| 1 | #pragma once |
| 2 | |
| 3 | // Include this first, because `#define _asan_poison_address` from |
| 4 | // llvm/Support/Compiler.h conflicts with its forward declaration in |
| 5 | // sanitizer/asan_interface.h |
| 6 | #include <Common/Arena.h> |
| 7 | |
| 8 | #include <DataTypes/DataTypesNumber.h> |
| 9 | #include <DataTypes/DataTypesDecimal.h> |
| 10 | #include <DataTypes/DataTypeDate.h> |
| 11 | #include <DataTypes/DataTypeDateTime.h> |
| 12 | #include <DataTypes/DataTypeDateTime64.h> |
| 13 | #include <DataTypes/DataTypeInterval.h> |
| 14 | #include <DataTypes/DataTypeAggregateFunction.h> |
| 15 | #include <DataTypes/Native.h> |
| 16 | #include <DataTypes/NumberTraits.h> |
| 17 | #include <Columns/ColumnVector.h> |
| 18 | #include <Columns/ColumnDecimal.h> |
| 19 | #include <Columns/ColumnConst.h> |
| 20 | #include <Columns/ColumnAggregateFunction.h> |
| 21 | #include "IFunctionImpl.h" |
| 22 | #include "FunctionHelpers.h" |
| 23 | #include "intDiv.h" |
| 24 | #include "castTypeToEither.h" |
| 25 | #include "FunctionFactory.h" |
| 26 | #include <Common/typeid_cast.h> |
| 27 | #include <Common/assert_cast.h> |
| 28 | #include <Common/config.h> |
| 29 | |
| 30 | #if USE_EMBEDDED_COMPILER |
| 31 | #pragma GCC diagnostic push |
| 32 | #pragma GCC diagnostic ignored "-Wunused-parameter" |
| 33 | #include <llvm/IR/IRBuilder.h> |
| 34 | #pragma GCC diagnostic pop |
| 35 | #endif |
| 36 | |
| 37 | |
| 38 | namespace DB |
| 39 | { |
| 40 | |
| 41 | namespace ErrorCodes |
| 42 | { |
| 43 | extern const int ILLEGAL_COLUMN; |
| 44 | extern const int ILLEGAL_TYPE_OF_ARGUMENT; |
| 45 | extern const int LOGICAL_ERROR; |
| 46 | extern const int DECIMAL_OVERFLOW; |
| 47 | extern const int CANNOT_ADD_DIFFERENT_AGGREGATE_STATES; |
| 48 | extern const int ILLEGAL_DIVISION; |
| 49 | } |
| 50 | |
| 51 | |
| 52 | /** Arithmetic operations: +, -, *, /, %, |
| 53 | * intDiv (integer division) |
| 54 | * Bitwise operations: |, &, ^, ~. |
| 55 | * Etc. |
| 56 | */ |
| 57 | |
| 58 | template <typename A, typename B, typename Op, typename ResultType_ = typename Op::ResultType> |
| 59 | struct BinaryOperationImplBase |
| 60 | { |
| 61 | using ResultType = ResultType_; |
| 62 | |
| 63 | static void NO_INLINE vector_vector(const PaddedPODArray<A> & a, const PaddedPODArray<B> & b, PaddedPODArray<ResultType> & c) |
| 64 | { |
| 65 | size_t size = a.size(); |
| 66 | for (size_t i = 0; i < size; ++i) |
| 67 | c[i] = Op::template apply<ResultType>(a[i], b[i]); |
| 68 | } |
| 69 | |
| 70 | static void NO_INLINE vector_constant(const PaddedPODArray<A> & a, B b, PaddedPODArray<ResultType> & c) |
| 71 | { |
| 72 | size_t size = a.size(); |
| 73 | for (size_t i = 0; i < size; ++i) |
| 74 | c[i] = Op::template apply<ResultType>(a[i], b); |
| 75 | } |
| 76 | |
| 77 | static void NO_INLINE constant_vector(A a, const PaddedPODArray<B> & b, PaddedPODArray<ResultType> & c) |
| 78 | { |
| 79 | size_t size = b.size(); |
| 80 | for (size_t i = 0; i < size; ++i) |
| 81 | c[i] = Op::template apply<ResultType>(a, b[i]); |
| 82 | } |
| 83 | |
| 84 | static ResultType constant_constant(A a, B b) |
| 85 | { |
| 86 | return Op::template apply<ResultType>(a, b); |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | template <typename A, typename B, typename Op, typename ResultType = typename Op::ResultType> |
| 91 | struct BinaryOperationImpl : BinaryOperationImplBase<A, B, Op, ResultType> |
| 92 | { |
| 93 | }; |
| 94 | |
| 95 | |
| 96 | template <typename, typename> struct PlusImpl; |
| 97 | template <typename, typename> struct MinusImpl; |
| 98 | template <typename, typename> struct MultiplyImpl; |
| 99 | template <typename, typename> struct DivideFloatingImpl; |
| 100 | template <typename, typename> struct DivideIntegralImpl; |
| 101 | template <typename, typename> struct DivideIntegralOrZeroImpl; |
| 102 | template <typename, typename> struct LeastBaseImpl; |
| 103 | template <typename, typename> struct GreatestBaseImpl; |
| 104 | template <typename, typename> struct ModuloImpl; |
| 105 | |
| 106 | |
| 107 | /// Binary operations for Decimals need scale args |
| 108 | /// +|- scale one of args (which scale factor is not 1). ScaleR = oneof(Scale1, Scale2); |
| 109 | /// * no agrs scale. ScaleR = Scale1 + Scale2; |
| 110 | /// / first arg scale. ScaleR = Scale1 (scale_a = DecimalType<B>::getScale()). |
| 111 | template <typename A, typename B, template <typename, typename> typename Operation, typename ResultType_, bool _check_overflow = true> |
| 112 | struct DecimalBinaryOperation |
| 113 | { |
| 114 | static constexpr bool is_plus_minus = std::is_same_v<Operation<Int32, Int32>, PlusImpl<Int32, Int32>> || |
| 115 | std::is_same_v<Operation<Int32, Int32>, MinusImpl<Int32, Int32>>; |
| 116 | static constexpr bool is_multiply = std::is_same_v<Operation<Int32, Int32>, MultiplyImpl<Int32, Int32>>; |
| 117 | static constexpr bool is_float_division = std::is_same_v<Operation<Int32, Int32>, DivideFloatingImpl<Int32, Int32>>; |
| 118 | static constexpr bool is_int_division = std::is_same_v<Operation<Int32, Int32>, DivideIntegralImpl<Int32, Int32>> || |
| 119 | std::is_same_v<Operation<Int32, Int32>, DivideIntegralOrZeroImpl<Int32, Int32>>; |
| 120 | static constexpr bool is_division = is_float_division || is_int_division; |
| 121 | static constexpr bool is_compare = std::is_same_v<Operation<Int32, Int32>, LeastBaseImpl<Int32, Int32>> || |
| 122 | std::is_same_v<Operation<Int32, Int32>, GreatestBaseImpl<Int32, Int32>>; |
| 123 | static constexpr bool is_plus_minus_compare = is_plus_minus || is_compare; |
