| 1 | #pragma once |
| 2 | |
| 3 | #include <limits> |
| 4 | #include <algorithm> |
| 5 | #include <climits> |
| 6 | #include <sstream> |
| 7 | #include <common/Types.h> |
| 8 | #include <IO/ReadBuffer.h> |
| 9 | #include <IO/ReadHelpers.h> |
| 10 | #include <IO/WriteHelpers.h> |
| 11 | #include <Common/PODArray.h> |
| 12 | #include <Common/NaNUtils.h> |
| 13 | #include <Poco/Exception.h> |
| 14 | #include <pcg_random.hpp> |
| 15 | |
| 16 | |
| 17 | /// Implementing the Reservoir Sampling algorithm. Incrementally selects from the added objects a random subset of the sample_count size. |
| 18 | /// Can approximately get quantiles. |
| 19 | /// Call `quantile` takes O(sample_count log sample_count), if after the previous call `quantile` there was at least one call `insert`. Otherwise O(1). |
| 20 | /// That is, it makes sense to first add, then get quantiles without adding. |
| 21 | |
| 22 | const size_t DEFAULT_SAMPLE_COUNT = 8192; |
| 23 | |
| 24 | /// What if there is not a single value - throw an exception, or return 0 or NaN in the case of double? |
| 25 | namespace ReservoirSamplerOnEmpty |
| 26 | { |
| 27 | enum Enum |
| 28 | { |
| 29 | THROW, |
| 30 | RETURN_NAN_OR_ZERO, |
| 31 | }; |
| 32 | } |
| 33 | |
| 34 | template <typename ResultType, bool is_float> |
| 35 | struct NanLikeValueConstructor |
| 36 | { |
| 37 | static ResultType getValue() |
| 38 | { |
| 39 | return std::numeric_limits<ResultType>::quiet_NaN(); |
| 40 | } |
| 41 | }; |
| 42 | template <typename ResultType> |
| 43 | struct NanLikeValueConstructor<ResultType, false> |
| 44 | { |
| 45 | static ResultType getValue() |
| 46 | { |
| 47 | return ResultType(); |
| 48 | } |
| 49 | }; |
| 50 | |
| 51 | template <typename T, ReservoirSamplerOnEmpty::Enum OnEmpty = ReservoirSamplerOnEmpty::THROW, typename Comparer = std::less<T>> |
| 52 | class ReservoirSampler |
| 53 | { |
| 54 | public: |
| 55 | ReservoirSampler(size_t sample_count_ = DEFAULT_SAMPLE_COUNT) |
| 56 | : sample_count(sample_count_) |
| 57 | { |
| 58 | rng.seed(123456); |
| 59 | } |
| 60 | |
| 61 | void clear() |
| 62 | { |
| 63 | samples.clear(); |
| 64 | sorted = false; |
| 65 | total_values = 0; |
| 66 | rng.seed(123456); |
| 67 | } |
| 68 | |
| 69 | void insert(const T & v) |
| 70 | { |
| 71 | if (isNaN(v)) |
| 72 | return; |
| 73 | |
| 74 | sorted = false; |
| 75 | ++total_values; |
| 76 | if (samples.size() < sample_count) |
| 77 | { |
| 78 | samples.push_back(v); |
| 79 | } |
| 80 | else |
| 81 | { |
| 82 | UInt64 rnd = genRandom(total_values); |
| 83 | if (rnd < sample_count) |
| 84 | samples[rnd] = v; |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | size_t size() const |
| 89 | { |
| 90 | return total_values; |
| 91 | } |
| 92 | |
| 93 | T quantileNearest(double level) |
| 94 | { |
| 95 | if (samples.empty()) |
| 96 | return onEmpty<T>(); |
| 97 | |
| 98 | sortIfNeeded(); |
| 99 | |
| 100 | double index = level * (samples.size() - 1); |
| 101 | size_t int_index = static_cast<size_t>(index + 0.5); |
| 102 | int_index = std::max(0LU, std::min(samples.size() - 1, int_index)); |
| 103 | return samples[int_index]; |
| 104 | } |
| 105 | |
| 106 | /** If T is not a numeric type, using this method causes a compilation error, |
| 107 | * but use of error class does not. SFINAE. |
| 108 | */ |
| 109 | double quantileInterpolated(double level) |
| 110 | { |
| 111 | if (samples.empty()) |
| 112 | { |
| 113 | if (DB::IsDecimalNumber<T>) |
| 114 | return 0; |
| 115 | return onEmpty<double>(); |
| 116 | } |
| 117 | sortIfNeeded(); |
| 118 | |
| 119 | double index = std::max(0., std::min(samples.size() - 1., level * (samples.size() - 1))); |
| 120 | |
| 121 | /// To get the value of a fractional index, we linearly interpolate between neighboring values. |
| 122 | size_t left_index = static_cast<size_t>(index); |
| 123 | size_t right_index = left_index + 1; |
| 124 | if (right_index == samples.size()) |
| 125 | return samples[left_index]; |
| 126 | |
| 127 | double left_coef = right_index - index; |
| 128 | double right_coef = index - left_index; |
