl::apply(m2, count)); |
| 176 | } |
| 177 | }; |
| 178 | |
| 179 | /** Implementing the varPop function. |
| 180 | */ |
| 181 | struct AggregateFunctionVarPopImpl |
| 182 | { |
| 183 | static constexpr auto name = "varPop" ; |
| 184 | |
| 185 | static inline Float64 apply(Float64 m2, UInt64 count) |
| 186 | { |
| 187 | if (count == 0) |
| 188 | return std::numeric_limits<Float64>::infinity(); |
| 189 | else if (count == 1) |
| 190 | return 0.0; |
| 191 | else |
| 192 | return m2 / count; |
| 193 | } |
| 194 | }; |
| 195 | |
| 196 | /** Implementing the stddevPop function. |
| 197 | */ |
| 198 | struct AggregateFunctionStdDevPopImpl |
| 199 | { |
| 200 | static constexpr auto name = "stddevPop" ; |
| 201 | |
| 202 | static inline Float64 apply(Float64 m2, UInt64 count) |
| 203 | { |
| 204 | return sqrt(AggregateFunctionVarPopImpl::apply(m2, count)); |
| 205 | } |
| 206 | }; |
| 207 | |
| 208 | /** If `compute_marginal_moments` flag is set this class provides the successor |
| 209 | * CovarianceData support of marginal moments for calculating the correlation. |
| 210 | */ |
| 211 | template <bool compute_marginal_moments> |
| 212 | class BaseCovarianceData |
| 213 | { |
| 214 | protected: |
| 215 | void incrementMarginalMoments(Float64, Float64) {} |
| 216 | void mergeWith(const BaseCovarianceData &) {} |
| 217 | void serialize(WriteBuffer &) const {} |
| 218 | void deserialize(const ReadBuffer &) {} |
| 219 | }; |
| 220 | |
| 221 | template <> |
| 222 | class BaseCovarianceData<true> |
| 223 | { |
| 224 | protected: |
| 225 | void incrementMarginalMoments(Float64 left_incr, Float64 right_incr) |
| 226 | { |
| 227 | left_m2 += left_incr; |
| 228 | right_m2 += right_incr; |
| 229 | } |
| 230 | |
| 231 | void mergeWith(const BaseCovarianceData & source) |
| 232 | { |
| 233 | left_m2 += source.left_m2; |
| 234 | right_m2 += source.right_m2; |
| 235 | } |
| 236 | |
| 237 | void serialize(WriteBuffer & buf) const |
| 238 | { |
| 239 | writeBinary(left_m2, buf); |
| 240 | writeBinary(right_m2, buf); |
| 241 | } |
| 242 | |
| 243 | void deserialize(ReadBuffer & buf) |
| 244 | { |
| 245 | readBinary(left_m2, buf); |
| 246 | readBinary(right_m2, buf); |
| 247 | } |
| 248 | |
| 249 | protected: |
| 250 | Float64 left_m2 = 0.0; |
| 251 | Float64 right_m2 = 0.0; |
| 252 | }; |
| 253 | |
| 254 | /** Parallel and incremental algorithm for calculating covariance. |
| 255 | * Source: "Numerically Stable, Single-Pass, Parallel Statistics Algorithms" |
| 256 | * (J. Bennett et al., Sandia National Laboratories, |
| 257 | * 2009 IEEE International Conference on Cluster Computing) |
| 258 | */ |
| 259 | template <typename T, typename U, typename Op, bool compute_marginal_moments> |
| 260 | class CovarianceData : public BaseCovarianceData<compute_marginal_moments> |
| 261 | { |
| 262 | private: |
| 263 | using Base = BaseCovarianceData<compute_marginal_moments>; |
| 264 | |
| 265 | public: |
| 266 | void update(const IColumn & column_left, const IColumn & column_right, size_t row_num) |
| 267 | { |
| 268 | T left_received = assert_cast<const ColumnVector<T> &>(column_left).getData()[row_num]; |
| 269 | Float64 left_val = static_cast<Float64>(left_received); |
| 270 | Float64 left_delta = left_val - left_mean; |
| 271 | |
| 272 | U right_received = assert_cast<const ColumnVector<U> &>(column_right).getData()[row_num]; |
| 273 | Float64 right_val = static_cast<Float64>(right_received); |
| 274 | Float64 right_delta = right_val - right_mean; |
| 275 | |
| 276 | Float64 old_right_mean = right_mean; |
| 277 | |
| 278 | ++count; |
| 279 | |