| 124 | static constexpr bool can_overflow = is_plus_minus || is_multiply; |
| 125 | |
| 126 | using ResultType = ResultType_; |
| 127 | using NativeResultType = typename NativeType<ResultType>::Type; |
| 128 | using Op = std::conditional_t<is_float_division, |
| 129 | DivideIntegralImpl<NativeResultType, NativeResultType>, /// substitute divide by intDiv (throw on division by zero) |
| 130 | Operation<NativeResultType, NativeResultType>>; |
| 131 | using ColVecA = std::conditional_t<IsDecimalNumber<A>, ColumnDecimal<A>, ColumnVector<A>>; |
| 132 | using ColVecB = std::conditional_t<IsDecimalNumber<B>, ColumnDecimal<B>, ColumnVector<B>>; |
| 133 | using ArrayA = typename ColVecA::Container; |
| 134 | using ArrayB = typename ColVecB::Container; |
| 135 | using ArrayC = typename ColumnDecimal<ResultType>::Container; |
| 136 | using SelfNoOverflow = DecimalBinaryOperation<A, B, Operation, ResultType_, false>; |
| 137 | |
| 138 | static void vector_vector(const ArrayA & a, const ArrayB & b, ArrayC & c, ResultType scale_a, ResultType scale_b, bool check_overflow) |
| 139 | { |
| 140 | if (check_overflow) |
| 141 | vector_vector(a, b, c, scale_a, scale_b); |
| 142 | else |
| 143 | SelfNoOverflow::vector_vector(a, b, c, scale_a, scale_b); |
| 144 | } |
| 145 | |
| 146 | static void vector_constant(const ArrayA & a, B b, ArrayC & c, ResultType scale_a, ResultType scale_b, bool check_overflow) |
| 147 | { |
| 148 | if (check_overflow) |
| 149 | vector_constant(a, b, c, scale_a, scale_b); |
| 150 | else |
| 151 | SelfNoOverflow::vector_constant(a, b, c, scale_a, scale_b); |
| 152 | } |
| 153 | |
| 154 | static void constant_vector(A a, const ArrayB & b, ArrayC & c, ResultType scale_a, ResultType scale_b, bool check_overflow) |
| 155 | { |
| 156 | if (check_overflow) |
| 157 | constant_vector(a, b, c, scale_a, scale_b); |
| 158 | else |
| 159 | SelfNoOverflow::constant_vector(a, b, c, scale_a, scale_b); |
| 160 | } |
| 161 | |
| 162 | static ResultType constant_constant(A a, B b, ResultType scale_a, ResultType scale_b, bool check_overflow) |
| 163 | { |
| 164 | if (check_overflow) |
| 165 | return constant_constant(a, b, scale_a, scale_b); |
| 166 | else |
| 167 | return SelfNoOverflow::constant_constant(a, b, scale_a, scale_b); |
| 168 | } |
| 169 | |
| 170 | static void NO_INLINE vector_vector(const ArrayA & a, const ArrayB & b, ArrayC & c, |
| 171 | ResultType scale_a [[maybe_unused]], ResultType scale_b [[maybe_unused]]) |
| 172 | { |
| 173 | size_t size = a.size(); |
| 174 | if constexpr (is_plus_minus_compare) |
| 175 | { |
| 176 | if (scale_a != 1) |
| 177 | { |
| 178 | for (size_t i = 0; i < size; ++i) |
| 179 | c[i] = applyScaled<true>(a[i], b[i], scale_a); |
| 180 | return; |
| 181 | } |
| 182 | else if (scale_b != 1) |
| 183 | { |
| 184 | for (size_t i = 0; i < size; ++i) |
| 185 | c[i] = applyScaled<false>(a[i], b[i], scale_b); |
| 186 | return; |
| 187 | } |
| 188 | } |
| 189 | else if constexpr (is_division && IsDecimalNumber<B>) |
| 190 | { |
| 191 | for (size_t i = 0; i < size; ++i) |
| 192 | c[i] = applyScaledDiv(a[i], b[i], scale_a); |
| 193 | return; |
| 194 | } |
| 195 | |
| 196 | /// default: use it if no return before |
| 197 | for (size_t i = 0; i < size; ++i) |
| 198 | c[i] = apply(a[i], b[i]); |
| 199 | } |
| 200 | |
| 201 | static void NO_INLINE vector_constant(const ArrayA & a, B b, ArrayC & c, |
| 202 | ResultType scale_a [[maybe_unused]], ResultType scale_b [[maybe_unused]]) |
| 203 | { |
| 204 | size_t size = a.size(); |
| 205 | if constexpr (is_plus_minus_compare) |
| 206 | { |
| 207 | if (scale_a != 1) |
| 208 | { |
| 209 | for (size_t i = 0; i < size; ++i) |
| 210 | c[i] = applyScaled<true>(a[i], b, scale_a); |
| 211 | return; |
| 212 | } |
| 213 | else if (scale_b != 1) |
| 214 | { |
| 215 | for (size_t i = 0; i < size; ++i) |
| 216 | c[i] = applyScaled<false>(a[i], b, scale_b); |
| 217 | return; |
| 218 | } |
| 219 | } |
| 220 | else if constexpr (is_division && IsDecimalNumber<B>) |
| 221 | { |
| 222 | for (size_t i = 0; i < size; ++i) |
| 223 | c[i] = applyScaledDiv(a[i], b, scale_a); |
| 224 | return; |
| 225 | } |
| 226 | |
| 227 | /// default: use it if no return before |
| 228 | for (size_t i = 0; i < size; ++i) |
| 229 | c[i] = apply(a[i], b); |
| 230 | } |
| 231 | |
| 232 | static void NO_INLINE constant_vector(A a, const ArrayB & b, ArrayC & c, |
| 233 | ResultType scale_a [[maybe_unused]], ResultType scale_b [[maybe_unused]]) |
| 234 | { |
| 235 | size_t size = b.size(); |
| 236 | if constexpr (is_plus_minus_compare) |
| 237 | { |
| 238 | if (scale_a != 1) |
| 239 | { |
| 240 | for (size_t i = 0; i < size; ++i) |
| 241 | c[i] = applyScaled<true>(a, b[i], scale_a); |
| 242 | return; |
| 243 | } |
| 244 | else if (scale_b != 1) |
| 245 | { |
| 246 | for (size_t i = 0; i < size; ++i) |
| 247 | c[i] = applyScaled<false>(a, b[i], scale_b); |
| 248 | return; |
| 249 | } |
| 250 | } |
| 251 | else if constexpr (is_division && IsDecimalNumber<B>) |
| 252 | { |
| 253 | for (size_t i = 0; i < size; ++i) |
| 254 | c[i] = applyScaledDiv(a, b[i], scale_a); |
| 255 | return; |
| 256 | } |
| 257 | |
| 258 | /// default: use it if no return before |
| 259 | for (size_t i = 0; i < size; ++i) |
| 260 | c[i] = apply(a, b[i]); |
| 261 | } |
| 262 | |
| 263 | static ResultType constant_constant(A a, B b, ResultType scale_a [[maybe_unused]], ResultType scale_b [[maybe_unused]]) |
| 264 | { |
| 265 | if constexpr (is_plus_minus_compare) |
| 266 | { |
| 267 | if (scale_a != 1) |
