| 1 | #include <DataStreams/ExpressionBlockInputStream.h> |
| 2 | #include <DataStreams/FilterBlockInputStream.h> |
| 3 | #include <DataStreams/FinishSortingBlockInputStream.h> |
| 4 | #include <DataStreams/LimitBlockInputStream.h> |
| 5 | #include <DataStreams/LimitByBlockInputStream.h> |
| 6 | #include <DataStreams/PartialSortingBlockInputStream.h> |
| 7 | #include <DataStreams/MergeSortingBlockInputStream.h> |
| 8 | #include <DataStreams/MergingSortedBlockInputStream.h> |
| 9 | #include <DataStreams/AggregatingBlockInputStream.h> |
| 10 | #include <DataStreams/MergingAggregatedBlockInputStream.h> |
| 11 | #include <DataStreams/MergingAggregatedMemoryEfficientBlockInputStream.h> |
| 12 | #include <DataStreams/AsynchronousBlockInputStream.h> |
| 13 | #include <DataStreams/UnionBlockInputStream.h> |
| 14 | #include <DataStreams/ParallelAggregatingBlockInputStream.h> |
| 15 | #include <DataStreams/DistinctBlockInputStream.h> |
| 16 | #include <DataStreams/NullBlockInputStream.h> |
| 17 | #include <DataStreams/TotalsHavingBlockInputStream.h> |
| 18 | #include <DataStreams/OneBlockInputStream.h> |
| 19 | #include <DataStreams/copyData.h> |
| 20 | #include <DataStreams/CreatingSetsBlockInputStream.h> |
| 21 | #include <DataStreams/MaterializingBlockInputStream.h> |
| 22 | #include <DataStreams/ConcatBlockInputStream.h> |
| 23 | #include <DataStreams/RollupBlockInputStream.h> |
| 24 | #include <DataStreams/CubeBlockInputStream.h> |
| 25 | #include <DataStreams/ConvertColumnLowCardinalityToFullBlockInputStream.h> |
| 26 | #include <DataStreams/ConvertingBlockInputStream.h> |
| 27 | #include <DataStreams/ReverseBlockInputStream.h> |
| 28 | #include <DataStreams/FillingBlockInputStream.h> |
| 29 | #include <DataStreams/SquashingBlockInputStream.h> |
| 30 | |
| 31 | #include <Parsers/ASTFunction.h> |
| 32 | #include <Parsers/ASTIdentifier.h> |
| 33 | #include <Parsers/ASTLiteral.h> |
| 34 | #include <Parsers/ASTOrderByElement.h> |
| 35 | #include <Parsers/ASTSelectWithUnionQuery.h> |
| 36 | #include <Parsers/ASTTablesInSelectQuery.h> |
| 37 | #include <Parsers/ParserSelectQuery.h> |
| 38 | #include <Parsers/ExpressionListParsers.h> |
| 39 | #include <Parsers/parseQuery.h> |
| 40 | |
| 41 | #include <Access/RowPolicyContext.h> |
| 42 | |
| 43 | #include <Interpreters/InterpreterSelectQuery.h> |
| 44 | #include <Interpreters/InterpreterSelectWithUnionQuery.h> |
| 45 | #include <Interpreters/InterpreterSetQuery.h> |
| 46 | #include <Interpreters/evaluateConstantExpression.h> |
| 47 | #include <Interpreters/convertFieldToType.h> |
| 48 | #include <Interpreters/ExpressionAnalyzer.h> |
| 49 | #include <Interpreters/getTableExpressions.h> |
| 50 | #include <Interpreters/JoinToSubqueryTransformVisitor.h> |
| 51 | #include <Interpreters/CrossToInnerJoinVisitor.h> |
| 52 | #include <Interpreters/AnalyzedJoin.h> |
| 53 | |
| 54 | #include <Storages/MergeTree/MergeTreeData.h> |
| 55 | #include <Storages/MergeTree/MergeTreeWhereOptimizer.h> |
| 56 | #include <Storages/IStorage.h> |
| 57 | #include <Storages/StorageValues.h> |
| 58 | |
| 59 | #include <TableFunctions/ITableFunction.h> |
| 60 | #include <TableFunctions/TableFunctionFactory.h> |
| 61 | |
| 62 | #include <Functions/IFunction.h> |
| 63 | #include <Core/Field.h> |
| 64 | #include <Core/Types.h> |
| 65 | #include <Columns/Collator.h> |
| 66 | #include <Common/FieldVisitors.h> |
| 67 | #include <Common/typeid_cast.h> |
| 68 | #include <Common/checkStackSize.h> |
| 69 | #include <Parsers/queryToString.h> |
| 70 | #include <ext/map.h> |
| 71 | #include <ext/scope_guard.h> |
| 72 | #include <memory> |
| 73 | |
| 74 | #include <Processors/Sources/NullSource.h> |
| 75 | #include <Processors/Sources/SourceFromInputStream.h> |
| 76 | #include <Processors/Transforms/FilterTransform.h> |
| 77 | #include <Processors/Transforms/ExpressionTransform.h> |
| 78 | #include <Processors/Transforms/AggregatingTransform.h> |
| 79 | #include <Processors/Transforms/MergingAggregatedTransform.h> |
| 80 | #include <Processors/Transforms/MergingAggregatedMemoryEfficientTransform.h> |
| 81 | #include <Processors/Transforms/TotalsHavingTransform.h> |
| 82 | #include <Processors/Transforms/PartialSortingTransform.h> |
| 83 | #include <Processors/Transforms/LimitsCheckingTransform.h> |
| 84 | #include <Processors/Transforms/MergeSortingTransform.h> |
| 85 | #include <Processors/Transforms/MergingSortedTransform.h> |
| 86 | #include <Processors/Transforms/DistinctTransform.h> |
| 87 | #include <Processors/Transforms/LimitByTransform.h> |
| 88 | #include <Processors/Transforms/ExtremesTransform.h> |
| 89 | #include <Processors/Transforms/CreatingSetsTransform.h> |
| 90 | #include <Processors/Transforms/RollupTransform.h> |
| 91 | #include <Processors/Transforms/CubeTransform.h> |
| 92 | #include <Processors/Transforms/FillingTransform.h> |
| 93 | #include <Processors/LimitTransform.h> |
| 94 | #include <Processors/Transforms/FinishSortingTransform.h> |
| 95 | #include <DataTypes/DataTypeAggregateFunction.h> |
| 96 | #include <DataStreams/materializeBlock.h> |
| 97 | #include <Processors/Pipe.h> |
| 98 | |
| 99 | |
| 100 | namespace DB |
| 101 | { |
| 102 | |
| 103 | namespace ErrorCodes |
| 104 | { |
| 105 | extern const int TOO_DEEP_SUBQUERIES; |
| 106 | extern const int THERE_IS_NO_COLUMN; |
| 107 | extern const int SAMPLING_NOT_SUPPORTED; |
| 108 | extern const int ILLEGAL_FINAL; |
| 109 | extern const int ILLEGAL_PREWHERE; |
| 110 | extern const int TOO_MANY_COLUMNS; |
| 111 | extern const int LOGICAL_ERROR; |
| 112 | extern const int NOT_IMPLEMENTED; |
| 113 | extern const int PARAMETER_OUT_OF_BOUND; |
| 114 | extern const int ARGUMENT_OUT_OF_BOUND; |
| 115 | extern const int INVALID_LIMIT_EXPRESSION; |
| 116 | extern const int INVALID_WITH_FILL_EXPRESSION; |
| 117 | } |
| 118 | |
| 119 | namespace |
| 120 | { |
| 121 | |
| 122 | /// Assumes `storage` is set and the table filter (row-level security) is not empty. |
| 123 | String generateFilterActions(ExpressionActionsPtr & actions, const Context & context, const StoragePtr & storage, const ASTPtr & row_policy_filter, const Names & prerequisite_columns = {}) |
| 124 | { |
| 125 | const auto & db_name = storage->getDatabaseName(); |
| 126 | const auto & table_name = storage->getTableName(); |
| 127 | |
| 128 | /// TODO: implement some AST builders for this kind of stuff |
| 129 | ASTPtr query_ast = std::make_shared<ASTSelectQuery>(); |
| 130 | auto * select_ast = query_ast->as<ASTSelectQuery>(); |
| 131 | |
| 132 | select_ast->setExpression(ASTSelectQuery::Expression::SELECT, std::make_shared<ASTExpressionList>()); |
| 133 | auto expr_list = select_ast->select(); |
| 134 | |
| 135 | // The first column is our filter expression. |
| 136 | expr_list->children.push_back(row_policy_filter); |
| 137 | |
| 138 | /// Keep columns that are required after the filter actions. |
| 139 | for (const auto & column_str : prerequisite_columns) |
| 140 | { |
| 141 | ParserExpression expr_parser; |
| 142 | expr_list->children.push_back(parseQuery(expr_parser, column_str, 0)); |
| 143 | } |
| 144 | |
| 145 | select_ast->setExpression(ASTSelectQuery::Expression::TABLES, std::make_shared<ASTTablesInSelectQuery>()); |
| 146 | auto tables = select_ast->tables(); |
| 147 | auto tables_elem = std::make_shared<ASTTablesInSelectQueryElement>(); |
| 148 | auto table_expr = std::make_shared<ASTTableExpression>(); |
| 149 | tables->children.push_back(tables_elem); |
| 150 | tables_elem->table_expression = table_expr; |
| 151 | tables_elem->children.push_back(table_expr); |
| 152 | table_expr->database_and_table_name = createTableIdentifier(db_name, table_name); |
| 153 | table_expr->children.push_back(table_expr->database_and_table_name); |
| 154 | |
| 155 | /// Using separate expression analyzer to prevent any possible alias injection |
| 156 | auto syntax_result = SyntaxAnalyzer(context).analyze(query_ast, storage->getColumns().getAllPhysical()); |
| 157 | SelectQueryExpressionAnalyzer analyzer(query_ast, syntax_result, context); |
| 158 | ExpressionActionsChain new_chain(context); |
| 159 | analyzer.appendSelect(new_chain, false); |
| 160 | actions = new_chain.getLastActions(); |
| 161 | |
| 162 | return expr_list->children.at(0)->getColumnName(); |
| 163 | } |
| 164 | |
| 165 | } |
| 166 | |
| 167 | InterpreterSelectQuery::InterpreterSelectQuery( |
| 168 | const ASTPtr & query_ptr_, |
| 169 | const Context & context_, |
| 170 | const SelectQueryOptions & options_, |
| 171 | const Names & required_result_column_names_) |
| 172 | : InterpreterSelectQuery(query_ptr_, context_, nullptr, nullptr, options_, required_result_column_names_) |
| 173 | { |
| 174 | } |
| 175 | |
| 176 | InterpreterSelectQuery::InterpreterSelectQuery( |
| 177 | const ASTPtr & query_ptr_, |
| 178 | const Context & context_, |
| 179 | const BlockInputStreamPtr & input_, |
| 180 | const SelectQueryOptions & options_) |
| 181 | : InterpreterSelectQuery(query_ptr_, context_, input_, nullptr, options_.copy().noSubquery()) |
| 182 | {} |
| 183 | |
| 184 | InterpreterSelectQuery::InterpreterSelectQuery( |
| 185 | const ASTPtr & query_ptr_, |
| 186 | const Context & context_, |
| 187 | const StoragePtr & storage_, |
| 188 | const SelectQueryOptions & options_) |
| 189 | : InterpreterSelectQuery(query_ptr_, context_, nullptr, storage_, options_.copy().noSubquery()) |
| 190 | {} |
| 191 | |
| 192 | InterpreterSelectQuery::~InterpreterSelectQuery() = default; |
| 193 | |
| 194 | |
| 195 | /** There are no limits on the maximum size of the result for the subquery. |
| 196 | * Since the result of the query is not the result of the entire query. |
| 197 | */ |
| 198 | static Context getSubqueryContext(const Context & context) |
| 199 | { |
| 200 | Context subquery_context = context; |
| 201 | Settings subquery_settings = context.getSettings(); |
| 202 | subquery_settings.max_result_rows = 0; |
| 203 | subquery_settings.max_result_bytes = 0; |
| 204 | /// The calculation of extremes does not make sense and is not necessary (if you do it, then the extremes of the subquery can be taken for whole query). |
| 205 | subquery_settings.extremes = 0; |
| 206 | subquery_context.setSettings(subquery_settings); |
| 207 | return subquery_context; |
| 208 | } |
| 209 | |
| 210 | static void sanitizeBlock(Block & block) |
| 211 | { |
| 212 | for (auto & col : block) |
| 213 | { |
| 214 | if (!col.column) |
| 215 | col.column = col.type->createColumn(); |
| 216 | else if (isColumnConst(*col.column) && !col.column->empty()) |
| 217 | col.column = col.column->cloneEmpty(); |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | InterpreterSelectQuery::InterpreterSelectQuery( |
| 222 | const ASTPtr & query_ptr_, |
| 223 | const Context & context_, |
| 224 | const BlockInputStreamPtr & input_, |
| 225 | const StoragePtr & storage_, |
| 226 | const SelectQueryOptions & options_, |
| 227 | const Names & required_result_column_names) |
| 228 | : options(options_) |
| 229 | /// NOTE: the query almost always should be cloned because it will be modified during analysis. |
| 230 | , query_ptr(options.modify_inplace ? query_ptr_ : query_ptr_->clone()) |
| 231 | , context(std::make_shared<Context>(context_)) |
| 232 | , storage(storage_) |
| 233 | , input(input_) |
| 234 | , log(&Logger::get("InterpreterSelectQuery" )) |
| 235 | { |
| 236 | checkStackSize(); |
| 237 | |
| 238 | initSettings(); |
| 239 | const Settings & settings = context->getSettingsRef(); |
| 240 | |
| 241 | if (settings.max_subquery_depth && options.subquery_depth > settings.max_subquery_depth) |