| 129 | |
| 130 | return samples[left_index] * left_coef + samples[right_index] * right_coef; |
| 131 | } |
| 132 | |
| 133 | void merge(const ReservoirSampler<T, OnEmpty> & b) |
| 134 | { |
| 135 | if (sample_count != b.sample_count) |
| 136 | throw Poco::Exception("Cannot merge ReservoirSampler's with different sample_count" ); |
| 137 | sorted = false; |
| 138 | |
| 139 | if (b.total_values <= sample_count) |
| 140 | { |
| 141 | for (size_t i = 0; i < b.samples.size(); ++i) |
| 142 | insert(b.samples[i]); |
| 143 | } |
| 144 | else if (total_values <= sample_count) |
| 145 | { |
| 146 | Array from = std::move(samples); |
| 147 | samples.assign(b.samples.begin(), b.samples.end()); |
| 148 | total_values = b.total_values; |
| 149 | for (size_t i = 0; i < from.size(); ++i) |
| 150 | insert(from[i]); |
| 151 | } |
| 152 | else |
| 153 | { |
| 154 | randomShuffle(samples); |
| 155 | total_values += b.total_values; |
| 156 | for (size_t i = 0; i < sample_count; ++i) |
| 157 | { |
| 158 | UInt64 rnd = genRandom(total_values); |
| 159 | if (rnd < b.total_values) |
| 160 | samples[i] = b.samples[i]; |
| 161 | } |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | void read(DB::ReadBuffer & buf) |
| 166 | { |
| 167 | DB::readIntBinary<size_t>(sample_count, buf); |
| 168 | DB::readIntBinary<size_t>(total_values, buf); |
| 169 | samples.resize(std::min(total_values, sample_count)); |
| 170 | |
| 171 | std::string rng_string; |
| 172 | DB::readStringBinary(rng_string, buf); |
| 173 | std::istringstream rng_stream(rng_string); |
| 174 | rng_stream >> rng; |
| 175 | |
| 176 | for (size_t i = 0; i < samples.size(); ++i) |
| 177 | DB::readBinary(samples[i], buf); |
| 178 | |
| 179 | sorted = false; |
| 180 | } |
| 181 | |
| 182 | void write(DB::WriteBuffer & buf) const |
| 183 | { |
| 184 | DB::writeIntBinary<size_t>(sample_count, buf); |
| 185 | DB::writeIntBinary<size_t>(total_values, buf); |
| 186 | |
| 187 | std::ostringstream rng_stream; |
| 188 | rng_stream << rng; |
| 189 | DB::writeStringBinary(rng_stream.str(), buf); |
| 190 | |
| 191 | for (size_t i = 0; i < std::min(sample_count, total_values); ++i) |
| 192 | DB::writeBinary(samples[i], buf); |
| 193 | } |
| 194 | |
| 195 | private: |
| 196 | friend void qdigest_test(int normal_size, UInt64 value_limit, const std::vector<UInt64> & values, int queries_count, bool verbose); |
| 197 | friend void rs_perf_test(); |
| 198 | |
| 199 | /// We allocate a little memory on the stack - to avoid allocations when there are many objects with a small number of elements. |
| 200 | using Array = DB::PODArrayWithStackMemory<T, 64>; |
| 201 | |
| 202 | size_t sample_count; |
| 203 | size_t total_values = 0; |
| 204 | Array samples; |
| 205 | pcg32_fast rng; |
| 206 | bool sorted = false; |
| 207 | |
| 208 | |
| 209 | UInt64 genRandom(size_t lim) |
| 210 | { |
| 211 | /// With a large number of values, we will generate random numbers several times slower. |
| 212 | if (lim <= static_cast<UInt64>(rng.max())) |
| 213 | return static_cast<UInt32>(rng()) % static_cast<UInt32>(lim); |
| 214 | else |
| 215 | return (static_cast<UInt64>(rng()) * (static_cast<UInt64>(rng.max()) + 1ULL) + static_cast<UInt64>(rng())) % lim; |
| 216 | } |
| 217 | |
| 218 | void randomShuffle(Array & v) |
| 219 | { |
| 220 | for (size_t i = 1; i < v.size(); ++i) |
| 221 | { |
| 222 | size_t j = genRandom(i + 1); |
| 223 | std::swap(v[i], v[j]); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | void sortIfNeeded() |
| 228 | { |
| 229 | if (sorted) |
| 230 | return; |
| 231 | sorted = true; |
| 232 | std::sort(samples.begin(), samples.end(), Comparer()); |
| 233 | } |
| 234 | |
| 235 | template <typename ResultType> |
| 236 | ResultType onEmpty() const |
| 237 | { |
| 238 | if (OnEmpty == ReservoirSamplerOnEmpty::THROW) |
| 239 | throw Poco::Exception("Quantile of empty ReservoirSampler" ); |
| 240 | else |
| 241 | return NanLikeValueConstructor<ResultType, std::is_floating_point_v<ResultType>>::getValue(); |
| 242 | } |
| 243 | }; |
| 244 | |