| 268 | return applyScaled<true>(a, b, scale_a); |
| 269 | else if (scale_b != 1) |
| 270 | return applyScaled<false>(a, b, scale_b); |
| 271 | } |
| 272 | else if constexpr (is_division && IsDecimalNumber<B>) |
| 273 | return applyScaledDiv(a, b, scale_a); |
| 274 | return apply(a, b); |
| 275 | } |
| 276 | |
| 277 | private: |
| 278 | /// there's implicit type convertion here |
| 279 | static NativeResultType apply(NativeResultType a, NativeResultType b) |
| 280 | { |
| 281 | if constexpr (can_overflow && _check_overflow) |
| 282 | { |
| 283 | NativeResultType res; |
| 284 | if (Op::template apply<NativeResultType>(a, b, res)) |
| 285 | throw Exception("Decimal math overflow" , ErrorCodes::DECIMAL_OVERFLOW); |
| 286 | return res; |
| 287 | } |
| 288 | else |
| 289 | return Op::template apply<NativeResultType>(a, b); |
| 290 | } |
| 291 | |
| 292 | template <bool scale_left> |
| 293 | static NO_SANITIZE_UNDEFINED NativeResultType applyScaled(NativeResultType a, NativeResultType b, NativeResultType scale) |
| 294 | { |
| 295 | if constexpr (is_plus_minus_compare) |
| 296 | { |
| 297 | NativeResultType res; |
| 298 | |
| 299 | if constexpr (_check_overflow) |
| 300 | { |
| 301 | bool overflow = false; |
| 302 | if constexpr (scale_left) |
| 303 | overflow |= common::mulOverflow(a, scale, a); |
| 304 | else |
| 305 | overflow |= common::mulOverflow(b, scale, b); |
| 306 | |
| 307 | if constexpr (can_overflow) |
| 308 | overflow |= Op::template apply<NativeResultType>(a, b, res); |
| 309 | else |
| 310 | res = Op::template apply<NativeResultType>(a, b); |
| 311 | |
| 312 | if (overflow) |
| 313 | throw Exception("Decimal math overflow" , ErrorCodes::DECIMAL_OVERFLOW); |
| 314 | } |
| 315 | else |
| 316 | { |
| 317 | if constexpr (scale_left) |
| 318 | a *= scale; |
| 319 | else |
| 320 | b *= scale; |
| 321 | res = Op::template apply<NativeResultType>(a, b); |
| 322 | } |
| 323 | |
| 324 | return res; |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | static NO_SANITIZE_UNDEFINED NativeResultType applyScaledDiv(NativeResultType a, NativeResultType b, NativeResultType scale) |
| 329 | { |
| 330 | if constexpr (is_division) |
| 331 | { |
| 332 | if constexpr (_check_overflow) |
| 333 | { |
| 334 | bool overflow = false; |
| 335 | if constexpr (!IsDecimalNumber<A>) |
| 336 | overflow |= common::mulOverflow(scale, scale, scale); |
| 337 | overflow |= common::mulOverflow(a, scale, a); |
| 338 | if (overflow) |
| 339 | throw Exception("Decimal math overflow" , ErrorCodes::DECIMAL_OVERFLOW); |
| 340 | } |
| 341 | else |
| 342 | { |
| 343 | if constexpr (!IsDecimalNumber<A>) |
| 344 | scale *= scale; |
| 345 | a *= scale; |
| 346 | } |
| 347 | |
| 348 | return Op::template apply<NativeResultType>(a, b); |
| 349 | } |
| 350 | } |
| 351 | }; |
| 352 | |
| 353 | |
| 354 | /// Used to indicate undefined operation |
| 355 | struct InvalidType; |
| 356 | |
| 357 | template <bool V, typename T> struct Case : std::bool_constant<V> { using type = T; }; |
| 358 | |
| 359 | /// Switch<Case<C0, T0>, ...> -- select the first Ti for which Ci is true; InvalidType if none. |
| 360 | template <typename... Ts> using Switch = typename std::disjunction<Ts..., Case<true, InvalidType>>::type; |
| 361 | |
| 362 | template <typename DataType> constexpr bool IsIntegral = false; |
| 363 | template <> inline constexpr bool IsIntegral<DataTypeUInt8> = true; |
| 364 | template <> inline constexpr bool IsIntegral<DataTypeUInt16> = true; |
| 365 | template <> inline constexpr bool IsIntegral<DataTypeUInt32> = true; |
| 366 | template <> inline constexpr bool IsIntegral<DataTypeUInt64> = true; |
| 367 | template <> inline constexpr bool IsIntegral<DataTypeInt8> = true; |
| 368 | template <> inline constexpr bool IsIntegral<DataTypeInt16> = true; |
| 369 | template <> inline constexpr bool IsIntegral<DataTypeInt32> = true; |
| 370 | template <> inline constexpr bool IsIntegral<DataTypeInt64> = true; |
| 371 | |
| 372 | template <typename DataType> constexpr bool IsFloatingPoint = false; |
| 373 | template <> inline constexpr bool IsFloatingPoint<DataTypeFloat32> = true; |
| 374 | template <> inline constexpr bool IsFloatingPoint<DataTypeFloat64> = true; |
| 375 | |
| 376 | template <typename DataType> constexpr bool IsDateOrDateTime = false; |
| 377 | template <> inline constexpr bool IsDateOrDateTime<DataTypeDate> = true; |
| 378 | template <> inline constexpr bool IsDateOrDateTime<DataTypeDateTime> = true; |
| 379 | |
| 380 | template <typename T0, typename T1> constexpr bool UseLeftDecimal = false; |
| 381 | template <> inline constexpr bool UseLeftDecimal<DataTypeDecimal<Decimal128>, DataTypeDecimal<Decimal32>> = true; |
| 382 | template <> inline constexpr bool UseLeftDecimal<DataTypeDecimal<Decimal128>, DataTypeDecimal<Decimal64>> = true; |
| 383 | template <> inline constexpr bool UseLeftDecimal<DataTypeDecimal<Decimal64>, DataTypeDecimal<Decimal32>> = true; |
| 384 | |
| 385 | template <typename T> using DataTypeFromFieldType = std::conditional_t<std::is_same_v<T, NumberTraits::Error>, InvalidType, DataTypeNumber<T>>; |
| 386 | |
| 387 | template <template <typename, typename> class Operation, typename LeftDataType, typename RightDataType> |
| 388 | struct BinaryOperationTraits |
| 389 | { |
| 390 | using T0 = typename LeftDataType::FieldType; |
| 391 | using T1 = typename RightDataType::FieldType; |
| 392 | private: /// it's not correct for Decimal |
| 393 | using Op = Operation<T0, T1>; |
| 394 | public: |
| 395 | |
| 396 | static constexpr bool allow_decimal = |