| 242 | throw Exception("Too deep subqueries. Maximum: " + settings.max_subquery_depth.toString(), |
| 243 | ErrorCodes::TOO_DEEP_SUBQUERIES); |
| 244 | |
| 245 | CrossToInnerJoinVisitor::Data cross_to_inner; |
| 246 | CrossToInnerJoinVisitor(cross_to_inner).visit(query_ptr); |
| 247 | |
| 248 | JoinToSubqueryTransformVisitor::Data join_to_subs_data{*context}; |
| 249 | JoinToSubqueryTransformVisitor(join_to_subs_data).visit(query_ptr); |
| 250 | |
| 251 | max_streams = settings.max_threads; |
| 252 | auto & query = getSelectQuery(); |
| 253 | |
| 254 | ASTPtr table_expression = extractTableExpression(query, 0); |
| 255 | |
| 256 | bool is_table_func = false; |
| 257 | bool is_subquery = false; |
| 258 | if (table_expression) |
| 259 | { |
| 260 | is_table_func = table_expression->as<ASTFunction>(); |
| 261 | is_subquery = table_expression->as<ASTSelectWithUnionQuery>(); |
| 262 | } |
| 263 | |
| 264 | if (input) |
| 265 | { |
| 266 | /// Read from prepared input. |
| 267 | source_header = input->getHeader(); |
| 268 | } |
| 269 | else if (is_subquery) |
| 270 | { |
| 271 | /// Read from subquery. |
| 272 | interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>( |
| 273 | table_expression, getSubqueryContext(*context), options.subquery(), required_columns); |
| 274 | |
| 275 | source_header = interpreter_subquery->getSampleBlock(); |
| 276 | } |
| 277 | else if (!storage) |
| 278 | { |
| 279 | if (is_table_func) |
| 280 | { |
| 281 | /// Read from table function. propagate all settings from initSettings(), |
| 282 | /// alternative is to call on current `context`, but that can potentially pollute it. |
| 283 | storage = getSubqueryContext(*context).executeTableFunction(table_expression); |
| 284 | } |
| 285 | else |
| 286 | { |
| 287 | String database_name; |
| 288 | String table_name; |
| 289 | |
| 290 | getDatabaseAndTableNames(query, database_name, table_name, *context); |
| 291 | |
| 292 | if (auto view_source = context->getViewSource()) |
| 293 | { |
| 294 | auto & storage_values = static_cast<const StorageValues &>(*view_source); |
| 295 | if (storage_values.getDatabaseName() == database_name && storage_values.getTableName() == table_name) |
| 296 | { |
| 297 | /// Read from view source. |
| 298 | storage = context->getViewSource(); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | if (!storage) |
| 303 | { |
| 304 | /// Read from table. Even without table expression (implicit SELECT ... FROM system.one). |
| 305 | storage = context->getTable(database_name, table_name); |
| 306 | } |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | if (storage) |
| 311 | table_lock = storage->lockStructureForShare(false, context->getInitialQueryId()); |
| 312 | |
| 313 | auto analyze = [&] () |
| 314 | { |
| 315 | syntax_analyzer_result = SyntaxAnalyzer(*context, options).analyze( |
| 316 | query_ptr, source_header.getNamesAndTypesList(), required_result_column_names, storage, NamesAndTypesList()); |
| 317 | |
| 318 | /// Save scalar sub queries's results in the query context |
| 319 | if (context->hasQueryContext()) |
| 320 | for (const auto & it : syntax_analyzer_result->getScalars()) |
| 321 | context->getQueryContext().addScalar(it.first, it.second); |
| 322 | |
| 323 | query_analyzer = std::make_unique<SelectQueryExpressionAnalyzer>( |
| 324 | query_ptr, syntax_analyzer_result, *context, |
| 325 | NameSet(required_result_column_names.begin(), required_result_column_names.end()), |
| 326 | options.subquery_depth, !options.only_analyze); |
| 327 | |
| 328 | if (!options.only_analyze) |
| 329 | { |
| 330 | if (query.sample_size() && (input || !storage || !storage->supportsSampling())) |
| 331 | throw Exception("Illegal SAMPLE: table doesn't support sampling" , ErrorCodes::SAMPLING_NOT_SUPPORTED); |
| 332 | |
| 333 | if (query.final() && (input || !storage || !storage->supportsFinal())) |
| 334 | throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support FINAL" : "Illegal FINAL" , ErrorCodes::ILLEGAL_FINAL); |
| 335 | |
| 336 | if (query.prewhere() && (input || !storage || !storage->supportsPrewhere())) |
| 337 | throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support PREWHERE" : "Illegal PREWHERE" , ErrorCodes::ILLEGAL_PREWHERE); |
| 338 | |
| 339 | /// Save the new temporary tables in the query context |
| 340 | for (const auto & it : query_analyzer->getExternalTables()) |
| 341 | if (!context->tryGetExternalTable(it.first)) |
| 342 | context->addExternalTable(it.first, it.second); |
| 343 | } |
| 344 | |
| 345 | if (!options.only_analyze || options.modify_inplace) |
| 346 | { |
| 347 | if (syntax_analyzer_result->rewrite_subqueries) |
| 348 | { |
| 349 | /// remake interpreter_subquery when PredicateOptimizer rewrites subqueries and main table is subquery |
| 350 | if (is_subquery) |
| 351 | interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>( |
| 352 | table_expression, |
| 353 | getSubqueryContext(*context), |
| 354 | options.subquery(), |
| 355 | required_columns); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | if (interpreter_subquery) |
| 360 | { |
| 361 | /// If there is an aggregation in the outer query, WITH TOTALS is ignored in the subquery. |
| 362 | if (query_analyzer->hasAggregation()) |
| 363 | interpreter_subquery->ignoreWithTotals(); |
| 364 | } |
| 365 | |
| 366 | required_columns = syntax_analyzer_result->requiredSourceColumns(); |
| 367 | |
| 368 | if (storage) |
| 369 | { |
| 370 | source_header = storage->getSampleBlockForColumns(required_columns); |
| 371 | |
| 372 | /// Fix source_header for filter actions. |
| 373 | auto row_policy_filter = context->getRowPolicy()->getCondition(storage->getDatabaseName(), storage->getTableName(), RowPolicy::SELECT_FILTER); |
| 374 | if (row_policy_filter) |
| 375 | { |
| 376 | filter_info = std::make_shared<FilterInfo>(); |
| 377 | filter_info->column_name = generateFilterActions(filter_info->actions, *context, storage, row_policy_filter, required_columns); |
| 378 | source_header = storage->getSampleBlockForColumns(filter_info->actions->getRequiredColumns()); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | if (!options.only_analyze && storage && filter_info && query.prewhere()) |
| 383 | throw Exception("PREWHERE is not supported if the table is filtered by row-level security expression" , ErrorCodes::ILLEGAL_PREWHERE); |
| 384 | |
| 385 | /// Calculate structure of the result. |
| 386 | result_header = getSampleBlockImpl(); |
| 387 | }; |
| 388 | |
| 389 | analyze(); |
| 390 | |
| 391 | bool need_analyze_again = false; |
| 392 | if (analysis_result.prewhere_constant_filter_description.always_false || analysis_result.prewhere_constant_filter_description.always_true) |
| 393 | { |
| 394 | if (analysis_result.prewhere_constant_filter_description.always_true) |
| 395 | query.setExpression(ASTSelectQuery::Expression::PREWHERE, {}); |
| 396 | else |
| 397 | query.setExpression(ASTSelectQuery::Expression::PREWHERE, std::make_shared<ASTLiteral>(0u)); |
| 398 | need_analyze_again = true; |
| 399 | } |
| 400 | if (analysis_result.where_constant_filter_description.always_false || analysis_result.where_constant_filter_description.always_true) |
| 401 | { |
| 402 | if (analysis_result.where_constant_filter_description.always_true) |
| 403 | query.setExpression(ASTSelectQuery::Expression::WHERE, {}); |
| 404 | else |
| 405 | query.setExpression(ASTSelectQuery::Expression::WHERE, std::make_shared<ASTLiteral>(0u)); |
| 406 | need_analyze_again = true; |
| 407 | } |
| 408 | if (query.prewhere() && query.where()) |
| 409 | { |
| 410 | /// Filter block in WHERE instead to get better performance |
| 411 | query.setExpression(ASTSelectQuery::Expression::WHERE, makeASTFunction("and" , query.prewhere()->clone(), query.where()->clone())); |
| 412 | need_analyze_again = true; |
| 413 | } |
| 414 | if (need_analyze_again) |
| 415 | analyze(); |
| 416 | |
| 417 | /// If there is no WHERE, filter blocks as usual |
| 418 | if (query.prewhere() && !query.where()) |
| 419 | analysis_result.prewhere_info->need_filter = true; |
| 420 | |
| 421 | /// Blocks used in expression analysis contains size 1 const columns for constant folding and |
| 422 | /// null non-const columns to avoid useless memory allocations. However, a valid block sample |
| 423 | /// requires all columns to be of size 0, thus we need to sanitize the block here. |
| 424 | sanitizeBlock(result_header); |
| 425 | |
| 426 | /// Remove limits for some tables in the `system` database. |
| 427 | if (storage && (storage->getDatabaseName() == "system" )) |
| 428 | { |
| 429 | String table_name = storage->getTableName(); |
| 430 | if ((table_name == "quotas" ) || (table_name == "quota_usage" ) || (table_name == "one" )) |
| 431 | { |
| 432 | options.ignore_quota = true; |
| 433 | options.ignore_limits = true; |
| 434 | } |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | |
| 439 | void InterpreterSelectQuery::getDatabaseAndTableNames(const ASTSelectQuery & query, String & database_name, String & table_name, const Context & context) |
| 440 | { |
| 441 | if (auto db_and_table = getDatabaseAndTable(query, 0)) |
| 442 | { |
| 443 | table_name = db_and_table->table; |
| 444 | database_name = db_and_table->database; |
| 445 | |
| 446 | /// If the database is not specified - use the current database. |
| 447 | if (database_name.empty() && !context.tryGetTable("" , table_name)) |
| 448 | database_name = context.getCurrentDatabase(); |
| 449 | } |
| 450 | else /// If the table is not specified - use the table `system.one`. |
| 451 | { |
| 452 | database_name = "system" ; |
| 453 | table_name = "one" ; |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | |
| 458 | Block InterpreterSelectQuery::getSampleBlock() |
| 459 | { |
| 460 | return result_header; |
| 461 | } |
| 462 | |
| 463 | |
| 464 | BlockIO InterpreterSelectQuery::execute() |
| 465 | { |
| 466 | Pipeline pipeline; |
| 467 | BlockIO res; |
| 468 | executeImpl(pipeline, input, res.pipeline); |
| 469 | executeUnion(pipeline, getSampleBlock()); |
| 470 | |
| 471 | res.in = pipeline.firstStream(); |
| 472 | res.pipeline.addInterpreterContext(context); |
| 473 | res.pipeline.addStorageHolder(storage); |
| 474 | return res; |
| 475 | } |
| 476 | |
| 477 | BlockInputStreams InterpreterSelectQuery::executeWithMultipleStreams(QueryPipeline & parent_pipeline) |
| 478 | { |
| 479 | ///FIXME pipeline must be alive until query is finished |
| 480 | Pipeline pipeline; |
| 481 | executeImpl(pipeline, input, parent_pipeline); |
| 482 | unifyStreams(pipeline, getSampleBlock()); |
| 483 | parent_pipeline.addInterpreterContext(context); |
| 484 | parent_pipeline.addStorageHolder(storage); |
| 485 | return pipeline.streams; |
| 486 | } |
| 487 | |
| 488 | QueryPipeline InterpreterSelectQuery::executeWithProcessors() |
| 489 | { |
| 490 | QueryPipeline query_pipeline; |
| 491 | query_pipeline.setMaxThreads(context->getSettingsRef().max_threads); |
| 492 | executeImpl(query_pipeline, input, query_pipeline); |
| 493 | query_pipeline.addInterpreterContext(context); |
| 494 | query_pipeline.addStorageHolder(storage); |
| 495 | return query_pipeline; |
| 496 | } |
| 497 | |
| 498 | |
| 499 | Block InterpreterSelectQuery::getSampleBlockImpl() |
| 500 | { |
| 501 | auto & query = getSelectQuery(); |
| 502 | const Settings & settings = context->getSettingsRef(); |
| 503 | |
| 504 | /// Do all AST changes here, because actions from analysis_result will be used later in readImpl. |
| 505 | |
| 506 | /// PREWHERE optimization. |
| 507 | /// Turn off, if the table filter (row-level security) is applied. |
