| 1 | #pragma once |
| 2 | |
| 3 | #include <iostream> |
| 4 | #include <vector> |
| 5 | |
| 6 | #include <boost/range/adaptor/reversed.hpp> |
| 7 | |
| 8 | #include <Common/ArenaWithFreeLists.h> |
| 9 | #include <Common/UInt128.h> |
| 10 | #include <Common/HashTable/Hash.h> |
| 11 | #include <Common/HashTable/HashMap.h> |
| 12 | |
| 13 | #include <IO/WriteBuffer.h> |
| 14 | #include <IO/WriteHelpers.h> |
| 15 | #include <IO/ReadBuffer.h> |
| 16 | #include <IO/ReadHelpers.h> |
| 17 | #include <IO/VarInt.h> |
| 18 | |
| 19 | /* |
| 20 | * Implementation of the Filtered Space-Saving for TopK streaming analysis. |
| 21 | * http://www.l2f.inesc-id.pt/~fmmb/wiki/uploads/Work/misnis.ref0a.pdf |
| 22 | * It implements suggested reduce-and-combine algorithm from Parallel Space Saving: |
| 23 | * https://arxiv.org/pdf/1401.0702.pdf |
| 24 | */ |
| 25 | |
| 26 | namespace DB |
| 27 | { |
| 28 | |
| 29 | /* |
| 30 | * Arena interface to allow specialized storage of keys. |
| 31 | * POD keys do not require additional storage, so this interface is empty. |
| 32 | */ |
| 33 | template <typename TKey> |
| 34 | struct SpaceSavingArena |
| 35 | { |
| 36 | SpaceSavingArena() {} |
| 37 | const TKey emplace(const TKey & key) { return key; } |
| 38 | void free(const TKey & /*key*/) {} |
| 39 | }; |
| 40 | |
| 41 | /* |
| 42 | * Specialized storage for StringRef with a freelist arena. |
| 43 | * Keys of this type that are retained on insertion must be serialized into local storage, |
| 44 | * otherwise the reference would be invalid after the processed block is released. |
| 45 | */ |
| 46 | template <> |
| 47 | struct SpaceSavingArena<StringRef> |
| 48 | { |
| 49 | const StringRef emplace(const StringRef & key) |
| 50 | { |
| 51 | auto ptr = arena.alloc(key.size); |
| 52 | std::copy(key.data, key.data + key.size, ptr); |
| 53 | return StringRef{ptr, key.size}; |
| 54 | } |
| 55 | |
| 56 | void free(const StringRef & key) |
| 57 | { |
| 58 | if (key.data) |
| 59 | arena.free(const_cast<char *>(key.data), key.size); |
| 60 | } |
| 61 | |
| 62 | private: |
| 63 | ArenaWithFreeLists arena; |
| 64 | }; |
| 65 | |
| 66 | |
| 67 | template |
| 68 | < |
| 69 | typename TKey, |
| 70 | typename Hash = DefaultHash<TKey>, |
| 71 | typename Grower = HashTableGrower<>, |
| 72 | typename Allocator = HashTableAllocator |
| 73 | > |
| 74 | class SpaceSaving |
| 75 | { |
| 76 | private: |
| 77 | // Suggested constants in the paper "Finding top-k elements in data streams", chap 6. equation (24) |
| 78 | // Round to nearest power of 2 for cheaper binning without modulo |
| 79 | constexpr uint64_t nextAlphaSize(uint64_t x) |
| 80 | { |
| 81 | constexpr uint64_t ALPHA_MAP_ELEMENTS_PER_COUNTER = 6; |
| 82 | return 1ULL << (sizeof(uint64_t) * 8 - __builtin_clzll(x * ALPHA_MAP_ELEMENTS_PER_COUNTER)); |
| 83 | } |
| 84 | |
| 85 | public: |
| 86 | using Self = SpaceSaving; |
| 87 | |
| 88 | struct Counter |
| 89 | { |
| 90 | Counter() {} |
| 91 | |
| 92 | Counter(const TKey & k, UInt64 c = 0, UInt64 e = 0, size_t h = 0) |
| 93 | : key(k), slot(0), hash(h), count(c), error(e) {} |
| 94 | |
| 95 | void write(WriteBuffer & wb) const |
| 96 | { |
| 97 | writeBinary(key, wb); |
| 98 | writeVarUInt(count, wb); |
| 99 | writeVarUInt(error, wb); |
| 100 | } |
| 101 | |
| 102 | void read(ReadBuffer & rb) |
| 103 | { |
| 104 | readBinary(key, rb); |
| 105 | readVarUInt(count, rb); |
| 106 | readVarUInt(error, rb); |
| 107 | } |
| 108 | |
| 109 | // greater() taking slot error into account |
| 110 | bool operator> (const Counter & b) const |
| 111 | { |
| 112 | return (count > b.count) || (count == b.count && error < b.error); |
| 113 | } |
| 114 | |
| 115 | TKey key; |
| 116 | size_t slot; |
| 117 | size_t hash; |
| 118 | UInt64 count; |
| 119 | UInt64 error; |
| 120 | }; |
| 121 | |
| 122 | SpaceSaving(size_t c = 10) : alpha_map(nextAlphaSize(c)), m_capacity(c) {} |
| 123 | |
| 124 | ~SpaceSaving() { destroyElements(); } |
| 125 | |
| 126 | inline size_t size() const |
| 127 | { |