| 397 | std::is_same_v<Operation<T0, T0>, PlusImpl<T0, T0>> || |
| 398 | std::is_same_v<Operation<T0, T0>, MinusImpl<T0, T0>> || |
| 399 | std::is_same_v<Operation<T0, T0>, MultiplyImpl<T0, T0>> || |
| 400 | std::is_same_v<Operation<T0, T0>, DivideFloatingImpl<T0, T0>> || |
| 401 | std::is_same_v<Operation<T0, T0>, DivideIntegralImpl<T0, T0>> || |
| 402 | std::is_same_v<Operation<T0, T0>, DivideIntegralOrZeroImpl<T0, T0>> || |
| 403 | std::is_same_v<Operation<T0, T0>, LeastBaseImpl<T0, T0>> || |
| 404 | std::is_same_v<Operation<T0, T0>, GreatestBaseImpl<T0, T0>>; |
| 405 | |
| 406 | /// Appropriate result type for binary operator on numeric types. "Date" can also mean |
| 407 | /// DateTime, but if both operands are Dates, their type must be the same (e.g. Date - DateTime is invalid). |
| 408 | using ResultDataType = Switch< |
| 409 | /// Decimal cases |
| 410 | Case<!allow_decimal && (IsDataTypeDecimal<LeftDataType> || IsDataTypeDecimal<RightDataType>), InvalidType>, |
| 411 | Case<IsDataTypeDecimal<LeftDataType> && IsDataTypeDecimal<RightDataType> && UseLeftDecimal<LeftDataType, RightDataType>, LeftDataType>, |
| 412 | Case<IsDataTypeDecimal<LeftDataType> && IsDataTypeDecimal<RightDataType>, RightDataType>, |
| 413 | Case<IsDataTypeDecimal<LeftDataType> && !IsDataTypeDecimal<RightDataType> && IsIntegral<RightDataType>, LeftDataType>, |
| 414 | Case<!IsDataTypeDecimal<LeftDataType> && IsDataTypeDecimal<RightDataType> && IsIntegral<LeftDataType>, RightDataType>, |
| 415 | /// Decimal <op> Real is not supported (traditional DBs convert Decimal <op> Real to Real) |
| 416 | Case<IsDataTypeDecimal<LeftDataType> && !IsDataTypeDecimal<RightDataType> && !IsIntegral<RightDataType>, InvalidType>, |
| 417 | Case<!IsDataTypeDecimal<LeftDataType> && IsDataTypeDecimal<RightDataType> && !IsIntegral<LeftDataType>, InvalidType>, |
| 418 | /// number <op> number -> see corresponding impl |
| 419 | Case<!IsDateOrDateTime<LeftDataType> && !IsDateOrDateTime<RightDataType>, |
| 420 | DataTypeFromFieldType<typename Op::ResultType>>, |
| 421 | /// Date + Integral -> Date |
| 422 | /// Integral + Date -> Date |
| 423 | Case<std::is_same_v<Op, PlusImpl<T0, T1>>, Switch< |
| 424 | Case<IsIntegral<RightDataType>, LeftDataType>, |
| 425 | Case<IsIntegral<LeftDataType>, RightDataType>>>, |
| 426 | /// Date - Date -> Int32 |
| 427 | /// Date - Integral -> Date |
| 428 | Case<std::is_same_v<Op, MinusImpl<T0, T1>>, Switch< |
| 429 | Case<std::is_same_v<LeftDataType, RightDataType>, DataTypeInt32>, |
| 430 | Case<IsDateOrDateTime<LeftDataType> && IsIntegral<RightDataType>, LeftDataType>>>, |
| 431 | /// least(Date, Date) -> Date |
| 432 | /// greatest(Date, Date) -> Date |
| 433 | Case<std::is_same_v<LeftDataType, RightDataType> && (std::is_same_v<Op, LeastBaseImpl<T0, T1>> || std::is_same_v<Op, GreatestBaseImpl<T0, T1>>), |
| 434 | LeftDataType>, |
| 435 | /// Date % Int32 -> int32 |
| 436 | Case<std::is_same_v<Op, ModuloImpl<T0, T1>>, Switch< |
| 437 | Case<IsDateOrDateTime<LeftDataType> && IsIntegral<RightDataType>, RightDataType>, |
| 438 | Case<IsDateOrDateTime<LeftDataType> && IsFloatingPoint<RightDataType>, DataTypeInt32>>>>; |
| 439 | }; |
| 440 | |
| 441 | |
| 442 | template <template <typename, typename> class Op, typename Name, bool valid_on_default_arguments = true> |
| 443 | class FunctionBinaryArithmetic : public IFunction |
| 444 | { |
| 445 | const Context & context; |
| 446 | bool check_decimal_overflow = true; |
| 447 | |
| 448 | template <typename F> |
| 449 | static bool castType(const IDataType * type, F && f) |
| 450 | { |
| 451 | return castTypeToEither< |
| 452 | DataTypeUInt8, |
| 453 | DataTypeUInt16, |
| 454 | DataTypeUInt32, |
| 455 | DataTypeUInt64, |
| 456 | DataTypeInt8, |
| 457 | DataTypeInt16, |
| 458 | DataTypeInt32, |
| 459 | DataTypeInt64, |
| 460 | DataTypeFloat32, |
| 461 | DataTypeFloat64, |
| 462 | DataTypeDate, |
| 463 | DataTypeDateTime, |
| 464 | DataTypeDecimal<Decimal32>, |
| 465 | DataTypeDecimal<Decimal64>, |
| 466 | DataTypeDecimal<Decimal128> |
| 467 | >(type, std::forward<F>(f)); |
| 468 | } |
| 469 | |
| 470 | template <typename F> |
| 471 | static bool castBothTypes(const IDataType * left, const IDataType * right, F && f) |
| 472 | { |
| 473 | return castType(left, [&](const auto & left_) { return castType(right, [&](const auto & right_) { return f(left_, right_); }); }); |
| 474 | } |
| 475 | |
| 476 | FunctionOverloadResolverPtr getFunctionForIntervalArithmetic(const DataTypePtr & type0, const DataTypePtr & type1) const |
| 477 | { |
| 478 | /// Special case when the function is plus or minus, one of arguments is Date/DateTime and another is Interval. |
| 479 | /// We construct another function (example: addMonths) and call it. |
| 480 | |
| 481 | bool function_is_plus = std::is_same_v<Op<UInt8, UInt8>, PlusImpl<UInt8, UInt8>>; |
| 482 | bool function_is_minus = std::is_same_v<Op<UInt8, UInt8>, MinusImpl<UInt8, UInt8>>; |
| 483 | |
| 484 | if (!function_is_plus && !function_is_minus) |
| 485 | return {}; |
| 486 | |
| 487 | int interval_arg = 1; |
| 488 | const DataTypeInterval * interval_data_type = checkAndGetDataType<DataTypeInterval>(type1.get()); |
| 489 | if (!interval_data_type) |
| 490 | { |
| 491 | interval_arg = 0; |
| 492 | interval_data_type = checkAndGetDataType<DataTypeInterval>(type0.get()); |
| 493 | } |
| 494 | if (!interval_data_type) |
| 495 | return {}; |
| 496 | |
| 497 | if (interval_arg == 0 && function_is_minus) |
| 498 | throw Exception("Wrong order of arguments for function " + getName() + ": argument of type Interval cannot be first." , |