| 508 | if (storage && !context->getRowPolicy()->getCondition(storage->getDatabaseName(), storage->getTableName(), RowPolicy::SELECT_FILTER)) |
| 509 | { |
| 510 | query_analyzer->makeSetsForIndex(query.where()); |
| 511 | query_analyzer->makeSetsForIndex(query.prewhere()); |
| 512 | |
| 513 | auto optimize_prewhere = [&](auto & merge_tree) |
| 514 | { |
| 515 | SelectQueryInfo current_info; |
| 516 | current_info.query = query_ptr; |
| 517 | current_info.syntax_analyzer_result = syntax_analyzer_result; |
| 518 | current_info.sets = query_analyzer->getPreparedSets(); |
| 519 | |
| 520 | /// Try transferring some condition from WHERE to PREWHERE if enabled and viable |
| 521 | if (settings.optimize_move_to_prewhere && query.where() && !query.prewhere() && !query.final()) |
| 522 | MergeTreeWhereOptimizer{current_info, *context, merge_tree, |
| 523 | syntax_analyzer_result->requiredSourceColumns(), log}; |
| 524 | }; |
| 525 | |
| 526 | if (const auto * merge_tree_data = dynamic_cast<const MergeTreeData *>(storage.get())) |
| 527 | optimize_prewhere(*merge_tree_data); |
| 528 | } |
| 529 | |
| 530 | if (storage && !options.only_analyze) |
| 531 | from_stage = storage->getQueryProcessingStage(*context); |
| 532 | |
| 533 | analysis_result = analyzeExpressions( |
| 534 | getSelectQuery(), |
| 535 | *query_analyzer, |
| 536 | from_stage, |
| 537 | options.to_stage, |
| 538 | *context, |
| 539 | storage, |
| 540 | options.only_analyze, |
| 541 | filter_info, |
| 542 | source_header |
| 543 | ); |
| 544 | |
| 545 | if (options.to_stage == QueryProcessingStage::Enum::FetchColumns) |
| 546 | { |
| 547 | auto = source_header; |
| 548 | |
| 549 | if (analysis_result.prewhere_info) |
| 550 | { |
| 551 | analysis_result.prewhere_info->prewhere_actions->execute(header); |
| 552 | header = materializeBlock(header); |
| 553 | if (analysis_result.prewhere_info->remove_prewhere_column) |
| 554 | header.erase(analysis_result.prewhere_info->prewhere_column_name); |
| 555 | } |
| 556 | return header; |
| 557 | } |
| 558 | |
| 559 | if (options.to_stage == QueryProcessingStage::Enum::WithMergeableState) |
| 560 | { |
| 561 | if (!analysis_result.need_aggregate) |
| 562 | return analysis_result.before_order_and_select->getSampleBlock(); |
| 563 | |
| 564 | auto = analysis_result.before_aggregation->getSampleBlock(); |
| 565 | |
| 566 | Names key_names; |
| 567 | AggregateDescriptions aggregates; |
| 568 | query_analyzer->getAggregateInfo(key_names, aggregates); |
| 569 | |
| 570 | Block res; |
| 571 | |
| 572 | for (auto & key : key_names) |
| 573 | res.insert({nullptr, header.getByName(key).type, key}); |
| 574 | |
| 575 | for (auto & aggregate : aggregates) |
| 576 | { |
| 577 | size_t arguments_size = aggregate.argument_names.size(); |
| 578 | DataTypes argument_types(arguments_size); |
| 579 | for (size_t j = 0; j < arguments_size; ++j) |
| 580 | argument_types[j] = header.getByName(aggregate.argument_names[j]).type; |
| 581 | |
| 582 | DataTypePtr type = std::make_shared<DataTypeAggregateFunction>(aggregate.function, argument_types, aggregate.parameters); |
| 583 | |
| 584 | res.insert({nullptr, type, aggregate.column_name}); |
| 585 | } |
| 586 | |
| 587 | return res; |
| 588 | } |
| 589 | |
| 590 | return analysis_result.final_projection->getSampleBlock(); |
| 591 | } |
| 592 | |
| 593 | /// Check if there is an ignore function. It's used for disabling constant folding in query |
| 594 | /// predicates because some performance tests use ignore function as a non-optimize guard. |
| 595 | static bool hasIgnore(const ExpressionActions & actions) |
| 596 | { |
| 597 | for (auto & action : actions.getActions()) |
| 598 | { |
| 599 | if (action.type == action.APPLY_FUNCTION && action.function_base) |
| 600 | { |
| 601 | auto name = action.function_base->getName(); |
| 602 | if (name == "ignore" ) |
| 603 | return true; |
| 604 | } |
| 605 | } |
| 606 | return false; |
| 607 | } |
| 608 | |
| 609 | InterpreterSelectQuery::AnalysisResult |
| 610 | InterpreterSelectQuery::analyzeExpressions( |
| 611 | const ASTSelectQuery & query, |
| 612 | SelectQueryExpressionAnalyzer & query_analyzer, |
| 613 | QueryProcessingStage::Enum from_stage, |
| 614 | QueryProcessingStage::Enum to_stage, |
| 615 | const Context & context, |
| 616 | const StoragePtr & storage, |
| 617 | bool only_types, |
| 618 | const FilterInfoPtr & filter_info, |
| 619 | const Block & ) |
| 620 | { |
| 621 | AnalysisResult res; |
| 622 | |
| 623 | /// Do I need to perform the first part of the pipeline - running on remote servers during distributed processing. |
| 624 | res.first_stage = from_stage < QueryProcessingStage::WithMergeableState |
| 625 | && to_stage >= QueryProcessingStage::WithMergeableState; |
| 626 | /// Do I need to execute the second part of the pipeline - running on the initiating server during distributed processing. |
| 627 | res.second_stage = from_stage <= QueryProcessingStage::WithMergeableState |
| 628 | && to_stage > QueryProcessingStage::WithMergeableState; |
| 629 | |
| 630 | /** First we compose a chain of actions and remember the necessary steps from it. |
| 631 | * Regardless of from_stage and to_stage, we will compose a complete sequence of actions to perform optimization and |
| 632 | * throw out unnecessary columns based on the entire query. In unnecessary parts of the query, we will not execute subqueries. |
| 633 | */ |
| 634 | |
| 635 | bool has_filter = false; |
| 636 | bool has_prewhere = false; |
| 637 | bool has_where = false; |
| 638 | size_t where_step_num; |
| 639 | |
| 640 | auto finalizeChain = [&](ExpressionActionsChain & chain) |
| 641 | { |
| 642 | chain.finalize(); |
| 643 | |
| 644 | if (has_prewhere) |
| 645 | { |
| 646 | const ExpressionActionsChain::Step & step = chain.steps.at(0); |
| 647 | res.prewhere_info->remove_prewhere_column = step.can_remove_required_output.at(0); |
| 648 | |
| 649 | Names columns_to_remove; |
| 650 | for (size_t i = 1; i < step.required_output.size(); ++i) |
| 651 | { |
| 652 | if (step.can_remove_required_output[i]) |
| 653 | columns_to_remove.push_back(step.required_output[i]); |
| 654 | } |
| 655 | |
| 656 | if (!columns_to_remove.empty()) |
| 657 | { |
| 658 | auto columns = res.prewhere_info->prewhere_actions->getSampleBlock().getNamesAndTypesList(); |
| 659 | ExpressionActionsPtr actions = std::make_shared<ExpressionActions>(columns, context); |
| 660 | for (const auto & column : columns_to_remove) |
| 661 | actions->add(ExpressionAction::removeColumn(column)); |
| 662 | |
| 663 | res.prewhere_info->remove_columns_actions = std::move(actions); |
| 664 | } |
| 665 | |
| 666 | res.columns_to_remove_after_prewhere = std::move(columns_to_remove); |
| 667 | } |
| 668 | else if (has_filter) |
| 669 | { |
| 670 | /// Can't have prewhere and filter set simultaneously |
| 671 | res.filter_info->do_remove_column = chain.steps.at(0).can_remove_required_output.at(0); |
| 672 | } |
| 673 | if (has_where) |
| 674 | res.remove_where_filter = chain.steps.at(where_step_num).can_remove_required_output.at(0); |
| 675 | |
| 676 | has_filter = has_prewhere = has_where = false; |
| 677 | |
| 678 | chain.clear(); |
| 679 | }; |
| 680 | |
| 681 | { |
| 682 | ExpressionActionsChain chain(context); |
| 683 | Names additional_required_columns_after_prewhere; |
| 684 | |
| 685 | if (storage && (query.sample_size() || context.getSettingsRef().parallel_replicas_count > 1)) |
| 686 | { |
| 687 | Names columns_for_sampling = storage->getColumnsRequiredForSampling(); |
| 688 | additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(), |
| 689 | columns_for_sampling.begin(), columns_for_sampling.end()); |
| 690 | } |
| 691 | |
| 692 | if (storage && query.final()) |
| 693 | { |
| 694 | Names columns_for_final = storage->getColumnsRequiredForFinal(); |
| 695 | additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(), |
| 696 | columns_for_final.begin(), columns_for_final.end()); |
| 697 | } |
| 698 | |
| 699 | if (storage && filter_info) |
| 700 | { |
| 701 | has_filter = true; |
| 702 | res.filter_info = filter_info; |
| 703 | query_analyzer.appendPreliminaryFilter(chain, filter_info->actions, filter_info->column_name); |
| 704 | } |
| 705 | |
| 706 | if (query_analyzer.appendPrewhere(chain, !res.first_stage, additional_required_columns_after_prewhere)) |
| 707 | { |
| 708 | has_prewhere = true; |
| 709 | |
| 710 | res.prewhere_info = std::make_shared<PrewhereInfo>( |
| 711 | chain.steps.front().actions, query.prewhere()->getColumnName()); |
| 712 | |
| 713 | if (!hasIgnore(*res.prewhere_info->prewhere_actions)) |
| 714 | { |
| 715 | Block before_prewhere_sample = source_header; |
| 716 | sanitizeBlock(before_prewhere_sample); |
| 717 | res.prewhere_info->prewhere_actions->execute(before_prewhere_sample); |
| 718 | auto & column_elem = before_prewhere_sample.getByName(query.prewhere()->getColumnName()); |
| 719 | /// If the filter column is a constant, record it. |
| 720 | if (column_elem.column) |
| 721 | res.prewhere_constant_filter_description = ConstantFilterDescription(*column_elem.column); |
| 722 | } |
| 723 | chain.addStep(); |
| 724 | } |
| 725 | |
| 726 | res.need_aggregate = query_analyzer.hasAggregation(); |
| 727 | |
| 728 | query_analyzer.appendArrayJoin(chain, only_types || !res.first_stage); |
| 729 | |
| 730 | if (query_analyzer.appendJoin(chain, only_types || !res.first_stage)) |
| 731 | { |
| 732 | res.before_join = chain.getLastActions(); |
| 733 | if (!res.hasJoin()) |
| 734 | throw Exception("No expected JOIN" , ErrorCodes::LOGICAL_ERROR); |
| 735 | chain.addStep(); |
| 736 | } |
| 737 | |
| 738 | if (query_analyzer.appendWhere(chain, only_types || !res.first_stage)) |
| 739 | { |
| 740 | where_step_num = chain.steps.size() - 1; |
| 741 | has_where = res.has_where = true; |
| 742 | res.before_where = chain.getLastActions(); |
| 743 | if (!hasIgnore(*res.before_where)) |
| 744 | { |
| 745 | Block before_where_sample; |
| 746 | if (chain.steps.size() > 1) |
| 747 | before_where_sample = chain.steps[chain.steps.size() - 2].actions->getSampleBlock(); |
| 748 | else |
| 749 | before_where_sample = source_header; |
| 750 | sanitizeBlock(before_where_sample); |
| 751 | res.before_where->execute(before_where_sample); |
| 752 | auto & column_elem = before_where_sample.getByName(query.where()->getColumnName()); |
| 753 | /// If the filter column is a constant, record it. |
| 754 | if (column_elem.column) |
| 755 | res.where_constant_filter_description = ConstantFilterDescription(*column_elem.column); |
| 756 | } |
| 757 | chain.addStep(); |
| 758 | } |
| 759 | |
| 760 | if (res.need_aggregate) |
| 761 | { |
| 762 | query_analyzer.appendGroupBy(chain, only_types || !res.first_stage); |
| 763 | query_analyzer.appendAggregateFunctionsArguments(chain, only_types || !res.first_stage); |
| 764 | res.before_aggregation = chain.getLastActions(); |
| 765 | |
| 766 | finalizeChain(chain); |
| 767 | |
| 768 | if (query_analyzer.appendHaving(chain, only_types || !res.second_stage)) |
| 769 | { |
| 770 | res.has_having = true; |
| 771 | res.before_having = chain.getLastActions(); |
| 772 | chain.addStep(); |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | bool has_stream_with_non_joned_rows = (res.before_join && res.before_join->getTableJoinAlgo()->hasStreamWithNonJoinedRows()); |
| 777 | res.optimize_read_in_order = |
| 778 | context.getSettingsRef().optimize_read_in_order |
| 779 | && storage && query.orderBy() |
| 780 | && !query_analyzer.hasAggregation() |
| 781 | && !query.final() |