| 128 | return counter_list.size(); |
| 129 | } |
| 130 | |
| 131 | inline size_t capacity() const |
| 132 | { |
| 133 | return m_capacity; |
| 134 | } |
| 135 | |
| 136 | void clear() |
| 137 | { |
| 138 | return destroyElements(); |
| 139 | } |
| 140 | |
| 141 | void resize(size_t new_capacity) |
| 142 | { |
| 143 | counter_list.reserve(new_capacity); |
| 144 | alpha_map.resize(nextAlphaSize(new_capacity)); |
| 145 | m_capacity = new_capacity; |
| 146 | } |
| 147 | |
| 148 | void insert(const TKey & key, UInt64 increment = 1, UInt64 error = 0) |
| 149 | { |
| 150 | // Increase weight of a key that already exists |
| 151 | auto hash = counter_map.hash(key); |
| 152 | auto counter = findCounter(key, hash); |
| 153 | if (counter) |
| 154 | { |
| 155 | counter->count += increment; |
| 156 | counter->error += error; |
| 157 | percolate(counter); |
| 158 | return; |
| 159 | } |
| 160 | // Key doesn't exist, but can fit in the top K |
| 161 | else if (unlikely(size() < capacity())) |
| 162 | { |
| 163 | auto c = new Counter(arena.emplace(key), increment, error, hash); |
| 164 | push(c); |
| 165 | return; |
| 166 | } |
| 167 | |
| 168 | auto min = counter_list.back(); |
| 169 | // The key doesn't exist and cannot fit in the current top K, but |
| 170 | // the new key has a bigger weight and is virtually more present |
| 171 | // compared to the element who is less present on the set. This part |
| 172 | // of the code is useful for the function topKWeighted |
| 173 | if (increment > min->count) |
| 174 | { |
| 175 | destroyLastElement(); |
| 176 | push(new Counter(arena.emplace(key), increment, error, hash)); |
| 177 | return; |
| 178 | } |
| 179 | |
| 180 | const size_t alpha_mask = alpha_map.size() - 1; |
| 181 | auto & alpha = alpha_map[hash & alpha_mask]; |
| 182 | if (alpha + increment < min->count) |
| 183 | { |
| 184 | alpha += increment; |
| 185 | return; |
| 186 | } |
| 187 | |
| 188 | // Erase the current minimum element |
| 189 | alpha_map[min->hash & alpha_mask] = min->count; |
| 190 | destroyLastElement(); |
| 191 | |
| 192 | push(new Counter(arena.emplace(key), alpha + increment, alpha + error, hash)); |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * Parallel Space Saving reduction and combine step from: |
| 197 | * https://arxiv.org/pdf/1401.0702.pdf |
| 198 | */ |
| 199 | void merge(const Self & rhs) |
| 200 | { |
| 201 | UInt64 m1 = 0; |
| 202 | UInt64 m2 = 0; |
| 203 | |
| 204 | if (size() == capacity()) |
| 205 | { |
| 206 | m1 = counter_list.back()->count; |
| 207 | } |
| 208 | |
| 209 | if (rhs.size() == rhs.capacity()) |
| 210 | { |
| 211 | m2 = rhs.counter_list.back()->count; |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * Updated algorithm to mutate current table in place |
| 216 | * without mutating rhs table or creating new one |
| 217 | * in the first step we expect that no elements overlap |
| 218 | * and in the second sweep we correct the error if they do. |
| 219 | */ |
| 220 | if (m2 > 0) |
| 221 | { |
| 222 | for (auto counter : counter_list) |
| 223 | { |
| 224 | counter->count += m2; |
| 225 | counter->error += m2; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | // The list is sorted in descending order, we have to scan in reverse |
| 230 | for (auto counter : boost::adaptors::reverse(rhs.counter_list)) |
| 231 | { |
| 232 | size_t hash = counter_map.hash(counter->key); |
| 233 | if (auto current = findCounter(counter->key, hash)) |
| 234 | { |
| 235 | // Subtract m2 previously added, guaranteed not negative |
| 236 | current->count += (counter->count - m2); |
| 237 | current->error += (counter->error - m2); |
| 238 | } |
| 239 | else |
| 240 | { |
| 241 | // Counters not monitored in S1 |
| 242 | counter_list.push_back(new Counter(arena.emplace(counter->key), counter->count + m1, counter->error + m1, hash)); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | std::sort(counter_list.begin(), counter_list.end(), [](Counter * l, Counter * r) { return *l > *r; }); |
| 247 | |
| 248 | if (counter_list.size() > m_capacity) |