| 499 | ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); |
| 500 | |
| 501 | const DataTypeDate * date_data_type = checkAndGetDataType<DataTypeDate>(interval_arg == 0 ? type1.get() : type0.get()); |
| 502 | const DataTypeDateTime * date_time_data_type = nullptr; |
| 503 | if (!date_data_type) |
| 504 | { |
| 505 | date_time_data_type = checkAndGetDataType<DataTypeDateTime>(interval_arg == 0 ? type1.get() : type0.get()); |
| 506 | if (!date_time_data_type) |
| 507 | throw Exception("Wrong argument types for function " + getName() + ": if one argument is Interval, then another must be Date or DateTime." , |
| 508 | ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); |
| 509 | } |
| 510 | |
| 511 | std::stringstream function_name; |
| 512 | function_name << (function_is_plus ? "add" : "subtract" ) << interval_data_type->getKind().toString() << 's'; |
| 513 | |
| 514 | return FunctionFactory::instance().get(function_name.str(), context); |
| 515 | } |
| 516 | |
| 517 | bool isAggregateMultiply(const DataTypePtr & type0, const DataTypePtr & type1) const |
| 518 | { |
| 519 | if constexpr (!std::is_same_v<Op<UInt8, UInt8>, MultiplyImpl<UInt8, UInt8>>) |
| 520 | return false; |
| 521 | |
| 522 | WhichDataType which0(type0); |
| 523 | WhichDataType which1(type1); |
| 524 | |
| 525 | return (which0.isAggregateFunction() && which1.isNativeUInt()) |
| 526 | || (which0.isNativeUInt() && which1.isAggregateFunction()); |
| 527 | } |
| 528 | |
| 529 | bool isAggregateAddition(const DataTypePtr & type0, const DataTypePtr & type1) const |
| 530 | { |
| 531 | if constexpr (!std::is_same_v<Op<UInt8, UInt8>, PlusImpl<UInt8, UInt8>>) |
| 532 | return false; |
| 533 | |
| 534 | WhichDataType which0(type0); |
| 535 | WhichDataType which1(type1); |
| 536 | |
| 537 | return which0.isAggregateFunction() && which1.isAggregateFunction(); |
| 538 | } |
| 539 | |
| 540 | /// Multiply aggregation state by integer constant: by merging it with itself specified number of times. |
| 541 | void executeAggregateMultiply(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) const |
| 542 | { |
| 543 | ColumnNumbers new_arguments = arguments; |
| 544 | if (WhichDataType(block.getByPosition(new_arguments[1]).type).isAggregateFunction()) |
| 545 | std::swap(new_arguments[0], new_arguments[1]); |
| 546 | |
| 547 | if (!isColumnConst(*block.getByPosition(new_arguments[1]).column)) |
| 548 | throw Exception{"Illegal column " + block.getByPosition(new_arguments[1]).column->getName() |
| 549 | + " of argument of aggregation state multiply. Should be integer constant" , ErrorCodes::ILLEGAL_COLUMN}; |
| 550 | |
| 551 | const IColumn & agg_state_column = *block.getByPosition(new_arguments[0]).column; |
| 552 | bool agg_state_is_const = isColumnConst(agg_state_column); |
| 553 | const ColumnAggregateFunction & column = typeid_cast<const ColumnAggregateFunction &>( |
| 554 | agg_state_is_const ? assert_cast<const ColumnConst &>(agg_state_column).getDataColumn() : agg_state_column); |
| 555 | |
| 556 | AggregateFunctionPtr function = column.getAggregateFunction(); |
| 557 | |
| 558 | |
| 559 | size_t size = agg_state_is_const ? 1 : input_rows_count; |
| 560 | |
| 561 | auto column_to = ColumnAggregateFunction::create(function); |
| 562 | column_to->reserve(size); |
| 563 | |
| 564 | auto column_from = ColumnAggregateFunction::create(function); |
| 565 | column_from->reserve(size); |
| 566 | |
| 567 | for (size_t i = 0; i < size; ++i) |
| 568 | { |
| 569 | column_to->insertDefault(); |
| 570 | column_from->insertFrom(column.getData()[i]); |
| 571 | } |
| 572 | |
| 573 | auto & vec_to = column_to->getData(); |
| 574 | auto & vec_from = column_from->getData(); |
| 575 | |
| 576 | UInt64 m = typeid_cast<const ColumnConst *>(block.getByPosition(new_arguments[1]).column.get())->getValue<UInt64>(); |
| 577 | |
| 578 | // Since we merge the function states by ourselves, we have to have an |
| 579 | // Arena for this. Pass it to the resulting column so that the arena |
| 580 | // has a proper lifetime. |
| 581 | auto arena = std::make_shared<Arena>(); |
| 582 | column_to->addArena(arena); |
| 583 | |
| 584 | /// We use exponentiation by squaring algorithm to perform multiplying aggregate states by N in O(log(N)) operations |
| 585 | /// https://en.wikipedia.org/wiki/Exponentiation_by_squaring |
| 586 | while (m) |
| 587 | { |
| 588 | if (m % 2) |
| 589 | { |
| 590 | for (size_t i = 0; i < size; ++i) |
| 591 | function->merge(vec_to[i], vec_from[i], arena.get()); |
| 592 | --m; |
| 593 | } |
| 594 | else |
| 595 | { |
| 596 | for (size_t i = 0; i < size; ++i) |
| 597 | function->merge(vec_from[i], vec_from[i], arena.get()); |
| 598 | m /= 2; |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | if (agg_state_is_const) |
| 603 | block.getByPosition(result).column = ColumnConst::create(std::move(column_to), input_rows_count); |
| 604 | else |
| 605 | block.getByPosition(result).column = std::move(column_to); |
| 606 | } |
| 607 | |
| 608 | /// Merge two aggregation states together. |
| 609 | void executeAggregateAddition(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) const |
| 610 | { |
| 611 | const IColumn & lhs_column = *block.getByPosition(arguments[0]).column; |
| 612 | const IColumn & rhs_column = *block.getByPosition(arguments[1]).column; |
| 613 | |
| 614 | bool lhs_is_const = isColumnConst(lhs_column); |
| 615 | bool rhs_is_const = isColumnConst(rhs_column); |
| 616 | |