| 280 | left_mean += left_delta / count; |
| 281 | right_mean += right_delta / count; |
| 282 | co_moment += (left_val - left_mean) * (right_val - old_right_mean); |
| 283 | |
| 284 | /// Update the marginal moments, if any. |
| 285 | if (compute_marginal_moments) |
| 286 | { |
| 287 | Float64 left_incr = left_delta * (left_val - left_mean); |
| 288 | Float64 right_incr = right_delta * (right_val - right_mean); |
| 289 | Base::incrementMarginalMoments(left_incr, right_incr); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | void mergeWith(const CovarianceData & source) |
| 294 | { |
| 295 | UInt64 total_count = count + source.count; |
| 296 | if (total_count == 0) |
| 297 | return; |
| 298 | |
| 299 | Float64 factor = static_cast<Float64>(count * source.count) / total_count; |
| 300 | Float64 left_delta = left_mean - source.left_mean; |
| 301 | Float64 right_delta = right_mean - source.right_mean; |
| 302 | |
| 303 | if (areComparable(count, source.count)) |
| 304 | { |
| 305 | left_mean = (source.count * source.left_mean + count * left_mean) / total_count; |
| 306 | right_mean = (source.count * source.right_mean + count * right_mean) / total_count; |
| 307 | } |
| 308 | else |
| 309 | { |
| 310 | left_mean = source.left_mean + left_delta * (static_cast<Float64>(count) / total_count); |
| 311 | right_mean = source.right_mean + right_delta * (static_cast<Float64>(count) / total_count); |
| 312 | } |
| 313 | |
| 314 | co_moment += source.co_moment + left_delta * right_delta * factor; |
| 315 | count = total_count; |
| 316 | |
| 317 | /// Update the marginal moments, if any. |
| 318 | if (compute_marginal_moments) |
| 319 | { |
| 320 | Float64 left_incr = left_delta * left_delta * factor; |
| 321 | Float64 right_incr = right_delta * right_delta * factor; |
| 322 | Base::mergeWith(source); |
| 323 | Base::incrementMarginalMoments(left_incr, right_incr); |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | void serialize(WriteBuffer & buf) const |
| 328 | { |
| 329 | writeVarUInt(count, buf); |
| 330 | writeBinary(left_mean, buf); |
| 331 | writeBinary(right_mean, buf); |
| 332 | writeBinary(co_moment, buf); |
| 333 | Base::serialize(buf); |
| 334 | } |
| 335 | |
| 336 | void deserialize(ReadBuffer & buf) |
| 337 | { |
| 338 | readVarUInt(count, buf); |
| 339 | readBinary(left_mean, buf); |
| 340 | readBinary(right_mean, buf); |
| 341 | readBinary(co_moment, buf); |
| 342 | Base::deserialize(buf); |
| 343 | } |
| 344 | |
| 345 | void publish(IColumn & to) const |
| 346 | { |
| 347 | if constexpr (compute_marginal_moments) |
| 348 | assert_cast<ColumnFloat64 &>(to).getData().push_back(Op::apply(co_moment, Base::left_m2, Base::right_m2, count)); |
| 349 | else |
| 350 | assert_cast<ColumnFloat64 &>(to).getData().push_back(Op::apply(co_moment, count)); |
| 351 | } |
| 352 | |
| 353 | private: |
| 354 | UInt64 count = 0; |
| 355 | Float64 left_mean = 0.0; |
| 356 | Float64 right_mean = 0.0; |
| 357 | Float64 co_moment = 0.0; |
| 358 | }; |
| 359 | |
| 360 | template <typename T, typename U, typename Op, bool compute_marginal_moments = false> |
| 361 | class AggregateFunctionCovariance final |
| 362 | : public IAggregateFunctionDataHelper< |
| 363 | CovarianceData<T, U, Op, compute_marginal_moments>, |
| 364 | AggregateFunctionCovariance<T, U, Op, compute_marginal_moments>> |
| 365 | { |
| 366 | public: |
| 367 | AggregateFunctionCovariance(const DataTypes & args) : IAggregateFunctionDataHelper< |
| 368 | CovarianceData<T, U, Op, compute_marginal_moments>, |
| 369 | AggregateFunctionCovariance<T, U, Op, compute_marginal_moments>>(args, {}) {} |
| 370 | |
