| 1 | #include <Functions/FunctionFactory.h> |
| 2 | #include <Functions/FunctionBinaryArithmetic.h> |
| 3 | |
| 4 | #ifdef __SSE2__ |
| 5 | #define LIBDIVIDE_USE_SSE2 1 |
| 6 | #endif |
| 7 | |
| 8 | #include <libdivide.h> |
| 9 | |
| 10 | |
| 11 | namespace DB |
| 12 | { |
| 13 | |
| 14 | namespace ErrorCodes |
| 15 | { |
| 16 | extern const int ILLEGAL_DIVISION; |
| 17 | } |
| 18 | |
| 19 | template <typename A, typename B> |
| 20 | struct ModuloImpl |
| 21 | { |
| 22 | using ResultType = typename NumberTraits::ResultOfModulo<A, B>::Type; |
| 23 | |
| 24 | template <typename Result = ResultType> |
| 25 | static inline Result apply(A a, B b) |
| 26 | { |
| 27 | throwIfDivisionLeadsToFPE(typename NumberTraits::ToInteger<A>::Type(a), typename NumberTraits::ToInteger<B>::Type(b)); |
| 28 | return typename NumberTraits::ToInteger<A>::Type(a) % typename NumberTraits::ToInteger<B>::Type(b); |
| 29 | } |
| 30 | |
| 31 | #if USE_EMBEDDED_COMPILER |
| 32 | static constexpr bool compilable = false; /// don't know how to throw from LLVM IR |
| 33 | #endif |
| 34 | }; |
| 35 | |
| 36 | template <typename A, typename B> |
| 37 | struct ModuloByConstantImpl |
| 38 | : BinaryOperationImplBase<A, B, ModuloImpl<A, B>> |
| 39 | { |
| 40 | using ResultType = typename ModuloImpl<A, B>::ResultType; |
| 41 | |
| 42 | static void vector_constant(const PaddedPODArray<A> & a, B b, PaddedPODArray<ResultType> & c) |
| 43 | { |
| 44 | if (unlikely(b == 0)) |
| 45 | throw Exception("Division by zero" , ErrorCodes::ILLEGAL_DIVISION); |
| 46 | |
| 47 | #pragma GCC diagnostic push |
| 48 | #pragma GCC diagnostic ignored "-Wsign-compare" |
| 49 | |
| 50 | if (unlikely((std::is_signed_v<B> && b == -1) || b == 1)) |
| 51 | { |
| 52 | size_t size = a.size(); |
| 53 | for (size_t i = 0; i < size; ++i) |
| 54 | c[i] = 0; |
| 55 | return; |
| 56 | } |
| 57 | |
| 58 | #pragma GCC diagnostic pop |
| 59 | |
| 60 | libdivide::divider<A> divider(b); |
| 61 | |
| 62 | /// Here we failed to make the SSE variant from libdivide give an advantage. |
| 63 | size_t size = a.size(); |
| 64 | |
| 65 | /// strict aliasing optimization for char like arrays |
| 66 | auto * __restrict src = a.data(); |
| 67 | auto * __restrict dst = c.data(); |
| 68 | |
| 69 | if (b & (b - 1)) |
| 70 | { |
| 71 | for (size_t i = 0; i < size; ++i) |
| 72 | dst[i] = src[i] - (src[i] / divider) * b; /// NOTE: perhaps, the division semantics with the remainder of negative numbers is not preserved. |
| 73 | } |
| 74 | else |
| 75 | { |
| 76 | // gcc libdivide doesn't work well for pow2 division |
| 77 | auto mask = b - 1; |
| 78 | for (size_t i = 0; i < size; ++i) |
| 79 | dst[i] = src[i] & mask; |
| 80 | } |
| 81 | } |
| 82 | }; |
| 83 | |
| 84 | /** Specializations are specified for dividing numbers of the type UInt64 and UInt32 by the numbers of the same sign. |
| 85 | * Can be expanded to all possible combinations, but more code is needed. |
| 86 | */ |
| 87 | |
| 88 | template <> struct BinaryOperationImpl<UInt64, UInt8, ModuloImpl<UInt64, UInt8>> : ModuloByConstantImpl<UInt64, UInt8> {}; |
| 89 | template <> struct BinaryOperationImpl<UInt64, UInt16, ModuloImpl<UInt64, UInt16>> : ModuloByConstantImpl<UInt64, UInt16> {}; |
| 90 | template <> struct BinaryOperationImpl<UInt64, UInt32, ModuloImpl<UInt64, UInt32>> : ModuloByConstantImpl<UInt64, UInt32> {}; |
| 91 | template <> struct BinaryOperationImpl<UInt64, UInt64, ModuloImpl<UInt64, UInt64>> : ModuloByConstantImpl<UInt64, UInt64> {}; |
| 92 | |
| 93 | template <> struct BinaryOperationImpl<UInt32, UInt8, ModuloImpl<UInt32, UInt8>> : ModuloByConstantImpl<UInt32, UInt8> {}; |
| 94 | template <> struct BinaryOperationImpl<UInt32, UInt16, ModuloImpl<UInt32, UInt16>> : ModuloByConstantImpl<UInt32, UInt16> {}; |
| 95 | template <> struct BinaryOperationImpl<UInt32, UInt32, ModuloImpl<UInt32, UInt32>> : ModuloByConstantImpl<UInt32, UInt32> {}; |
| 96 | template <> struct BinaryOperationImpl<UInt32, UInt64, ModuloImpl<UInt32, UInt64>> : ModuloByConstantImpl<UInt32, UInt64> {}; |
| 97 | |
| 98 | template <> struct BinaryOperationImpl<Int64, Int8, ModuloImpl<Int64, Int8>> : ModuloByConstantImpl<Int64, Int8> {}; |
| 99 | template <> struct BinaryOperationImpl<Int64, Int16, ModuloImpl<Int64, Int16>> : ModuloByConstantImpl<Int64, Int16> {}; |
| 100 | template <> struct BinaryOperationImpl<Int64, Int32, ModuloImpl<Int64, Int32>> : ModuloByConstantImpl<Int64, Int32> {}; |
| 101 | template <> struct BinaryOperationImpl<Int64, Int64, ModuloImpl<Int64, Int64>> : ModuloByConstantImpl<Int64, Int64> {}; |
| 102 | |
| 103 | template <> struct BinaryOperationImpl<Int32, Int8, ModuloImpl<Int32, Int8>> : ModuloByConstantImpl<Int32, Int8> {}; |
| 104 | template <> struct BinaryOperationImpl<Int32, Int16, ModuloImpl<Int32, Int16>> : ModuloByConstantImpl<Int32, Int16> {}; |
| 105 | template <> struct BinaryOperationImpl<Int32, Int32, ModuloImpl<Int32, Int32>> : ModuloByConstantImpl<Int32, Int32> {}; |
| 106 | template <> struct BinaryOperationImpl<Int32, Int64, ModuloImpl<Int32, Int64>> : ModuloByConstantImpl<Int32, Int64> {}; |
| 107 | |
| 108 | |
| 109 | struct NameModulo { static constexpr auto name = "modulo" ; }; |
| 110 | using FunctionModulo = FunctionBinaryArithmetic<ModuloImpl, NameModulo, false>; |
| 111 | |
| 112 | void registerFunctionModulo(FunctionFactory & factory) |
| 113 | { |
| 114 | factory.registerFunction<FunctionModulo>(); |
| 115 | } |
| 116 | |
| 117 | } |
| 118 | |