| 617 | const ColumnAggregateFunction & lhs = typeid_cast<const ColumnAggregateFunction &>( |
| 618 | lhs_is_const ? assert_cast<const ColumnConst &>(lhs_column).getDataColumn() : lhs_column); |
| 619 | const ColumnAggregateFunction & rhs = typeid_cast<const ColumnAggregateFunction &>( |
| 620 | rhs_is_const ? assert_cast<const ColumnConst &>(rhs_column).getDataColumn() : rhs_column); |
| 621 | |
| 622 | AggregateFunctionPtr function = lhs.getAggregateFunction(); |
| 623 | |
| 624 | size_t size = (lhs_is_const && rhs_is_const) ? 1 : input_rows_count; |
| 625 | |
| 626 | auto column_to = ColumnAggregateFunction::create(function); |
| 627 | column_to->reserve(size); |
| 628 | |
| 629 | for (size_t i = 0; i < size; ++i) |
| 630 | { |
| 631 | column_to->insertFrom(lhs.getData()[lhs_is_const ? 0 : i]); |
| 632 | column_to->insertMergeFrom(rhs.getData()[rhs_is_const ? 0 : i]); |
| 633 | } |
| 634 | |
| 635 | if (lhs_is_const && rhs_is_const) |
| 636 | block.getByPosition(result).column = ColumnConst::create(std::move(column_to), input_rows_count); |
| 637 | else |
| 638 | block.getByPosition(result).column = std::move(column_to); |
| 639 | } |
| 640 | |
| 641 | void executeDateTimeIntervalPlusMinus(Block & block, const ColumnNumbers & arguments, |
| 642 | size_t result, size_t input_rows_count, const FunctionOverloadResolverPtr & function_builder) const |
| 643 | { |
| 644 | ColumnNumbers new_arguments = arguments; |
| 645 | |
| 646 | /// Interval argument must be second. |
| 647 | if (WhichDataType(block.getByPosition(arguments[0]).type).isInterval()) |
| 648 | std::swap(new_arguments[0], new_arguments[1]); |
| 649 | |
| 650 | /// Change interval argument type to its representation |
| 651 | Block new_block = block; |
| 652 | new_block.getByPosition(new_arguments[1]).type = std::make_shared<DataTypeNumber<DataTypeInterval::FieldType>>(); |
| 653 | |
| 654 | ColumnsWithTypeAndName new_arguments_with_type_and_name = |
| 655 | {new_block.getByPosition(new_arguments[0]), new_block.getByPosition(new_arguments[1])}; |
| 656 | auto function = function_builder->build(new_arguments_with_type_and_name); |
| 657 | |
| 658 | function->execute(new_block, new_arguments, result, input_rows_count); |
| 659 | block.getByPosition(result).column = new_block.getByPosition(result).column; |
| 660 | } |
| 661 | |
| 662 | public: |
| 663 | static constexpr auto name = Name::name; |
| 664 | static FunctionPtr create(const Context & context) { return std::make_shared<FunctionBinaryArithmetic>(context); } |
| 665 | |
| 666 | FunctionBinaryArithmetic(const Context & context_) |
| 667 | : context(context_), |
| 668 | check_decimal_overflow(decimalCheckArithmeticOverflow(context)) |
| 669 | {} |
| 670 | |
| 671 | String getName() const override |
| 672 | { |
| 673 | return name; |
| 674 | } |
| 675 | |
| 676 | size_t getNumberOfArguments() const override { return 2; } |
| 677 | |
| 678 | DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override |
| 679 | { |
| 680 | /// Special case when multiply aggregate function state |
| 681 | if (isAggregateMultiply(arguments[0], arguments[1])) |
| 682 | { |
| 683 | if (WhichDataType(arguments[0]).isAggregateFunction()) |
| 684 | return arguments[0]; |
| 685 | return arguments[1]; |
| 686 | } |
| 687 | |
| 688 | /// Special case - addition of two aggregate functions states |
| 689 | if (isAggregateAddition(arguments[0], arguments[1])) |
| 690 | { |
| 691 | if (!arguments[0]->equals(*arguments[1])) |
| 692 | throw Exception("Cannot add aggregate states of different functions: " |
| 693 | + arguments[0]->getName() + " and " + arguments[1]->getName(), ErrorCodes::CANNOT_ADD_DIFFERENT_AGGREGATE_STATES); |
| 694 | |
| 695 | return arguments[0]; |
| 696 | } |
| 697 | |
| 698 | /// Special case when the function is plus or minus, one of arguments is Date/DateTime and another is Interval. |
| 699 | if (auto function_builder = getFunctionForIntervalArithmetic(arguments[0], arguments[1])) |
| 700 | { |
| 701 | ColumnsWithTypeAndName new_arguments(2); |
| 702 | |
| 703 | for (size_t i = 0; i < 2; ++i) |
| 704 | new_arguments[i].type = arguments[i]; |
| 705 | |
| 706 | /// Interval argument must be second. |
| 707 | if (WhichDataType(new_arguments[0].type).isInterval()) |
| 708 | std::swap(new_arguments[0], new_arguments[1]); |
| 709 | |
| 710 | /// Change interval argument to its representation |
| 711 | new_arguments[1].type = std::make_shared<DataTypeNumber<DataTypeInterval::FieldType>>(); |
| 712 | |
| 713 | auto function = function_builder->build(new_arguments); |
| 714 | return function->getReturnType(); |
| 715 | } |
| 716 | |
| 717 | DataTypePtr type_res; |
| 718 | bool valid = castBothTypes(arguments[0].get(), arguments[1].get(), [&](const auto & left, const auto & right) |
| 719 | { |
| 720 | using LeftDataType = std::decay_t<decltype(left)>; |
| 721 | using RightDataType = std::decay_t<decltype(right)>; |
| 722 | using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType; |
| 723 | if constexpr (!std::is_same_v<ResultDataType, InvalidType>) |
| 724 | { |
| 725 | if constexpr (IsDataTypeDecimal<LeftDataType> && IsDataTypeDecimal<RightDataType>) |
| 726 | { |
| 727 | constexpr bool is_multiply = std::is_same_v<Op<UInt8, UInt8>, MultiplyImpl<UInt8, UInt8>>; |
| 728 | constexpr bool is_division = std::is_same_v<Op<UInt8, UInt8>, DivideFloatingImpl<UInt8, UInt8>> || |
| 729 | std::is_same_v<Op<UInt8, UInt8>, DivideIntegralImpl<UInt8, UInt8>> || |
| 730 | std::is_same_v<Op<UInt8, UInt8>, DivideIntegralOrZeroImpl<UInt8, UInt8>>; |
| 731 | |