| 371 | String getName() const override { return Op::name; } |
| 372 | |
| 373 | DataTypePtr getReturnType() const override |
| 374 | { |
| 375 | return std::make_shared<DataTypeFloat64>(); |
| 376 | } |
| 377 | |
| 378 | void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override |
| 379 | { |
| 380 | this->data(place).update(*columns[0], *columns[1], row_num); |
| 381 | } |
| 382 | |
| 383 | void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override |
| 384 | { |
| 385 | this->data(place).mergeWith(this->data(rhs)); |
| 386 | } |
| 387 | |
| 388 | void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override |
| 389 | { |
| 390 | this->data(place).serialize(buf); |
| 391 | } |
| 392 | |
| 393 | void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override |
| 394 | { |
| 395 | this->data(place).deserialize(buf); |
| 396 | } |
| 397 | |
| 398 | void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override |
| 399 | { |
| 400 | this->data(place).publish(to); |
| 401 | } |
| 402 | }; |
| 403 | |
| 404 | /** Implementing the covarSamp function. |
| 405 | */ |
| 406 | struct AggregateFunctionCovarSampImpl |
| 407 | { |
| 408 | static constexpr auto name = "covarSamp" ; |
| 409 | |
| 410 | static inline Float64 apply(Float64 co_moment, UInt64 count) |
| 411 | { |
| 412 | if (count < 2) |
| 413 | return std::numeric_limits<Float64>::infinity(); |
| 414 | else |
| 415 | return co_moment / (count - 1); |
| 416 | } |
| 417 | }; |
| 418 | |
| 419 | /** Implementing the covarPop function. |
| 420 | */ |
| 421 | struct AggregateFunctionCovarPopImpl |
| 422 | { |
| 423 | static constexpr auto name = "covarPop" ; |
| 424 | |
| 425 | static inline Float64 apply(Float64 co_moment, UInt64 count) |
| 426 | { |
| 427 | if (count == 0) |
| 428 | return std::numeric_limits<Float64>::infinity(); |
| 429 | else if (count == 1) |
| 430 | return 0.0; |
| 431 | else |
| 432 | return co_moment / count; |
| 433 | } |
| 434 | }; |
| 435 | |
| 436 | /** `corr` function implementation. |
| 437 | */ |
| 438 | struct AggregateFunctionCorrImpl |
| 439 | { |
| 440 | static constexpr auto name = "corr" ; |
| 441 | |
| 442 | static inline Float64 apply(Float64 co_moment, Float64 left_m2, Float64 right_m2, UInt64 count) |
| 443 | { |
| 444 | if (count < 2) |
| 445 | return std::numeric_limits<Float64>::infinity(); |
| 446 | else |
| 447 | return co_moment / sqrt(left_m2 * right_m2); |
| 448 | } |
| 449 | }; |
| 450 | |
| 451 | template <typename T> |
| 452 | using AggregateFunctionVarSampStable = AggregateFunctionVariance<T, AggregateFunctionVarSampImpl>; |
| 453 | |
| 454 | template <typename T> |
| 455 | using AggregateFunctionStddevSampStable = AggregateFunctionVariance<T, AggregateFunctionStdDevSampImpl>; |
| 456 | |
| 457 | template <typename T> |
| 458 | using AggregateFunctionVarPopStable = AggregateFunctionVariance<T, AggregateFunctionVarPopImpl>; |
| 459 | |
| 460 | template <typename T> |
| 461 | using AggregateFunctionStddevPopStable = AggregateFunctionVariance<T, AggregateFunctionStdDevPopImpl>; |
| 462 | |
| 463 | template <typename T, typename U> |
| 464 | using AggregateFunctionCovarSampStable = AggregateFunctionCovariance<T, U, AggregateFunctionCovarSampImpl>; |
| 465 | |
| 466 | template <typename T, typename U> |
| 467 | using AggregateFunctionCovarPopStable = AggregateFunctionCovariance<T, U, AggregateFunctionCovarPopImpl>; |
| 468 | |
| 469 | template <typename T, typename U> |
| 470 | using AggregateFunctionCorrStable = AggregateFunctionCovariance<T, U, AggregateFunctionCorrImpl, true>; |
| 471 | |
| 472 | } |
| 473 | |