| 782 | && !has_stream_with_non_joned_rows; |
| 783 | |
| 784 | /// If there is aggregation, we execute expressions in SELECT and ORDER BY on the initiating server, otherwise on the source servers. |
| 785 | query_analyzer.appendSelect(chain, only_types || (res.need_aggregate ? !res.second_stage : !res.first_stage)); |
| 786 | res.selected_columns = chain.getLastStep().required_output; |
| 787 | res.has_order_by = query_analyzer.appendOrderBy(chain, only_types || (res.need_aggregate ? !res.second_stage : !res.first_stage), res.optimize_read_in_order); |
| 788 | res.before_order_and_select = chain.getLastActions(); |
| 789 | chain.addStep(); |
| 790 | |
| 791 | if (query_analyzer.appendLimitBy(chain, only_types || !res.second_stage)) |
| 792 | { |
| 793 | res.has_limit_by = true; |
| 794 | res.before_limit_by = chain.getLastActions(); |
| 795 | chain.addStep(); |
| 796 | } |
| 797 | |
| 798 | query_analyzer.appendProjectResult(chain); |
| 799 | res.final_projection = chain.getLastActions(); |
| 800 | |
| 801 | finalizeChain(chain); |
| 802 | } |
| 803 | |
| 804 | /// Before executing WHERE and HAVING, remove the extra columns from the block (mostly the aggregation keys). |
| 805 | if (res.filter_info) |
| 806 | res.filter_info->actions->prependProjectInput(); |
| 807 | if (res.has_where) |
| 808 | res.before_where->prependProjectInput(); |
| 809 | if (res.has_having) |
| 810 | res.before_having->prependProjectInput(); |
| 811 | |
| 812 | res.subqueries_for_sets = query_analyzer.getSubqueriesForSets(); |
| 813 | |
| 814 | /// Check that PREWHERE doesn't contain unusual actions. Unusual actions are that can change number of rows. |
| 815 | if (res.prewhere_info) |
| 816 | { |
| 817 | auto check_actions = [](const ExpressionActionsPtr & actions) |
| 818 | { |
| 819 | if (actions) |
| 820 | for (const auto & action : actions->getActions()) |
| 821 | if (action.type == ExpressionAction::Type::JOIN || action.type == ExpressionAction::Type::ARRAY_JOIN) |
| 822 | throw Exception("PREWHERE cannot contain ARRAY JOIN or JOIN action" , ErrorCodes::ILLEGAL_PREWHERE); |
| 823 | }; |
| 824 | |
| 825 | check_actions(res.prewhere_info->prewhere_actions); |
| 826 | check_actions(res.prewhere_info->alias_actions); |
| 827 | check_actions(res.prewhere_info->remove_columns_actions); |
| 828 | } |
| 829 | |
| 830 | return res; |
| 831 | } |
| 832 | |
| 833 | static Field getWithFillFieldValue(const ASTPtr & node, const Context & context) |
| 834 | { |
| 835 | const auto & [field, type] = evaluateConstantExpression(node, context); |
| 836 | |
| 837 | if (!isColumnedAsNumber(type)) |
| 838 | throw Exception("Illegal type " + type->getName() + " of WITH FILL expression, must be numeric type" , ErrorCodes::INVALID_WITH_FILL_EXPRESSION); |
| 839 | |
| 840 | return field; |
| 841 | } |
| 842 | |
| 843 | static FillColumnDescription getWithFillDescription(const ASTOrderByElement & order_by_elem, const Context & context) |
| 844 | { |
| 845 | FillColumnDescription descr; |
| 846 | if (order_by_elem.fill_from) |
| 847 | descr.fill_from = getWithFillFieldValue(order_by_elem.fill_from, context); |
| 848 | if (order_by_elem.fill_to) |
| 849 | descr.fill_to = getWithFillFieldValue(order_by_elem.fill_to, context); |
| 850 | if (order_by_elem.fill_step) |
| 851 | descr.fill_step = getWithFillFieldValue(order_by_elem.fill_step, context); |
| 852 | else |
| 853 | descr.fill_step = order_by_elem.direction; |
| 854 | |
| 855 | if (applyVisitor(FieldVisitorAccurateEquals(), descr.fill_step, Field{0})) |
| 856 | throw Exception("WITH FILL STEP value cannot be zero" , ErrorCodes::INVALID_WITH_FILL_EXPRESSION); |
| 857 | |
| 858 | if (order_by_elem.direction == 1) |
| 859 | { |
| 860 | if (applyVisitor(FieldVisitorAccurateLess(), descr.fill_step, Field{0})) |
| 861 | throw Exception("WITH FILL STEP value cannot be negative for sorting in ascending direction" , |
| 862 | ErrorCodes::INVALID_WITH_FILL_EXPRESSION); |
| 863 | |
| 864 | if (!descr.fill_from.isNull() && !descr.fill_to.isNull() && |
| 865 | applyVisitor(FieldVisitorAccurateLess(), descr.fill_to, descr.fill_from)) |
| 866 | { |
| 867 | throw Exception("WITH FILL TO value cannot be less than FROM value for sorting in ascending direction" , |
| 868 | ErrorCodes::INVALID_WITH_FILL_EXPRESSION); |
| 869 | } |
| 870 | } |
| 871 | else |
| 872 | { |
| 873 | if (applyVisitor(FieldVisitorAccurateLess(), Field{0}, descr.fill_step)) |
| 874 | throw Exception("WITH FILL STEP value cannot be positive for sorting in descending direction" , |
| 875 | ErrorCodes::INVALID_WITH_FILL_EXPRESSION); |
| 876 | |
| 877 | if (!descr.fill_from.isNull() && !descr.fill_to.isNull() && |
| 878 | applyVisitor(FieldVisitorAccurateLess(), descr.fill_from, descr.fill_to)) |
| 879 | { |
| 880 | throw Exception("WITH FILL FROM value cannot be less than TO value for sorting in descending direction" , |
| 881 | ErrorCodes::INVALID_WITH_FILL_EXPRESSION); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | return descr; |
| 886 | } |
| 887 | |
| 888 | static SortDescription getSortDescription(const ASTSelectQuery & query, const Context & context) |
| 889 | { |
| 890 | SortDescription order_descr; |
| 891 | order_descr.reserve(query.orderBy()->children.size()); |
| 892 | for (const auto & elem : query.orderBy()->children) |
| 893 | { |
| 894 | String name = elem->children.front()->getColumnName(); |
| 895 | const auto & order_by_elem = elem->as<ASTOrderByElement &>(); |
| 896 | |
| 897 | std::shared_ptr<Collator> collator; |
| 898 | if (order_by_elem.collation) |
| 899 | collator = std::make_shared<Collator>(order_by_elem.collation->as<ASTLiteral &>().value.get<String>()); |
| 900 | |
| 901 | if (order_by_elem.with_fill) |
| 902 | { |
| 903 | FillColumnDescription fill_desc = getWithFillDescription(order_by_elem, context); |
| 904 | order_descr.emplace_back(name, order_by_elem.direction, |
| 905 | order_by_elem.nulls_direction, collator, true, fill_desc); |
| 906 | } |
| 907 | else |
| 908 | order_descr.emplace_back(name, order_by_elem.direction, order_by_elem.nulls_direction, collator); |
| 909 | } |
| 910 | |
| 911 | return order_descr; |
| 912 | } |
| 913 | |
| 914 | static UInt64 getLimitUIntValue(const ASTPtr & node, const Context & context) |
| 915 | { |
| 916 | const auto & [field, type] = evaluateConstantExpression(node, context); |
| 917 | |
| 918 | if (!isNativeNumber(type)) |
| 919 | throw Exception("Illegal type " + type->getName() + " of LIMIT expression, must be numeric type" , ErrorCodes::INVALID_LIMIT_EXPRESSION); |
| 920 | |
| 921 | Field converted = convertFieldToType(field, DataTypeUInt64()); |
| 922 | if (converted.isNull()) |
| 923 | throw Exception("The value " + applyVisitor(FieldVisitorToString(), field) + " of LIMIT expression is not representable as UInt64" , ErrorCodes::INVALID_LIMIT_EXPRESSION); |
| 924 | |
| 925 | return converted.safeGet<UInt64>(); |
| 926 | } |
| 927 | |
| 928 | |
| 929 | static std::pair<UInt64, UInt64> getLimitLengthAndOffset(const ASTSelectQuery & query, const Context & context) |
| 930 | { |
| 931 | UInt64 length = 0; |
| 932 | UInt64 offset = 0; |
| 933 | |
| 934 | if (query.limitLength()) |
| 935 | { |
| 936 | length = getLimitUIntValue(query.limitLength(), context); |
| 937 | if (query.limitOffset() && length) |
| 938 | offset = getLimitUIntValue(query.limitOffset(), context); |
| 939 | } |
| 940 | |
| 941 | return {length, offset}; |
| 942 | } |
| 943 | |
| 944 | |
| 945 | static UInt64 getLimitForSorting(const ASTSelectQuery & query, const Context & context) |
| 946 | { |
| 947 | /// Partial sort can be done if there is LIMIT but no DISTINCT or LIMIT BY. |
| 948 | if (!query.distinct && !query.limitBy() && !query.limit_with_ties) |
| 949 | { |
| 950 | auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); |
| 951 | return limit_length + limit_offset; |
| 952 | } |
| 953 | return 0; |
| 954 | } |
| 955 | |
| 956 | |
| 957 | template <typename TPipeline> |
| 958 | void InterpreterSelectQuery::executeImpl(TPipeline & pipeline, const BlockInputStreamPtr & prepared_input, QueryPipeline & save_context_and_storage) |
| 959 | { |
| 960 | /** Streams of data. When the query is executed in parallel, we have several data streams. |
| 961 | * If there is no GROUP BY, then perform all operations before ORDER BY and LIMIT in parallel, then |
| 962 | * if there is an ORDER BY, then glue the streams using UnionBlockInputStream, and then MergeSortingBlockInputStream, |
| 963 | * if not, then glue it using UnionBlockInputStream, |
| 964 | * then apply LIMIT. |
| 965 | * If there is GROUP BY, then we will perform all operations up to GROUP BY, inclusive, in parallel; |
| 966 | * a parallel GROUP BY will glue streams into one, |
| 967 | * then perform the remaining operations with one resulting stream. |
| 968 | */ |
| 969 | |
| 970 | constexpr bool pipeline_with_processors = std::is_same<TPipeline, QueryPipeline>::value; |
| 971 | |
| 972 | /// Now we will compose block streams that perform the necessary actions. |
| 973 | auto & query = getSelectQuery(); |
| 974 | const Settings & settings = context->getSettingsRef(); |
| 975 | auto & expressions = analysis_result; |
| 976 | |
| 977 | if (options.only_analyze) |
| 978 | { |
| 979 | if constexpr (pipeline_with_processors) |
| 980 | pipeline.init(Pipe(std::make_shared<NullSource>(source_header))); |
| 981 | else |
| 982 | pipeline.streams.emplace_back(std::make_shared<NullBlockInputStream>(source_header)); |
| 983 | |
| 984 | if (expressions.prewhere_info) |
| 985 | { |
| 986 | if constexpr (pipeline_with_processors) |
| 987 | pipeline.addSimpleTransform([&](const Block & ) |
| 988 | { |
| 989 | return std::make_shared<FilterTransform>( |
| 990 | header, |
| 991 | expressions.prewhere_info->prewhere_actions, |
| 992 | expressions.prewhere_info->prewhere_column_name, |
| 993 | expressions.prewhere_info->remove_prewhere_column); |
| 994 | }); |
| 995 | else |
| 996 | pipeline.streams.back() = std::make_shared<FilterBlockInputStream>( |
| 997 | pipeline.streams.back(), expressions.prewhere_info->prewhere_actions, |
| 998 | expressions.prewhere_info->prewhere_column_name, expressions.prewhere_info->remove_prewhere_column); |
| 999 | |
| 1000 | // To remove additional columns in dry run |
| 1001 | // For example, sample column which can be removed in this stage |
| 1002 | if (expressions.prewhere_info->remove_columns_actions) |
| 1003 | { |
| 1004 | if constexpr (pipeline_with_processors) |
| 1005 | { |
| 1006 | pipeline.addSimpleTransform([&](const Block & ) |
| 1007 | { |
| 1008 | return std::make_shared<ExpressionTransform>(header, expressions.prewhere_info->remove_columns_actions); |
| 1009 | }); |
| 1010 | } |
| 1011 | else |
| 1012 | pipeline.streams.back() = std::make_shared<ExpressionBlockInputStream>(pipeline.streams.back(), expressions.prewhere_info->remove_columns_actions); |
| 1013 | } |
| 1014 | } |
| 1015 | } |
| 1016 | else |
| 1017 | { |
| 1018 | if (prepared_input) |
| 1019 | { |
| 1020 | if constexpr (pipeline_with_processors) |
| 1021 | pipeline.init(Pipe(std::make_shared<SourceFromInputStream>(prepared_input))); |
| 1022 | else |
| 1023 | pipeline.streams.push_back(prepared_input); |
| 1024 | } |
| 1025 | |
| 1026 | if (from_stage == QueryProcessingStage::WithMergeableState && |
| 1027 | options.to_stage == QueryProcessingStage::WithMergeableState) |
| 1028 | throw Exception("Distributed on Distributed is not supported" , ErrorCodes::NOT_IMPLEMENTED); |
| 1029 | |
| 1030 | if (storage && expressions.filter_info && expressions.prewhere_info) |