| 249 | { |
| 250 | for (size_t i = m_capacity; i < counter_list.size(); ++i) |
| 251 | { |
| 252 | arena.free(counter_list[i]->key); |
| 253 | delete counter_list[i]; |
| 254 | } |
| 255 | counter_list.resize(m_capacity); |
| 256 | } |
| 257 | |
| 258 | for (size_t i = 0; i < counter_list.size(); ++i) |
| 259 | counter_list[i]->slot = i; |
| 260 | rebuildCounterMap(); |
| 261 | } |
| 262 | |
| 263 | std::vector<Counter> topK(size_t k) const |
| 264 | { |
| 265 | std::vector<Counter> res; |
| 266 | for (auto counter : counter_list) |
| 267 | { |
| 268 | res.push_back(*counter); |
| 269 | if (res.size() == k) |
| 270 | break; |
| 271 | } |
| 272 | return res; |
| 273 | } |
| 274 | |
| 275 | void write(WriteBuffer & wb) const |
| 276 | { |
| 277 | writeVarUInt(size(), wb); |
| 278 | for (auto counter : counter_list) |
| 279 | counter->write(wb); |
| 280 | |
| 281 | writeVarUInt(alpha_map.size(), wb); |
| 282 | for (auto alpha : alpha_map) |
| 283 | writeVarUInt(alpha, wb); |
| 284 | } |
| 285 | |
| 286 | void read(ReadBuffer & rb) |
| 287 | { |
| 288 | destroyElements(); |
| 289 | size_t count = 0; |
| 290 | readVarUInt(count, rb); |
| 291 | |
| 292 | for (size_t i = 0; i < count; ++i) |
| 293 | { |
| 294 | auto counter = new Counter(); |
| 295 | counter->read(rb); |
| 296 | counter->hash = counter_map.hash(counter->key); |
| 297 | push(counter); |
| 298 | } |
| 299 | |
| 300 | readAlphaMap(rb); |
| 301 | } |
| 302 | |
| 303 | void readAlphaMap(ReadBuffer & rb) |
| 304 | { |
| 305 | size_t alpha_size = 0; |
| 306 | readVarUInt(alpha_size, rb); |
| 307 | for (size_t i = 0; i < alpha_size; ++i) |
| 308 | { |
| 309 | UInt64 alpha = 0; |
| 310 | readVarUInt(alpha, rb); |
| 311 | alpha_map.push_back(alpha); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | protected: |
| 316 | void push(Counter * counter) |
| 317 | { |
| 318 | counter->slot = counter_list.size(); |
| 319 | counter_list.push_back(counter); |
| 320 | counter_map[counter->key] = counter; |
| 321 | percolate(counter); |
| 322 | } |
| 323 | |
| 324 | // This is equivallent to one step of bubble sort |
| 325 | void percolate(Counter * counter) |
| 326 | { |
| 327 | while (counter->slot > 0) |
| 328 | { |
| 329 | auto next = counter_list[counter->slot - 1]; |
| 330 | if (*counter > *next) |
| 331 | { |
| 332 | std::swap(next->slot, counter->slot); |
| 333 | std::swap(counter_list[next->slot], counter_list[counter->slot]); |
| 334 | } |
| 335 | else |
| 336 | break; |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | private: |
| 341 | void destroyElements() |
| 342 | { |
| 343 | for (auto counter : counter_list) |
| 344 | { |
| 345 | arena.free(counter->key); |
| 346 | delete counter; |
| 347 | } |
| 348 | |
| 349 | counter_map.clear(); |
| 350 | counter_list.clear(); |
| 351 | alpha_map.clear(); |
| 352 | } |
| 353 | |
| 354 | void destroyLastElement() |
| 355 | { |
| 356 | auto last_element = counter_list.back(); |
| 357 | arena.free(last_element->key); |
| 358 | delete last_element; |
| 359 | counter_list.pop_back(); |
| 360 | |
| 361 | ++removed_keys; |
| 362 | if (removed_keys * 2 > counter_map.size()) |
| 363 | rebuildCounterMap(); |
| 364 | } |
| 365 | |
| 366 | Counter * findCounter(const TKey & key, size_t hash) |
| 367 | { |
| 368 | auto it = counter_map.find(key, hash); |
| 369 | if (!it) |
| 370 | return nullptr; |
| 371 | |
| 372 | return it->getMapped(); |
| 373 | } |
| 374 | |
| 375 | void rebuildCounterMap() |
| 376 | { |
| 377 | removed_keys = 0; |
| 378 | counter_map.clear(); |
| 379 | for (auto counter : counter_list) |
| 380 | counter_map[counter->key] = counter; |
| 381 | } |
| 382 | |
| 383 | using CounterMap = HashMap<TKey, Counter *, Hash, Grower, Allocator>; |
| 384 | |
| 385 | CounterMap counter_map; |
| 386 | std::vector<Counter *> counter_list; |
| 387 | std::vector<UInt64> alpha_map; |
| 388 | SpaceSavingArena<TKey> arena; |
| 389 | size_t m_capacity; |
| 390 | size_t removed_keys = 0; |
| 391 | }; |
| 392 | |
| 393 | } |
| 394 | |