| 732 | ResultDataType result_type = decimalResultType(left, right, is_multiply, is_division); |
| 733 | type_res = std::make_shared<ResultDataType>(result_type.getPrecision(), result_type.getScale()); |
| 734 | } |
| 735 | else if constexpr (IsDataTypeDecimal<LeftDataType>) |
| 736 | type_res = std::make_shared<LeftDataType>(left.getPrecision(), left.getScale()); |
| 737 | else if constexpr (IsDataTypeDecimal<RightDataType>) |
| 738 | type_res = std::make_shared<RightDataType>(right.getPrecision(), right.getScale()); |
| 739 | else |
| 740 | type_res = std::make_shared<ResultDataType>(); |
| 741 | return true; |
| 742 | } |
| 743 | return false; |
| 744 | }); |
| 745 | if (!valid) |
| 746 | throw Exception("Illegal types " + arguments[0]->getName() + " and " + arguments[1]->getName() + " of arguments of function " + getName(), |
| 747 | ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); |
| 748 | return type_res; |
| 749 | } |
| 750 | |
| 751 | void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override |
| 752 | { |
| 753 | /// Special case when multiply aggregate function state |
| 754 | if (isAggregateMultiply(block.getByPosition(arguments[0]).type, block.getByPosition(arguments[1]).type)) |
| 755 | { |
| 756 | executeAggregateMultiply(block, arguments, result, input_rows_count); |
| 757 | return; |
| 758 | } |
| 759 | |
| 760 | /// Special case - addition of two aggregate functions states |
| 761 | if (isAggregateAddition(block.getByPosition(arguments[0]).type, block.getByPosition(arguments[1]).type)) |
| 762 | { |
| 763 | executeAggregateAddition(block, arguments, result, input_rows_count); |
| 764 | return; |
| 765 | } |
| 766 | |
| 767 | /// Special case when the function is plus or minus, one of arguments is Date/DateTime and another is Interval. |
| 768 | if (auto function_builder = getFunctionForIntervalArithmetic(block.getByPosition(arguments[0]).type, block.getByPosition(arguments[1]).type)) |
| 769 | { |
| 770 | executeDateTimeIntervalPlusMinus(block, arguments, result, input_rows_count, function_builder); |
| 771 | return; |
| 772 | } |
| 773 | |
| 774 | auto * left_generic = block.getByPosition(arguments[0]).type.get(); |
| 775 | auto * right_generic = block.getByPosition(arguments[1]).type.get(); |
| 776 | bool valid = castBothTypes(left_generic, right_generic, [&](const auto & left, const auto & right) |
| 777 | { |
| 778 | using LeftDataType = std::decay_t<decltype(left)>; |
| 779 | using RightDataType = std::decay_t<decltype(right)>; |
| 780 | using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType; |
| 781 | if constexpr (!std::is_same_v<ResultDataType, InvalidType>) |
| 782 | { |
| 783 | constexpr bool result_is_decimal = IsDataTypeDecimal<LeftDataType> || IsDataTypeDecimal<RightDataType>; |
| 784 | constexpr bool is_multiply = std::is_same_v<Op<UInt8, UInt8>, MultiplyImpl<UInt8, UInt8>>; |
| 785 | constexpr bool is_division = std::is_same_v<Op<UInt8, UInt8>, DivideFloatingImpl<UInt8, UInt8>> || |
| 786 | std::is_same_v<Op<UInt8, UInt8>, DivideIntegralImpl<UInt8, UInt8>> || |
| 787 | std::is_same_v<Op<UInt8, UInt8>, DivideIntegralOrZeroImpl<UInt8, UInt8>>; |
| 788 | |
| 789 | using T0 = typename LeftDataType::FieldType; |
| 790 | using T1 = typename RightDataType::FieldType; |
| 791 | using ResultType = typename ResultDataType::FieldType; |
| 792 | using ColVecT0 = std::conditional_t<IsDecimalNumber<T0>, ColumnDecimal<T0>, ColumnVector<T0>>; |
| 793 | using ColVecT1 = std::conditional_t<IsDecimalNumber<T1>, ColumnDecimal<T1>, ColumnVector<T1>>; |
| 794 | using ColVecResult = std::conditional_t<IsDecimalNumber<ResultType>, ColumnDecimal<ResultType>, ColumnVector<ResultType>>; |
| 795 | |
| 796 | /// Decimal operations need scale. Operations are on result type. |
| 797 | using OpImpl = std::conditional_t<IsDataTypeDecimal<ResultDataType>, |
| 798 | DecimalBinaryOperation<T0, T1, Op, ResultType>, |
| 799 | BinaryOperationImpl<T0, T1, Op<T0, T1>, ResultType>>; |
| 800 | |
| 801 | auto col_left_raw = block.getByPosition(arguments[0]).column.get(); |
| 802 | auto col_right_raw = block.getByPosition(arguments[1]).column.get(); |
| 803 | if (auto col_left = checkAndGetColumnConst<ColVecT0>(col_left_raw)) |
| 804 | { |
| 805 | if (auto col_right = checkAndGetColumnConst<ColVecT1>(col_right_raw)) |
| 806 | { |
| 807 | /// the only case with a non-vector result |
| 808 | if constexpr (result_is_decimal) |
| 809 | { |
| 810 | ResultDataType type = decimalResultType(left, right, is_multiply, is_division); |
| 811 | typename ResultDataType::FieldType scale_a = type.scaleFactorFor(left, is_multiply); |
| 812 | typename ResultDataType::FieldType scale_b = type.scaleFactorFor(right, is_multiply || is_division); |
| 813 | if constexpr (IsDataTypeDecimal<RightDataType> && is_division) |
| 814 | scale_a = right.getScaleMultiplier(); |
| 815 | |
| 816 | auto res = OpImpl::constant_constant(col_left->template getValue<T0>(), col_right->template getValue<T1>(), |
| 817 | scale_a, scale_b, check_decimal_overflow); |
| 818 | block.getByPosition(result).column = |
| 819 | ResultDataType(type.getPrecision(), type.getScale()).createColumnConst( |
| 820 | col_left->size(), toField(res, type.getScale())); |
| 821 | |
| 822 | } |
| 823 | else |
| 824 | { |
| 825 | auto res = OpImpl::constant_constant(col_left->template getValue<T0>(), col_right->template getValue<T1>()); |
| 826 | block.getByPosition(result).column = ResultDataType().createColumnConst(col_left->size(), toField(res)); |
| 827 | } |