| 1031 | throw Exception("PREWHERE is not supported if the table is filtered by row-level security expression" , ErrorCodes::ILLEGAL_PREWHERE); |
| 1032 | |
| 1033 | /** Read the data from Storage. from_stage - to what stage the request was completed in Storage. */ |
| 1034 | executeFetchColumns(from_stage, pipeline, expressions.prewhere_info, expressions.columns_to_remove_after_prewhere, save_context_and_storage); |
| 1035 | |
| 1036 | LOG_TRACE(log, QueryProcessingStage::toString(from_stage) << " -> " << QueryProcessingStage::toString(options.to_stage)); |
| 1037 | } |
| 1038 | |
| 1039 | if (options.to_stage > QueryProcessingStage::FetchColumns) |
| 1040 | { |
| 1041 | /// Do I need to aggregate in a separate row rows that have not passed max_rows_to_group_by. |
| 1042 | bool aggregate_overflow_row = |
| 1043 | expressions.need_aggregate && |
| 1044 | query.group_by_with_totals && |
| 1045 | settings.max_rows_to_group_by && |
| 1046 | settings.group_by_overflow_mode == OverflowMode::ANY && |
| 1047 | settings.totals_mode != TotalsMode::AFTER_HAVING_EXCLUSIVE; |
| 1048 | |
| 1049 | /// Do I need to immediately finalize the aggregate functions after the aggregation? |
| 1050 | bool aggregate_final = |
| 1051 | expressions.need_aggregate && |
| 1052 | options.to_stage > QueryProcessingStage::WithMergeableState && |
| 1053 | !query.group_by_with_totals && !query.group_by_with_rollup && !query.group_by_with_cube; |
| 1054 | |
| 1055 | if (expressions.first_stage) |
| 1056 | { |
| 1057 | if (expressions.filter_info) |
| 1058 | { |
| 1059 | if constexpr (pipeline_with_processors) |
| 1060 | { |
| 1061 | pipeline.addSimpleTransform([&](const Block & block, QueryPipeline::StreamType stream_type) -> ProcessorPtr |
| 1062 | { |
| 1063 | if (stream_type == QueryPipeline::StreamType::Totals) |
| 1064 | return nullptr; |
| 1065 | |
| 1066 | return std::make_shared<FilterTransform>( |
| 1067 | block, |
| 1068 | expressions.filter_info->actions, |
| 1069 | expressions.filter_info->column_name, |
| 1070 | expressions.filter_info->do_remove_column); |
| 1071 | }); |
| 1072 | } |
| 1073 | else |
| 1074 | { |
| 1075 | pipeline.transform([&](auto & stream) |
| 1076 | { |
| 1077 | stream = std::make_shared<FilterBlockInputStream>( |
| 1078 | stream, |
| 1079 | expressions.filter_info->actions, |
| 1080 | expressions.filter_info->column_name, |
| 1081 | expressions.filter_info->do_remove_column); |
| 1082 | }); |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | if (expressions.hasJoin()) |
| 1087 | { |
| 1088 | Block ; |
| 1089 | |
| 1090 | if constexpr (pipeline_with_processors) |
| 1091 | { |
| 1092 | header_before_join = pipeline.getHeader(); |
| 1093 | |
| 1094 | /// In case joined subquery has totals, and we don't, add default chunk to totals. |
| 1095 | bool default_totals = false; |
| 1096 | if (!pipeline.hasTotals()) |
| 1097 | { |
| 1098 | pipeline.addDefaultTotals(); |
| 1099 | default_totals = true; |
| 1100 | } |
| 1101 | |
| 1102 | pipeline.addSimpleTransform([&](const Block & , QueryPipeline::StreamType type) |
| 1103 | { |
| 1104 | bool on_totals = type == QueryPipeline::StreamType::Totals; |
| 1105 | return std::make_shared<ExpressionTransform>(header, expressions.before_join, on_totals, default_totals); |
| 1106 | }); |
| 1107 | } |
| 1108 | else |
| 1109 | { |
| 1110 | header_before_join = pipeline.firstStream()->getHeader(); |
| 1111 | /// Applies to all sources except stream_with_non_joined_data. |
| 1112 | for (auto & stream : pipeline.streams) |
| 1113 | stream = std::make_shared<ExpressionBlockInputStream>(stream, expressions.before_join); |
| 1114 | |
| 1115 | if (isMergeJoin(expressions.before_join->getTableJoinAlgo()) && settings.partial_merge_join_optimizations) |
| 1116 | { |
| 1117 | if (size_t rows_in_block = settings.partial_merge_join_rows_in_left_blocks) |
| 1118 | for (auto & stream : pipeline.streams) |
| 1119 | stream = std::make_shared<SquashingBlockInputStream>(stream, rows_in_block, 0, true); |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | if (JoinPtr join = expressions.before_join->getTableJoinAlgo()) |
| 1124 | { |
| 1125 | Block join_result_sample = ExpressionBlockInputStream( |
| 1126 | std::make_shared<OneBlockInputStream>(header_before_join), expressions.before_join).getHeader(); |
| 1127 | |
| 1128 | if (auto stream = join->createStreamWithNonJoinedRows(join_result_sample, settings.max_block_size)) |
| 1129 | { |
| 1130 | if constexpr (pipeline_with_processors) |
| 1131 | { |
| 1132 | auto source = std::make_shared<SourceFromInputStream>(std::move(stream)); |
| 1133 | pipeline.addDelayedStream(source); |
| 1134 | } |
| 1135 | else |
| 1136 | pipeline.stream_with_non_joined_data = std::move(stream); |
| 1137 | } |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | if (expressions.has_where) |
| 1142 | executeWhere(pipeline, expressions.before_where, expressions.remove_where_filter); |
| 1143 | |
| 1144 | if (expressions.need_aggregate) |
| 1145 | executeAggregation(pipeline, expressions.before_aggregation, aggregate_overflow_row, aggregate_final); |
| 1146 | else |
| 1147 | { |
| 1148 | executeExpression(pipeline, expressions.before_order_and_select); |
| 1149 | executeDistinct(pipeline, true, expressions.selected_columns); |
| 1150 | } |
| 1151 | |
| 1152 | /** For distributed query processing, |
| 1153 | * if no GROUP, HAVING set, |
| 1154 | * but there is an ORDER or LIMIT, |
| 1155 | * then we will perform the preliminary sorting and LIMIT on the remote server. |
| 1156 | */ |
| 1157 | if (!expressions.second_stage && !expressions.need_aggregate && !expressions.has_having) |
| 1158 | { |
| 1159 | if (expressions.has_order_by) |
| 1160 | executeOrder(pipeline, query_info.input_sorting_info); |
| 1161 | |
| 1162 | if (expressions.has_order_by && query.limitLength()) |
| 1163 | executeDistinct(pipeline, false, expressions.selected_columns); |
| 1164 | |
| 1165 | if (expressions.has_limit_by) |
| 1166 | { |
| 1167 | executeExpression(pipeline, expressions.before_limit_by); |
| 1168 | executeLimitBy(pipeline); |
| 1169 | } |
| 1170 | |
| 1171 | if (query.limitLength()) |
| 1172 | executePreLimit(pipeline); |
| 1173 | } |
| 1174 | |
| 1175 | // If there is no global subqueries, we can run subqueries only when receive them on server. |
| 1176 | if (!query_analyzer->hasGlobalSubqueries() && !expressions.subqueries_for_sets.empty()) |
| 1177 | executeSubqueriesInSetsAndJoins(pipeline, expressions.subqueries_for_sets); |
| 1178 | } |
| 1179 | |
| 1180 | if (expressions.second_stage) |
| 1181 | { |
| 1182 | bool need_second_distinct_pass = false; |
| 1183 | bool need_merge_streams = false; |
| 1184 | |
| 1185 | if (expressions.need_aggregate) |
| 1186 | { |
| 1187 | /// If you need to combine aggregated results from multiple servers |
| 1188 | if (!expressions.first_stage) |
| 1189 | executeMergeAggregated(pipeline, aggregate_overflow_row, aggregate_final); |
| 1190 | |
| 1191 | if (!aggregate_final) |
| 1192 | { |
| 1193 | if (query.group_by_with_totals) |
| 1194 | { |
| 1195 | bool final = !query.group_by_with_rollup && !query.group_by_with_cube; |
| 1196 | executeTotalsAndHaving(pipeline, expressions.has_having, expressions.before_having, aggregate_overflow_row, final); |
| 1197 | } |
| 1198 | |
| 1199 | if (query.group_by_with_rollup) |
| 1200 | executeRollupOrCube(pipeline, Modificator::ROLLUP); |
| 1201 | else if (query.group_by_with_cube) |
| 1202 | executeRollupOrCube(pipeline, Modificator::CUBE); |
| 1203 | |
| 1204 | if ((query.group_by_with_rollup || query.group_by_with_cube) && expressions.has_having) |
| 1205 | { |
| 1206 | if (query.group_by_with_totals) |
| 1207 | throw Exception("WITH TOTALS and WITH ROLLUP or CUBE are not supported together in presence of HAVING" , ErrorCodes::NOT_IMPLEMENTED); |
| 1208 | executeHaving(pipeline, expressions.before_having); |
| 1209 | } |
| 1210 | } |
| 1211 | else if (expressions.has_having) |
| 1212 | executeHaving(pipeline, expressions.before_having); |
| 1213 | |
| 1214 | executeExpression(pipeline, expressions.before_order_and_select); |
| 1215 | executeDistinct(pipeline, true, expressions.selected_columns); |
| 1216 | |
| 1217 | } |
| 1218 | else if (query.group_by_with_totals || query.group_by_with_rollup || query.group_by_with_cube) |
| 1219 | throw Exception("WITH TOTALS, ROLLUP or CUBE are not supported without aggregation" , ErrorCodes::LOGICAL_ERROR); |
| 1220 | |
| 1221 | need_second_distinct_pass = query.distinct && pipeline.hasMixedStreams(); |
| 1222 | |
| 1223 | if (expressions.has_order_by) |
| 1224 | { |
| 1225 | /** If there is an ORDER BY for distributed query processing, |
| 1226 | * but there is no aggregation, then on the remote servers ORDER BY was made |
| 1227 | * - therefore, we merge the sorted streams from remote servers. |
| 1228 | */ |
| 1229 | |
| 1230 | if (!expressions.first_stage && !expressions.need_aggregate && !(query.group_by_with_totals && !aggregate_final)) |
| 1231 | executeMergeSorted(pipeline); |
| 1232 | else /// Otherwise, just sort. |
| 1233 | executeOrder(pipeline, query_info.input_sorting_info); |
| 1234 | } |
| 1235 | |
| 1236 | /** Optimization - if there are several sources and there is LIMIT, then first apply the preliminary LIMIT, |
| 1237 | * limiting the number of rows in each up to `offset + limit`. |
| 1238 | */ |
| 1239 | if (query.limitLength() && !query.limit_with_ties && pipeline.hasMoreThanOneStream() && !query.distinct && !expressions.has_limit_by && !settings.extremes) |
| 1240 | { |
| 1241 | executePreLimit(pipeline); |
| 1242 | } |
| 1243 | |
| 1244 | if (need_second_distinct_pass |
| 1245 | || query.limitLength() |
| 1246 | || query.limitBy() |
| 1247 | || pipeline.hasDelayedStream()) |
| 1248 | { |
| 1249 | need_merge_streams = true; |
| 1250 | } |
| 1251 | |
| 1252 | if (need_merge_streams) |
| 1253 | { |
| 1254 | if constexpr (pipeline_with_processors) |
| 1255 | pipeline.resize(1); |
| 1256 | else |
| 1257 | executeUnion(pipeline, {}); |
| 1258 | } |
| 1259 | |
| 1260 | /** If there was more than one stream, |
| 1261 | * then DISTINCT needs to be performed once again after merging all streams. |
| 1262 | */ |
| 1263 | if (need_second_distinct_pass) |
| 1264 | executeDistinct(pipeline, false, expressions.selected_columns); |
| 1265 | |
| 1266 | if (expressions.has_limit_by) |
| 1267 | { |
| 1268 | executeExpression(pipeline, expressions.before_limit_by); |
| 1269 | executeLimitBy(pipeline); |
| 1270 | } |
| 1271 | |
| 1272 | executeWithFill(pipeline); |
| 1273 | |
| 1274 | /** We must do projection after DISTINCT because projection may remove some columns. |
| 1275 | */ |
| 1276 | executeProjection(pipeline, expressions.final_projection); |
| 1277 | |
| 1278 | /** Extremes are calculated before LIMIT, but after LIMIT BY. This is Ok. |
| 1279 | */ |
| 1280 | executeExtremes(pipeline); |
| 1281 | |
| 1282 | executeLimit(pipeline); |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | if (query_analyzer->hasGlobalSubqueries() && !expressions.subqueries_for_sets.empty()) |
| 1287 | executeSubqueriesInSetsAndJoins(pipeline, expressions.subqueries_for_sets); |
| 1288 | } |
| 1289 | |
| 1290 | template <typename TPipeline> |
| 1291 | void InterpreterSelectQuery::executeFetchColumns( |
| 1292 | QueryProcessingStage::Enum processing_stage, TPipeline & pipeline, |
| 1293 | const PrewhereInfoPtr & prewhere_info, const Names & columns_to_remove_after_prewhere, |
| 1294 | QueryPipeline & save_context_and_storage) |
| 1295 | { |
| 1296 | constexpr bool pipeline_with_processors = std::is_same<TPipeline, QueryPipeline>::value; |
