| 1 | #pragma once |
| 2 | |
| 3 | #include <Common/PODArray.h> |
| 4 | #include <Common/NaNUtils.h> |
| 5 | #include <Core/Types.h> |
| 6 | #include <IO/WriteBuffer.h> |
| 7 | #include <IO/ReadBuffer.h> |
| 8 | #include <IO/VarInt.h> |
| 9 | |
| 10 | |
| 11 | namespace DB |
| 12 | { |
| 13 | |
| 14 | namespace ErrorCodes |
| 15 | { |
| 16 | extern const int NOT_IMPLEMENTED; |
| 17 | extern const int BAD_ARGUMENTS; |
| 18 | } |
| 19 | |
| 20 | /** Calculates quantile by collecting all values into array |
| 21 | * and applying n-th element (introselect) algorithm for the resulting array. |
| 22 | * |
| 23 | * It uses O(N) memory and it is very inefficient in case of high amount of identical values. |
| 24 | * But it is very CPU efficient for not large datasets. |
| 25 | */ |
| 26 | template <typename Value> |
| 27 | struct QuantileExact |
| 28 | { |
| 29 | /// The memory will be allocated to several elements at once, so that the state occupies 64 bytes. |
| 30 | static constexpr size_t bytes_in_arena = 64 - sizeof(PODArray<Value>); |
| 31 | using Array = PODArrayWithStackMemory<Value, bytes_in_arena>; |
| 32 | Array array; |
| 33 | |
| 34 | void add(const Value & x) |
| 35 | { |
| 36 | /// We must skip NaNs as they are not compatible with comparison sorting. |
| 37 | if (!isNaN(x)) |
| 38 | array.push_back(x); |
| 39 | } |
| 40 | |
| 41 | template <typename Weight> |
| 42 | void add(const Value &, const Weight &) |
| 43 | { |
| 44 | throw Exception("Method add with weight is not implemented for QuantileExact" , ErrorCodes::NOT_IMPLEMENTED); |
| 45 | } |
| 46 | |
| 47 | void merge(const QuantileExact & rhs) |
| 48 | { |
| 49 | array.insert(rhs.array.begin(), rhs.array.end()); |
| 50 | } |
| 51 | |
| 52 | void serialize(WriteBuffer & buf) const |
| 53 | { |
| 54 | size_t size = array.size(); |
| 55 | writeVarUInt(size, buf); |
| 56 | buf.write(reinterpret_cast<const char *>(array.data()), size * sizeof(array[0])); |
| 57 | } |
| 58 | |
| 59 | void deserialize(ReadBuffer & buf) |
| 60 | { |
| 61 | size_t size = 0; |
| 62 | readVarUInt(size, buf); |
| 63 | array.resize(size); |
| 64 | buf.read(reinterpret_cast<char *>(array.data()), size * sizeof(array[0])); |
| 65 | } |
| 66 | |
| 67 | /// Get the value of the `level` quantile. The level must be between 0 and 1. |
| 68 | Value get(Float64 level) |
| 69 | { |
| 70 | if (!array.empty()) |
| 71 | { |
| 72 | size_t n = level < 1 |
| 73 | ? level * array.size() |
| 74 | : (array.size() - 1); |
| 75 | |
| 76 | std::nth_element(array.begin(), array.begin() + n, array.end()); /// NOTE You can think of the radix-select algorithm. |
| 77 | return array[n]; |
| 78 | } |
| 79 | |
| 80 | return std::numeric_limits<Value>::quiet_NaN(); |
| 81 | } |
| 82 | |
| 83 | /// Get the `size` values of `levels` quantiles. Write `size` results starting with `result` address. |
| 84 | /// indices - an array of index levels such that the corresponding elements will go in ascending order. |
| 85 | void getMany(const Float64 * levels, const size_t * indices, size_t size, Value * result) |
| 86 | { |
| 87 | if (!array.empty()) |
| 88 | { |
| 89 | size_t prev_n = 0; |
| 90 | for (size_t i = 0; i < size; ++i) |
| 91 | { |
| 92 | auto level = levels[indices[i]]; |
| 93 | |
| 94 | size_t n = level < 1 |
| 95 | ? level * array.size() |
| 96 | : (array.size() - 1); |
| 97 | |
| 98 | std::nth_element(array.begin() + prev_n, array.begin() + n, array.end()); |
| 99 | |
| 100 | result[indices[i]] = array[n]; |
| 101 | prev_n = n; |
| 102 | } |
| 103 | } |
| 104 | else |
| 105 | { |
| 106 | for (size_t i = 0; i < size; ++i) |
| 107 | result[i] = Value(); |
| 108 | } |
| 109 | } |
| 110 | }; |
| 111 | |
| 112 | /// QuantileExactExclusive is equivalent to Excel PERCENTILE.EXC, R-6, SAS-4, SciPy-(0,0) |
| 113 | template <typename Value> |
| 114 | struct QuantileExactExclusive : public QuantileExact<Value> |
| 115 | { |
| 116 | using QuantileExact<Value>::array; |
| 117 | |
| 118 | /// Get the value of the `level` quantile. The level must be between 0 and 1 excluding bounds. |
| 119 | Float64 getFloat(Float64 level) |
| 120 | { |
| 121 | if (!array.empty()) |
| 122 | { |