| 828 | return true; |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | typename ColVecResult::MutablePtr col_res = nullptr; |
| 833 | if constexpr (result_is_decimal) |
| 834 | { |
| 835 | ResultDataType type = decimalResultType(left, right, is_multiply, is_division); |
| 836 | col_res = ColVecResult::create(0, type.getScale()); |
| 837 | } |
| 838 | else |
| 839 | col_res = ColVecResult::create(); |
| 840 | |
| 841 | auto & vec_res = col_res->getData(); |
| 842 | vec_res.resize(block.rows()); |
| 843 | |
| 844 | if (auto col_left_const = checkAndGetColumnConst<ColVecT0>(col_left_raw)) |
| 845 | { |
| 846 | if (auto col_right = checkAndGetColumn<ColVecT1>(col_right_raw)) |
| 847 | { |
| 848 | if constexpr (result_is_decimal) |
| 849 | { |
| 850 | ResultDataType type = decimalResultType(left, right, is_multiply, is_division); |
| 851 | |
| 852 | typename ResultDataType::FieldType scale_a = type.scaleFactorFor(left, is_multiply); |
| 853 | typename ResultDataType::FieldType scale_b = type.scaleFactorFor(right, is_multiply || is_division); |
| 854 | if constexpr (IsDataTypeDecimal<RightDataType> && is_division) |
| 855 | scale_a = right.getScaleMultiplier(); |
| 856 | |
| 857 | OpImpl::constant_vector(col_left_const->template getValue<T0>(), col_right->getData(), vec_res, |
| 858 | scale_a, scale_b, check_decimal_overflow); |
| 859 | } |
| 860 | else |
| 861 | OpImpl::constant_vector(col_left_const->template getValue<T0>(), col_right->getData(), vec_res); |
| 862 | } |
| 863 | else |
| 864 | return false; |
| 865 | } |
| 866 | else if (auto col_left = checkAndGetColumn<ColVecT0>(col_left_raw)) |
| 867 | { |
| 868 | if constexpr (result_is_decimal) |
| 869 | { |
| 870 | ResultDataType type = decimalResultType(left, right, is_multiply, is_division); |
| 871 | |
| 872 | typename ResultDataType::FieldType scale_a = type.scaleFactorFor(left, is_multiply); |
| 873 | typename ResultDataType::FieldType scale_b = type.scaleFactorFor(right, is_multiply || is_division); |
| 874 | if constexpr (IsDataTypeDecimal<RightDataType> && is_division) |
| 875 | scale_a = right.getScaleMultiplier(); |
| 876 | if (auto col_right = checkAndGetColumn<ColVecT1>(col_right_raw)) |
| 877 | { |
| 878 | OpImpl::vector_vector(col_left->getData(), col_right->getData(), vec_res, scale_a, scale_b, |
| 879 | check_decimal_overflow); |
| 880 | } |
| 881 | else if (auto col_right_const = checkAndGetColumnConst<ColVecT1>(col_right_raw)) |
| 882 | { |
| 883 | OpImpl::vector_constant(col_left->getData(), col_right_const->template getValue<T1>(), vec_res, |
| 884 | scale_a, scale_b, check_decimal_overflow); |
| 885 | } |
| 886 | else |
| 887 | return false; |
| 888 | } |
| 889 | else |
| 890 | { |
| 891 | if (auto col_right = checkAndGetColumn<ColVecT1>(col_right_raw)) |
| 892 | OpImpl::vector_vector(col_left->getData(), col_right->getData(), vec_res); |
| 893 | else if (auto col_right_const = checkAndGetColumnConst<ColVecT1>(col_right_raw)) |
| 894 | OpImpl::vector_constant(col_left->getData(), col_right_const->template getValue<T1>(), vec_res); |
| 895 | else |
| 896 | return false; |
| 897 | } |
| 898 | } |
| 899 | else |
| 900 | return false; |
| 901 | |
| 902 | block.getByPosition(result).column = std::move(col_res); |
| 903 | return true; |
| 904 | } |
| 905 | return false; |
| 906 | }); |
| 907 | if (!valid) |
| 908 | throw Exception(getName() + "'s arguments do not match the expected data types" , ErrorCodes::LOGICAL_ERROR); |
| 909 | } |
| 910 | |
| 911 | #if USE_EMBEDDED_COMPILER |
| 912 | bool isCompilableImpl(const DataTypes & arguments) const override |
| 913 | { |
| 914 | return castBothTypes(arguments[0].get(), arguments[1].get(), [&](const auto & left, const auto & right) |
| 915 | { |
| 916 | using LeftDataType = std::decay_t<decltype(left)>; |
| 917 | using RightDataType = std::decay_t<decltype(right)>; |
| 918 | using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType; |
| 919 | using OpSpec = Op<typename LeftDataType::FieldType, typename RightDataType::FieldType>; |
| 920 | return !std::is_same_v<ResultDataType, InvalidType> && !IsDataTypeDecimal<ResultDataType> && OpSpec::compilable; |
| 921 | }); |
| 922 | } |
| 923 | |
| 924 | llvm::Value * compileImpl(llvm::IRBuilderBase & builder, const DataTypes & types, ValuePlaceholders values) const override |
| 925 | { |
| 926 | llvm::Value * result = nullptr; |
| 927 | castBothTypes(types[0].get(), types[1].get(), [&](const auto & left, const auto & right) |
| 928 | { |
| 929 | using LeftDataType = std::decay_t<decltype(left)>; |
| 930 | using RightDataType = std::decay_t<decltype(right)>; |
| 931 | using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType; |
| 932 | using OpSpec = Op<typename LeftDataType::FieldType, typename RightDataType::FieldType>; |
| 933 | if constexpr (!std::is_same_v<ResultDataType, InvalidType> && !IsDataTypeDecimal<ResultDataType> && OpSpec::compilable) |
| 934 | { |
| 935 | auto & b = static_cast<llvm::IRBuilder<> &>(builder); |
| 936 | auto type = std::make_shared<ResultDataType>(); |
| 937 | auto * lval = nativeCast(b, types[0], values[0](), type); |
| 938 | auto * rval = nativeCast(b, types[1], values[1](), type); |
| 939 | result = OpSpec::compile(b, lval, rval, std::is_signed_v<typename ResultDataType::FieldType>); |
| 940 | return true; |
| 941 | } |
| 942 | return false; |
| 943 | }); |
| 944 | return result; |
| 945 | } |
| 946 | #endif |
| 947 | |
| 948 | bool canBeExecutedOnDefaultArguments() const override { return valid_on_default_arguments; } |
| 949 | }; |
| 950 | |
| 951 | } |
| 952 | |