| 1297 | |
| 1298 | auto & query = getSelectQuery(); |
| 1299 | const Settings & settings = context->getSettingsRef(); |
| 1300 | |
| 1301 | /// Optimization for trivial query like SELECT count() FROM table. |
| 1302 | auto check_trivial_count_query = [&]() -> std::optional<AggregateDescription> |
| 1303 | { |
| 1304 | if (!settings.optimize_trivial_count_query || !syntax_analyzer_result->maybe_optimize_trivial_count || !storage |
| 1305 | || query.sample_size() || query.sample_offset() || query.final() || query.prewhere() || query.where() |
| 1306 | || !query_analyzer->hasAggregation() || processing_stage != QueryProcessingStage::FetchColumns) |
| 1307 | return {}; |
| 1308 | |
| 1309 | Names key_names; |
| 1310 | AggregateDescriptions aggregates; |
| 1311 | query_analyzer->getAggregateInfo(key_names, aggregates); |
| 1312 | |
| 1313 | if (aggregates.size() != 1) |
| 1314 | return {}; |
| 1315 | |
| 1316 | const AggregateDescription & desc = aggregates[0]; |
| 1317 | if (typeid_cast<AggregateFunctionCount *>(desc.function.get())) |
| 1318 | return desc; |
| 1319 | |
| 1320 | return {}; |
| 1321 | }; |
| 1322 | |
| 1323 | if (auto desc = check_trivial_count_query()) |
| 1324 | { |
| 1325 | auto func = desc->function; |
| 1326 | std::optional<UInt64> num_rows = storage->totalRows(); |
| 1327 | if (num_rows) |
| 1328 | { |
| 1329 | AggregateFunctionCount & agg_count = static_cast<AggregateFunctionCount &>(*func); |
| 1330 | |
| 1331 | /// We will process it up to "WithMergeableState". |
| 1332 | std::vector<char> state(agg_count.sizeOfData()); |
| 1333 | AggregateDataPtr place = state.data(); |
| 1334 | |
| 1335 | agg_count.create(place); |
| 1336 | SCOPE_EXIT(agg_count.destroy(place)); |
| 1337 | |
| 1338 | agg_count.set(place, *num_rows); |
| 1339 | |
| 1340 | auto column = ColumnAggregateFunction::create(func); |
| 1341 | column->insertFrom(place); |
| 1342 | |
| 1343 | auto = analysis_result.before_aggregation->getSampleBlock(); |
| 1344 | size_t arguments_size = desc->argument_names.size(); |
| 1345 | DataTypes argument_types(arguments_size); |
| 1346 | for (size_t j = 0; j < arguments_size; ++j) |
| 1347 | argument_types[j] = header.getByName(desc->argument_names[j]).type; |
| 1348 | |
| 1349 | Block block_with_count{ |
| 1350 | {std::move(column), std::make_shared<DataTypeAggregateFunction>(func, argument_types, desc->parameters), desc->column_name}}; |
| 1351 | |
| 1352 | auto istream = std::make_shared<OneBlockInputStream>(block_with_count); |
| 1353 | if constexpr (pipeline_with_processors) |
| 1354 | pipeline.init(Pipe(std::make_shared<SourceFromInputStream>(istream))); |
| 1355 | else |
| 1356 | pipeline.streams.emplace_back(istream); |
| 1357 | from_stage = QueryProcessingStage::WithMergeableState; |
| 1358 | analysis_result.first_stage = false; |
| 1359 | return; |
| 1360 | } |
| 1361 | } |
| 1362 | |
| 1363 | /// Actions to calculate ALIAS if required. |
| 1364 | ExpressionActionsPtr alias_actions; |
| 1365 | |
| 1366 | if (storage) |
| 1367 | { |
| 1368 | /// Append columns from the table filter to required |
| 1369 | auto row_policy_filter = context->getRowPolicy()->getCondition(storage->getDatabaseName(), storage->getTableName(), RowPolicy::SELECT_FILTER); |
| 1370 | if (row_policy_filter) |
| 1371 | { |
| 1372 | auto initial_required_columns = required_columns; |
| 1373 | ExpressionActionsPtr actions; |
| 1374 | generateFilterActions(actions, *context, storage, row_policy_filter, initial_required_columns); |
| 1375 | auto required_columns_from_filter = actions->getRequiredColumns(); |
| 1376 | |
| 1377 | for (const auto & column : required_columns_from_filter) |
| 1378 | { |
| 1379 | if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column)) |
| 1380 | required_columns.push_back(column); |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | /// Detect, if ALIAS columns are required for query execution |
| 1385 | auto alias_columns_required = false; |
| 1386 | const ColumnsDescription & storage_columns = storage->getColumns(); |
| 1387 | for (const auto & column_name : required_columns) |
| 1388 | { |
| 1389 | auto column_default = storage_columns.getDefault(column_name); |
| 1390 | if (column_default && column_default->kind == ColumnDefaultKind::Alias) |
| 1391 | { |
| 1392 | alias_columns_required = true; |
| 1393 | break; |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | /// There are multiple sources of required columns: |
| 1398 | /// - raw required columns, |
| 1399 | /// - columns deduced from ALIAS columns, |
| 1400 | /// - raw required columns from PREWHERE, |
| 1401 | /// - columns deduced from ALIAS columns from PREWHERE. |
| 1402 | /// PREWHERE is a special case, since we need to resolve it and pass directly to `IStorage::read()` |
| 1403 | /// before any other executions. |
| 1404 | if (alias_columns_required) |
| 1405 | { |
| 1406 | NameSet required_columns_from_prewhere; /// Set of all (including ALIAS) required columns for PREWHERE |
| 1407 | NameSet required_aliases_from_prewhere; /// Set of ALIAS required columns for PREWHERE |
| 1408 | |
| 1409 | if (prewhere_info) |
| 1410 | { |
| 1411 | /// Get some columns directly from PREWHERE expression actions |
| 1412 | auto prewhere_required_columns = prewhere_info->prewhere_actions->getRequiredColumns(); |
| 1413 | required_columns_from_prewhere.insert(prewhere_required_columns.begin(), prewhere_required_columns.end()); |
| 1414 | } |
| 1415 | |
| 1416 | /// Expression, that contains all raw required columns |
| 1417 | ASTPtr required_columns_all_expr = std::make_shared<ASTExpressionList>(); |
| 1418 | |
| 1419 | /// Expression, that contains raw required columns for PREWHERE |
| 1420 | ASTPtr required_columns_from_prewhere_expr = std::make_shared<ASTExpressionList>(); |
| 1421 | |
| 1422 | /// Sort out already known required columns between expressions, |
| 1423 | /// also populate `required_aliases_from_prewhere`. |
| 1424 | for (const auto & column : required_columns) |
| 1425 | { |
| 1426 | ASTPtr column_expr; |
| 1427 | const auto column_default = storage_columns.getDefault(column); |
| 1428 | bool is_alias = column_default && column_default->kind == ColumnDefaultKind::Alias; |
| 1429 | if (is_alias) |
| 1430 | column_expr = setAlias(column_default->expression->clone(), column); |
| 1431 | else |
| 1432 | column_expr = std::make_shared<ASTIdentifier>(column); |
| 1433 | |
| 1434 | if (required_columns_from_prewhere.count(column)) |
| 1435 | { |
| 1436 | required_columns_from_prewhere_expr->children.emplace_back(std::move(column_expr)); |
| 1437 | |
| 1438 | if (is_alias) |
| 1439 | required_aliases_from_prewhere.insert(column); |
| 1440 | } |
| 1441 | else |
| 1442 | required_columns_all_expr->children.emplace_back(std::move(column_expr)); |
| 1443 | } |
| 1444 | |
| 1445 | /// Columns, which we will get after prewhere and filter executions. |
| 1446 | NamesAndTypesList required_columns_after_prewhere; |
| 1447 | NameSet required_columns_after_prewhere_set; |
| 1448 | |
| 1449 | /// Collect required columns from prewhere expression actions. |
| 1450 | if (prewhere_info) |
| 1451 | { |
| 1452 | NameSet columns_to_remove(columns_to_remove_after_prewhere.begin(), columns_to_remove_after_prewhere.end()); |
| 1453 | Block prewhere_actions_result = prewhere_info->prewhere_actions->getSampleBlock(); |
| 1454 | |
| 1455 | /// Populate required columns with the columns, added by PREWHERE actions and not removed afterwards. |
| 1456 | /// XXX: looks hacky that we already know which columns after PREWHERE we won't need for sure. |
| 1457 | for (const auto & column : prewhere_actions_result) |
| 1458 | { |
| 1459 | if (prewhere_info->remove_prewhere_column && column.name == prewhere_info->prewhere_column_name) |
| 1460 | continue; |
| 1461 | |
| 1462 | if (columns_to_remove.count(column.name)) |
| 1463 | continue; |
| 1464 | |
| 1465 | required_columns_all_expr->children.emplace_back(std::make_shared<ASTIdentifier>(column.name)); |
| 1466 | required_columns_after_prewhere.emplace_back(column.name, column.type); |
| 1467 | } |
| 1468 | |
| 1469 | required_columns_after_prewhere_set |
| 1470 | = ext::map<NameSet>(required_columns_after_prewhere, [](const auto & it) { return it.name; }); |
| 1471 | } |
| 1472 | |
| 1473 | auto syntax_result = SyntaxAnalyzer(*context).analyze(required_columns_all_expr, required_columns_after_prewhere, {}, storage); |
| 1474 | alias_actions = ExpressionAnalyzer(required_columns_all_expr, syntax_result, *context).getActions(true); |
| 1475 | |
| 1476 | /// The set of required columns could be added as a result of adding an action to calculate ALIAS. |
| 1477 | required_columns = alias_actions->getRequiredColumns(); |
| 1478 | |
| 1479 | /// Do not remove prewhere filter if it is a column which is used as alias. |
| 1480 | if (prewhere_info && prewhere_info->remove_prewhere_column) |
| 1481 | if (required_columns.end() |
| 1482 | != std::find(required_columns.begin(), required_columns.end(), prewhere_info->prewhere_column_name)) |
| 1483 | prewhere_info->remove_prewhere_column = false; |
| 1484 | |
| 1485 | /// Remove columns which will be added by prewhere. |
| 1486 | required_columns.erase(std::remove_if(required_columns.begin(), required_columns.end(), [&](const String & name) |
| 1487 | { |
| 1488 | return !!required_columns_after_prewhere_set.count(name); |
| 1489 | }), required_columns.end()); |
| 1490 | |
| 1491 | if (prewhere_info) |
| 1492 | { |
| 1493 | /// Don't remove columns which are needed to be aliased. |
| 1494 | auto new_actions = std::make_shared<ExpressionActions>(prewhere_info->prewhere_actions->getRequiredColumnsWithTypes(), *context); |
| 1495 | for (const auto & action : prewhere_info->prewhere_actions->getActions()) |
| 1496 | { |
| 1497 | if (action.type != ExpressionAction::REMOVE_COLUMN |
| 1498 | || required_columns.end() == std::find(required_columns.begin(), required_columns.end(), action.source_name)) |
| 1499 | new_actions->add(action); |
| 1500 | } |
| 1501 | prewhere_info->prewhere_actions = std::move(new_actions); |
| 1502 | |
| 1503 | auto analyzed_result |
| 1504 | = SyntaxAnalyzer(*context).analyze(required_columns_from_prewhere_expr, storage->getColumns().getAllPhysical()); |
| 1505 | prewhere_info->alias_actions |
| 1506 | = ExpressionAnalyzer(required_columns_from_prewhere_expr, analyzed_result, *context).getActions(true, false); |
| 1507 | |
| 1508 | /// Add (physical?) columns required by alias actions. |
| 1509 | auto required_columns_from_alias = prewhere_info->alias_actions->getRequiredColumns(); |
| 1510 | Block prewhere_actions_result = prewhere_info->prewhere_actions->getSampleBlock(); |
| 1511 | for (auto & column : required_columns_from_alias) |
| 1512 | if (!prewhere_actions_result.has(column)) |
| 1513 | if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column)) |
| 1514 | required_columns.push_back(column); |
| 1515 | |
| 1516 | /// Add physical columns required by prewhere actions. |
| 1517 | for (const auto & column : required_columns_from_prewhere) |
| 1518 | if (required_aliases_from_prewhere.count(column) == 0) |
| 1519 | if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column)) |
| 1520 | required_columns.push_back(column); |
| 1521 | } |
| 1522 | } |
| 1523 | } |
| 1524 | |
| 1525 | /// Limitation on the number of columns to read. |
| 1526 | /// It's not applied in 'only_analyze' mode, because the query could be analyzed without removal of unnecessary columns. |