| 123 | if (level == 0. || level == 1.) |
| 124 | throw Exception("QuantileExactExclusive cannot interpolate for the percentiles 1 and 0" , ErrorCodes::BAD_ARGUMENTS); |
| 125 | |
| 126 | Float64 h = level * (array.size() + 1); |
| 127 | auto n = static_cast<size_t>(h); |
| 128 | |
| 129 | if (n >= array.size()) |
| 130 | return array[array.size() - 1]; |
| 131 | else if (n < 1) |
| 132 | return array[0]; |
| 133 | |
| 134 | std::nth_element(array.begin(), array.begin() + n - 1, array.end()); |
| 135 | auto nth_element = std::min_element(array.begin() + n, array.end()); |
| 136 | |
| 137 | return array[n - 1] + (h - n) * (*nth_element - array[n - 1]); |
| 138 | } |
| 139 | |
| 140 | return std::numeric_limits<Float64>::quiet_NaN(); |
| 141 | } |
| 142 | |
| 143 | void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float64 * result) |
| 144 | { |
| 145 | if (!array.empty()) |
| 146 | { |
| 147 | size_t prev_n = 0; |
| 148 | for (size_t i = 0; i < size; ++i) |
| 149 | { |
| 150 | auto level = levels[indices[i]]; |
| 151 | if (level == 0. || level == 1.) |
| 152 | throw Exception("QuantileExactExclusive cannot interpolate for the percentiles 1 and 0" , ErrorCodes::BAD_ARGUMENTS); |
| 153 | |
| 154 | Float64 h = level * (array.size() + 1); |
| 155 | auto n = static_cast<size_t>(h); |
| 156 | |
| 157 | if (n >= array.size()) |
| 158 | result[indices[i]] = array[array.size() - 1]; |
| 159 | else if (n < 1) |
| 160 | result[indices[i]] = array[0]; |
| 161 | else |
| 162 | { |
| 163 | std::nth_element(array.begin() + prev_n, array.begin() + n - 1, array.end()); |
| 164 | auto nth_element = std::min_element(array.begin() + n, array.end()); |
| 165 | |
| 166 | result[indices[i]] = array[n - 1] + (h - n) * (*nth_element - array[n - 1]); |
| 167 | prev_n = n - 1; |
| 168 | } |
| 169 | } |
| 170 | } |
| 171 | else |
| 172 | { |
| 173 | for (size_t i = 0; i < size; ++i) |
| 174 | result[i] = std::numeric_limits<Float64>::quiet_NaN(); |
| 175 | } |
| 176 | } |
| 177 | }; |
| 178 | |
| 179 | /// QuantileExactInclusive is equivalent to Excel PERCENTILE and PERCENTILE.INC, R-7, SciPy-(1,1) |
| 180 | template <typename Value> |
| 181 | struct QuantileExactInclusive : public QuantileExact<Value> |
| 182 | { |
| 183 | using QuantileExact<Value>::array; |
| 184 | |
| 185 | /// Get the value of the `level` quantile. The level must be between 0 and 1 including bounds. |
| 186 | Float64 getFloat(Float64 level) |
| 187 | { |
| 188 | if (!array.empty()) |
| 189 | { |
| 190 | Float64 h = level * (array.size() - 1) + 1; |
| 191 | auto n = static_cast<size_t>(h); |
| 192 | |
| 193 | if (n >= array.size()) |
| 194 | return array[array.size() - 1]; |
| 195 | else if (n < 1) |
| 196 | return array[0]; |
| 197 | |
| 198 | std::nth_element(array.begin(), array.begin() + n - 1, array.end()); |
| 199 | auto nth_element = std::min_element(array.begin() + n, array.end()); |
| 200 | |
| 201 | return array[n - 1] + (h - n) * (*nth_element - array[n - 1]); |
| 202 | } |
| 203 | |
| 204 | return std::numeric_limits<Float64>::quiet_NaN(); |
| 205 | } |
| 206 | |
| 207 | void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float64 * result) |
| 208 | { |
| 209 | if (!array.empty()) |
| 210 | { |
| 211 | size_t prev_n = 0; |
| 212 | for (size_t i = 0; i < size; ++i) |
| 213 | { |
| 214 | auto level = levels[indices[i]]; |
| 215 | |
| 216 | Float64 h = level * (array.size() - 1) + 1; |
| 217 | auto n = static_cast<size_t>(h); |
| 218 | |
| 219 | if (n >= array.size()) |
| 220 | result[indices[i]] = array[array.size() - 1]; |
| 221 | else if (n < 1) |
| 222 | result[indices[i]] = array[0]; |
| 223 | else |
| 224 | { |
| 225 | std::nth_element(array.begin() + prev_n, array.begin() + n - 1, array.end()); |
| 226 | auto nth_element = std::min_element(array.begin() + n, array.end()); |
| 227 | |
| 228 | result[indices[i]] = array[n - 1] + (h - n) * (*nth_element - array[n - 1]); |
| 229 | prev_n = n - 1; |
| 230 | } |
| 231 | } |
| 232 | } |
| 233 | else |
| 234 | { |
| 235 | for (size_t i = 0; i < size; ++i) |
| 236 | result[i] = std::numeric_limits<Float64>::quiet_NaN(); |
| 237 | } |
| 238 | } |
| 239 | }; |
| 240 | |
| 241 | } |
| 242 | |