| 1527 | if (!options.only_analyze && settings.max_columns_to_read && required_columns.size() > settings.max_columns_to_read) |
| 1528 | throw Exception("Limit for number of columns to read exceeded. " |
| 1529 | "Requested: " + toString(required_columns.size()) |
| 1530 | + ", maximum: " + settings.max_columns_to_read.toString(), |
| 1531 | ErrorCodes::TOO_MANY_COLUMNS); |
| 1532 | |
| 1533 | /** With distributed query processing, almost no computations are done in the threads, |
| 1534 | * but wait and receive data from remote servers. |
| 1535 | * If we have 20 remote servers, and max_threads = 8, then it would not be very good |
| 1536 | * connect and ask only 8 servers at a time. |
| 1537 | * To simultaneously query more remote servers, |
| 1538 | * instead of max_threads, max_distributed_connections is used. |
| 1539 | */ |
| 1540 | bool is_remote = false; |
| 1541 | if (storage && storage->isRemote()) |
| 1542 | { |
| 1543 | is_remote = true; |
| 1544 | max_streams = settings.max_distributed_connections; |
| 1545 | } |
| 1546 | |
| 1547 | UInt64 max_block_size = settings.max_block_size; |
| 1548 | |
| 1549 | auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, *context); |
| 1550 | |
| 1551 | /** Optimization - if not specified DISTINCT, WHERE, GROUP, HAVING, ORDER, LIMIT BY, WITH TIES but LIMIT is specified, and limit + offset < max_block_size, |
| 1552 | * then as the block size we will use limit + offset (not to read more from the table than requested), |
| 1553 | * and also set the number of threads to 1. |
| 1554 | */ |
| 1555 | if (!query.distinct |
| 1556 | && !query.limit_with_ties |
| 1557 | && !query.prewhere() |
| 1558 | && !query.where() |
| 1559 | && !query.groupBy() |
| 1560 | && !query.having() |
| 1561 | && !query.orderBy() |
| 1562 | && !query.limitBy() |
| 1563 | && query.limitLength() |
| 1564 | && !query_analyzer->hasAggregation() |
| 1565 | && limit_length + limit_offset < max_block_size) |
| 1566 | { |
| 1567 | max_block_size = std::max(UInt64(1), limit_length + limit_offset); |
| 1568 | max_streams = 1; |
| 1569 | } |
| 1570 | |
| 1571 | if (!max_block_size) |
| 1572 | throw Exception("Setting 'max_block_size' cannot be zero" , ErrorCodes::PARAMETER_OUT_OF_BOUND); |
| 1573 | |
| 1574 | /// Initialize the initial data streams to which the query transforms are superimposed. Table or subquery or prepared input? |
| 1575 | if (pipeline.initialized()) |
| 1576 | { |
| 1577 | /// Prepared input. |
| 1578 | } |
| 1579 | else if (interpreter_subquery) |
| 1580 | { |
| 1581 | /// Subquery. |
| 1582 | /// If we need less number of columns that subquery have - update the interpreter. |
| 1583 | if (required_columns.size() < source_header.columns()) |
| 1584 | { |
| 1585 | ASTPtr subquery = extractTableExpression(query, 0); |
| 1586 | if (!subquery) |
| 1587 | throw Exception("Subquery expected" , ErrorCodes::LOGICAL_ERROR); |
| 1588 | |
| 1589 | interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>( |
| 1590 | subquery, getSubqueryContext(*context), |
| 1591 | options.copy().subquery().noModify(), required_columns); |
| 1592 | |
| 1593 | if (query_analyzer->hasAggregation()) |
| 1594 | interpreter_subquery->ignoreWithTotals(); |
| 1595 | } |
| 1596 | |
| 1597 | if constexpr (pipeline_with_processors) |
| 1598 | /// Just use pipeline from subquery. |
| 1599 | pipeline = interpreter_subquery->executeWithProcessors(); |
| 1600 | else |
| 1601 | pipeline.streams = interpreter_subquery->executeWithMultipleStreams(save_context_and_storage); |
| 1602 | } |
| 1603 | else if (storage) |
| 1604 | { |
| 1605 | /// Table. |
| 1606 | |
| 1607 | if (max_streams == 0) |
| 1608 | throw Exception("Logical error: zero number of streams requested" , ErrorCodes::LOGICAL_ERROR); |
| 1609 | |
| 1610 | /// If necessary, we request more sources than the number of threads - to distribute the work evenly over the threads. |
| 1611 | if (max_streams > 1 && !is_remote) |
| 1612 | max_streams *= settings.max_streams_to_max_threads_ratio; |
| 1613 | |
| 1614 | query_info.query = query_ptr; |
| 1615 | query_info.syntax_analyzer_result = syntax_analyzer_result; |
| 1616 | query_info.sets = query_analyzer->getPreparedSets(); |
| 1617 | query_info.prewhere_info = prewhere_info; |
| 1618 | |
| 1619 | /// Create optimizer with prepared actions. |
| 1620 | /// Maybe we will need to calc input_sorting_info later, e.g. while reading from StorageMerge. |
| 1621 | if (analysis_result.optimize_read_in_order) |
| 1622 | { |
| 1623 | query_info.order_by_optimizer = std::make_shared<ReadInOrderOptimizer>( |
| 1624 | query_analyzer->getOrderByActions(), |
| 1625 | getSortDescription(query, *context), |
| 1626 | query_info.syntax_analyzer_result); |
| 1627 | |
| 1628 | query_info.input_sorting_info = query_info.order_by_optimizer->getInputOrder(storage); |
| 1629 | } |
| 1630 | |
| 1631 | |
| 1632 | BlockInputStreams streams; |
| 1633 | Pipes pipes; |
| 1634 | |
| 1635 | /// Will work with pipes directly if storage support processors. |
| 1636 | /// Code is temporarily copy-pasted while moving to new pipeline. |
| 1637 | bool use_pipes = pipeline_with_processors && storage->supportProcessorsPipeline(); |
| 1638 | |
| 1639 | if (use_pipes) |
| 1640 | pipes = storage->readWithProcessors(required_columns, query_info, *context, processing_stage, max_block_size, max_streams); |
| 1641 | else |
| 1642 | streams = storage->read(required_columns, query_info, *context, processing_stage, max_block_size, max_streams); |
| 1643 | |
| 1644 | if (streams.empty() && !use_pipes) |
| 1645 | { |
| 1646 | streams = {std::make_shared<NullBlockInputStream>(storage->getSampleBlockForColumns(required_columns))}; |
| 1647 | |
| 1648 | if (query_info.prewhere_info) |
| 1649 | { |
| 1650 | if (query_info.prewhere_info->alias_actions) |
| 1651 | { |
| 1652 | streams.back() = std::make_shared<ExpressionBlockInputStream>( |
| 1653 | streams.back(), |
| 1654 | query_info.prewhere_info->alias_actions); |
| 1655 | } |
| 1656 | |
| 1657 | streams.back() = std::make_shared<FilterBlockInputStream>( |
| 1658 | streams.back(), |
| 1659 | prewhere_info->prewhere_actions, |
| 1660 | prewhere_info->prewhere_column_name, |
| 1661 | prewhere_info->remove_prewhere_column); |
| 1662 | |
| 1663 | // To remove additional columns |
| 1664 | // In some cases, we did not read any marks so that the pipeline.streams is empty |
| 1665 | // Thus, some columns in prewhere are not removed as expected |
| 1666 | // This leads to mismatched header in distributed table |
| 1667 | if (query_info.prewhere_info->remove_columns_actions) |
| 1668 | { |
| 1669 | streams.back() = std::make_shared<ExpressionBlockInputStream>(streams.back(), query_info.prewhere_info->remove_columns_actions); |
| 1670 | } |
| 1671 | } |
| 1672 | } |
| 1673 | |
| 1674 | /// Copy-paste from prev if. |
| 1675 | if (pipes.empty() && use_pipes) |
| 1676 | { |
| 1677 | Pipe pipe(std::make_shared<NullSource>(storage->getSampleBlockForColumns(required_columns))); |
| 1678 | |
| 1679 | if (query_info.prewhere_info) |
| 1680 | { |
| 1681 | if (query_info.prewhere_info->alias_actions) |
| 1682 | pipe.addSimpleTransform(std::make_shared<ExpressionTransform>( |
| 1683 | pipe.getHeader(), query_info.prewhere_info->alias_actions)); |
| 1684 | |
| 1685 | pipe.addSimpleTransform(std::make_shared<FilterTransform>( |
| 1686 | pipe.getHeader(), |
| 1687 | prewhere_info->prewhere_actions, |
| 1688 | prewhere_info->prewhere_column_name, |
| 1689 | prewhere_info->remove_prewhere_column)); |
| 1690 | |
| 1691 | if (query_info.prewhere_info->remove_columns_actions) |
| 1692 | pipe.addSimpleTransform(std::make_shared<ExpressionTransform>(pipe.getHeader(), query_info.prewhere_info->remove_columns_actions)); |
| 1693 | } |
| 1694 | |
| 1695 | pipes.emplace_back(std::move(pipe)); |
| 1696 | } |
| 1697 | |
| 1698 | for (auto & stream : streams) |
| 1699 | stream->addTableLock(table_lock); |
| 1700 | |
| 1701 | if constexpr (pipeline_with_processors) |
| 1702 | { |
| 1703 | /// Table lock is stored inside pipeline here. |
| 1704 | if (use_pipes) |
| 1705 | pipeline.addTableLock(table_lock); |
| 1706 | } |
| 1707 | |
| 1708 | /// Set the limits and quota for reading data, the speed and time of the query. |
| 1709 | { |
| 1710 | IBlockInputStream::LocalLimits limits; |
| 1711 | limits.mode = IBlockInputStream::LIMITS_TOTAL; |
| 1712 | limits.size_limits = SizeLimits(settings.max_rows_to_read, settings.max_bytes_to_read, settings.read_overflow_mode); |
| 1713 | limits.speed_limits.max_execution_time = settings.max_execution_time; |
| 1714 | limits.timeout_overflow_mode = settings.timeout_overflow_mode; |
| 1715 | |
| 1716 | /** Quota and minimal speed restrictions are checked on the initiating server of the request, and not on remote servers, |
| 1717 | * because the initiating server has a summary of the execution of the request on all servers. |
| 1718 | * |
| 1719 | * But limits on data size to read and maximum execution time are reasonable to check both on initiator and |
| 1720 | * additionally on each remote server, because these limits are checked per block of data processed, |
| 1721 | * and remote servers may process way more blocks of data than are received by initiator. |
| 1722 | */ |
| 1723 | if (options.to_stage == QueryProcessingStage::Complete) |
| 1724 | { |
| 1725 | limits.speed_limits.min_execution_rps = settings.min_execution_speed; |
| 1726 | limits.speed_limits.max_execution_rps = settings.max_execution_speed; |
| 1727 | limits.speed_limits.min_execution_bps = settings.min_execution_speed_bytes; |
| 1728 | limits.speed_limits.max_execution_bps = settings.max_execution_speed_bytes; |
| 1729 | limits.speed_limits.timeout_before_checking_execution_speed = settings.timeout_before_checking_execution_speed; |
| 1730 | } |
| 1731 | |
| 1732 | auto quota = context->getQuota(); |
| 1733 | |
| 1734 | for (auto & stream : streams) |
| 1735 | { |
| 1736 | if (!options.ignore_limits) |
| 1737 | stream->setLimits(limits); |
| 1738 | |
| 1739 | if (!options.ignore_quota && (options.to_stage == QueryProcessingStage::Complete)) |
| 1740 | stream->setQuota(quota); |
| 1741 | } |
| 1742 | |
| 1743 | /// Copy-paste |
| 1744 | for (auto & pipe : pipes) |
| 1745 | { |
| 1746 | if (!options.ignore_limits) |
| 1747 | pipe.setLimits(limits); |
| 1748 | |
| 1749 | if (!options.ignore_quota && (options.to_stage == QueryProcessingStage::Complete)) |
| 1750 | pipe.setQuota(quota); |
| 1751 | } |
| 1752 | } |
| 1753 | |
| 1754 | if constexpr (pipeline_with_processors) |
| 1755 | { |
| 1756 | if (streams.size() == 1 || pipes.size() == 1) |
| 1757 | pipeline.setMaxThreads(streams.size()); |
| 1758 | |
| 1759 | /// Unify streams. They must have same headers. |
| 1760 | if (streams.size() > 1) |
| 1761 | { |
| 1762 | /// Unify streams in case they have different headers. |
| 1763 | auto = streams.at(0)->getHeader(); |
| 1764 | |
| 1765 | if (first_header.columns() > 1 && first_header.has("_dummy" )) |
| 1766 | first_header.erase("_dummy" ); |
| 1767 | |
| 1768 | for (auto & stream : streams) |
| 1769 | { |
| 1770 | auto = stream->getHeader(); |
| 1771 | auto mode = ConvertingBlockInputStream::MatchColumnsMode::Name; |
| 1772 | if (!blocksHaveEqualStructure(first_header, header)) |
| 1773 | stream = std::make_shared<ConvertingBlockInputStream>(*context, stream, first_header, mode); |
| 1774 | } |
| 1775 | } |
| 1776 | |
| 1777 | for (auto & stream : streams) |
| 1778 | { |
| 1779 | bool force_add_agg_info = processing_stage == QueryProcessingStage::WithMergeableState; |
| 1780 | auto source = std::make_shared<SourceFromInputStream>(stream, force_add_agg_info); |
| 1781 | |
| 1782 | if (processing_stage == QueryProcessingStage::Complete) |
| 1783 | source->addTotalsPort(); |
| 1784 | |
| 1785 | pipes.emplace_back(std::move(source)); |
| 1786 | } |
| 1787 | |
| 1788 | /// Pin sources for merge tree tables. |
| 1789 | // bool pin_sources = dynamic_cast<const MergeTreeData *>(storage.get()) != nullptr; |
| 1790 | // if (pin_sources) |
| 1791 | // { |
| 1792 | // for (size_t i = 0; i < pipes.size(); ++i) |
| 1793 | // pipes[i].pinSources(i); |
| 1794 | // } |
| 1795 | |
| 1796 | pipeline.init(std::move(pipes)); |
| 1797 | } |
| 1798 | else |
| 1799 | pipeline.streams = std::move(streams); |
| 1800 | } |
| 1801 | else |
| 1802 | throw Exception("Logical error in InterpreterSelectQuery: nowhere to read" , ErrorCodes::LOGICAL_ERROR); |
| 1803 | |
| 1804 | /// Aliases in table declaration. |
| 1805 | if (processing_stage == QueryProcessingStage::FetchColumns && alias_actions) |
| 1806 | { |
| 1807 | if constexpr (pipeline_with_processors) |
| 1808 | { |
| 1809 | pipeline.addSimpleTransform([&](const Block & ) |
| 1810 | { |
| 1811 | return std::make_shared<ExpressionTransform>(header, alias_actions); |
| 1812 | }); |
| 1813 | } |
| 1814 | else |
| 1815 | { |
| 1816 | pipeline.transform([&](auto & stream) |
| 1817 | { |
| 1818 | stream = std::make_shared<ExpressionBlockInputStream>(stream, alias_actions); |
| 1819 | }); |
| 1820 | } |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | |
| 1825 | void InterpreterSelectQuery::executeWhere(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool remove_fiter) |
| 1826 | { |
| 1827 | pipeline.transform([&](auto & stream) |
| 1828 | { |
| 1829 | stream = std::make_shared<FilterBlockInputStream>(stream, expression, getSelectQuery().where()->getColumnName(), remove_fiter); |
| 1830 | }); |
| 1831 | } |
| 1832 | |
| 1833 | void InterpreterSelectQuery::executeWhere(QueryPipeline & pipeline, const ExpressionActionsPtr & expression, bool remove_fiter) |
| 1834 | { |
| 1835 | pipeline.addSimpleTransform([&](const Block & block) |
| 1836 | { |
| 1837 | return std::make_shared<FilterTransform>(block, expression, getSelectQuery().where()->getColumnName(), remove_fiter); |
| 1838 | }); |
| 1839 | } |
| 1840 | |
| 1841 | void InterpreterSelectQuery::executeAggregation(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool overflow_row, bool final) |
| 1842 | { |
| 1843 | pipeline.transform([&](auto & stream) |
| 1844 | { |
| 1845 | stream = std::make_shared<ExpressionBlockInputStream>(stream, expression); |
| 1846 | }); |
| 1847 | |
| 1848 | Names key_names; |
| 1849 | AggregateDescriptions aggregates; |
| 1850 | query_analyzer->getAggregateInfo(key_names, aggregates); |
| 1851 | |
| 1852 | Block = pipeline.firstStream()->getHeader(); |
| 1853 | ColumnNumbers keys; |
| 1854 | for (const auto & name : key_names) |
| 1855 | keys.push_back(header.getPositionByName(name)); |
| 1856 | for (auto & descr : aggregates) |
| 1857 | if (descr.arguments.empty()) |
| 1858 | for (const auto & name : descr.argument_names) |
| 1859 | descr.arguments.push_back(header.getPositionByName(name)); |
| 1860 | |
| 1861 | const Settings & settings = context->getSettingsRef(); |
| 1862 | |
| 1863 | /** Two-level aggregation is useful in two cases: |
| 1864 | * 1. Parallel aggregation is done, and the results should be merged in parallel. |
| 1865 | * 2. An aggregation is done with store of temporary data on the disk, and they need to be merged in a memory efficient way. |
| 1866 | */ |
| 1867 | bool allow_to_use_two_level_group_by = pipeline.streams.size() > 1 || settings.max_bytes_before_external_group_by != 0; |
| 1868 | |
| 1869 | Aggregator::Params params(header, keys, aggregates, |
| 1870 | overflow_row, settings.max_rows_to_group_by, settings.group_by_overflow_mode, |
| 1871 | allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold : SettingUInt64(0), |
| 1872 | allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold_bytes : SettingUInt64(0), |
| 1873 | settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, |
| 1874 | context->getTemporaryPath(), settings.max_threads, settings.min_free_disk_space_for_temporary_data); |
| 1875 | |
| 1876 | /// If there are several sources, then we perform parallel aggregation |
| 1877 | if (pipeline.streams.size() > 1) |
| 1878 | { |
| 1879 | pipeline.firstStream() = std::make_shared<ParallelAggregatingBlockInputStream>( |
| 1880 | pipeline.streams, pipeline.stream_with_non_joined_data, params, final, |
| 1881 | max_streams, |
| 1882 | settings.aggregation_memory_efficient_merge_threads |
| 1883 | ? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads) |
| 1884 | : static_cast<size_t>(settings.max_threads)); |
| 1885 | |
| 1886 | pipeline.stream_with_non_joined_data = nullptr; |
| 1887 | pipeline.streams.resize(1); |
| 1888 | } |
| 1889 | else |
| 1890 | { |
| 1891 | BlockInputStreams inputs; |
| 1892 | if (!pipeline.streams.empty()) |
| 1893 | inputs.push_back(pipeline.firstStream()); |
| 1894 | else |
| 1895 | pipeline.streams.resize(1); |
| 1896 | |
| 1897 | if (pipeline.stream_with_non_joined_data) |
| 1898 | inputs.push_back(pipeline.stream_with_non_joined_data); |
| 1899 | |
| 1900 | pipeline.firstStream() = std::make_shared<AggregatingBlockInputStream>(std::make_shared<ConcatBlockInputStream>(inputs), params, final); |
| 1901 | |
| 1902 | pipeline.stream_with_non_joined_data = nullptr; |
| 1903 | } |
| 1904 | } |
| 1905 | |
| 1906 | |
| 1907 | void InterpreterSelectQuery::executeAggregation(QueryPipeline & pipeline, const ExpressionActionsPtr & expression, bool overflow_row, bool final) |
| 1908 | { |
| 1909 | pipeline.addSimpleTransform([&](const Block & ) |
| 1910 | { |
| 1911 | return std::make_shared<ExpressionTransform>(header, expression); |
| 1912 | }); |
| 1913 | |
| 1914 | Names key_names; |
| 1915 | AggregateDescriptions aggregates; |
| 1916 | query_analyzer->getAggregateInfo(key_names, aggregates); |
| 1917 | |
| 1918 | Block = pipeline.getHeader(); |
| 1919 | ColumnNumbers keys; |
| 1920 | for (const auto & name : key_names) |
| 1921 | keys.push_back(header_before_aggregation.getPositionByName(name)); |
| 1922 | for (auto & descr : aggregates) |
| 1923 | if (descr.arguments.empty()) |
| 1924 | for (const auto & name : descr.argument_names) |
| 1925 | descr.arguments.push_back(header_before_aggregation.getPositionByName(name)); |
| 1926 | |
| 1927 | const Settings & settings = context->getSettingsRef(); |
| 1928 | |
| 1929 | /** Two-level aggregation is useful in two cases: |
| 1930 | * 1. Parallel aggregation is done, and the results should be merged in parallel. |
| 1931 | * 2. An aggregation is done with store of temporary data on the disk, and they need to be merged in a memory efficient way. |
| 1932 | */ |
| 1933 | bool allow_to_use_two_level_group_by = pipeline.getNumMainStreams() > 1 || settings.max_bytes_before_external_group_by != 0; |
| 1934 | |
| 1935 | Aggregator::Params params(header_before_aggregation, keys, aggregates, |
| 1936 | overflow_row, settings.max_rows_to_group_by, settings.group_by_overflow_mode, |
| 1937 | allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold : SettingUInt64(0), |
| 1938 | allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold_bytes : SettingUInt64(0), |
| 1939 | settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, |
| 1940 | context->getTemporaryPath(), settings.max_threads, settings.min_free_disk_space_for_temporary_data); |
| 1941 | |
| 1942 | auto transform_params = std::make_shared<AggregatingTransformParams>(params, final); |
| 1943 | |
| 1944 | pipeline.dropTotalsIfHas(); |
| 1945 | |
| 1946 | /// If there are several sources, then we perform parallel aggregation |
| 1947 | if (pipeline.getNumMainStreams() > 1) |
| 1948 | { |
| 1949 | /// Add resize transform to uniformly distribute data between aggregating streams. |
| 1950 | pipeline.resize(pipeline.getNumMainStreams(), true); |
| 1951 | |
| 1952 | auto many_data = std::make_shared<ManyAggregatedData>(pipeline.getNumMainStreams()); |
| 1953 | auto merge_threads = settings.aggregation_memory_efficient_merge_threads |
| 1954 | ? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads) |
| 1955 | : static_cast<size_t>(settings.max_threads); |
| 1956 | |
| 1957 | size_t counter = 0; |
| 1958 | pipeline.addSimpleTransform([&](const Block & ) |
| 1959 | { |
| 1960 | return std::make_shared<AggregatingTransform>(header, transform_params, many_data, counter++, max_streams, merge_threads); |
| 1961 | }); |
| 1962 | |
| 1963 | pipeline.resize(1); |
| 1964 | } |
| 1965 | else |
| 1966 | { |
| 1967 | pipeline.resize(1); |
| 1968 | |
| 1969 | pipeline.addSimpleTransform([&](const Block & ) |
| 1970 | { |
| 1971 | return std::make_shared<AggregatingTransform>(header, transform_params); |
| 1972 | }); |
| 1973 | } |
| 1974 | } |
| 1975 | |
| 1976 | |
| 1977 | void InterpreterSelectQuery::executeMergeAggregated(Pipeline & pipeline, bool overflow_row, bool final) |
| 1978 | { |
| 1979 | Names key_names; |
| 1980 | AggregateDescriptions aggregates; |
| 1981 | query_analyzer->getAggregateInfo(key_names, aggregates); |
| 1982 | |
| 1983 | Block = pipeline.firstStream()->getHeader(); |
| 1984 | |
| 1985 | ColumnNumbers keys; |
| 1986 | for (const auto & name : key_names) |
| 1987 | keys.push_back(header.getPositionByName(name)); |
| 1988 | |
| 1989 | /** There are two modes of distributed aggregation. |
| 1990 | * |
| 1991 | * 1. In different threads read from the remote servers blocks. |
| 1992 | * Save all the blocks in the RAM. Merge blocks. |
| 1993 | * If the aggregation is two-level - parallelize to the number of buckets. |
| 1994 | * |
| 1995 | * 2. In one thread, read blocks from different servers in order. |
| 1996 | * RAM stores only one block from each server. |
| 1997 | * If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level. |
| 1998 | * |
| 1999 | * The second option consumes less memory (up to 256 times less) |
| 2000 | * in the case of two-level aggregation, which is used for large results after GROUP BY, |
| 2001 | * but it can work more slowly. |
| 2002 | */ |
| 2003 | |
| 2004 | const Settings & settings = context->getSettingsRef(); |
| 2005 | |
| 2006 | Aggregator::Params params(header, keys, aggregates, overflow_row, settings.max_threads); |
| 2007 | |
| 2008 | if (!settings.distributed_aggregation_memory_efficient) |
| 2009 | { |
| 2010 | /// We union several sources into one, parallelizing the work. |
| 2011 | executeUnion(pipeline, {}); |
| 2012 | |
| 2013 | /// Now merge the aggregated blocks |
| 2014 | pipeline.firstStream() = std::make_shared<MergingAggregatedBlockInputStream>(pipeline.firstStream(), params, final, settings.max_threads); |
| 2015 | } |
| 2016 | else |
| 2017 | { |
| 2018 | pipeline.firstStream() = std::make_shared<MergingAggregatedMemoryEfficientBlockInputStream>(pipeline.streams, params, final, |
| 2019 | max_streams, |
| 2020 | settings.aggregation_memory_efficient_merge_threads |
| 2021 | ? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads) |
| 2022 | : static_cast<size_t>(settings.max_threads)); |
| 2023 | |
| 2024 | pipeline.streams.resize(1); |
| 2025 | } |
| 2026 | } |
| 2027 | |
| 2028 | void InterpreterSelectQuery::executeMergeAggregated(QueryPipeline & pipeline, bool overflow_row, bool final) |
| 2029 | { |
| 2030 | Names key_names; |
| 2031 | AggregateDescriptions aggregates; |
| 2032 | query_analyzer->getAggregateInfo(key_names, aggregates); |
| 2033 | |
| 2034 | Block = pipeline.getHeader(); |
| 2035 | |
| 2036 | ColumnNumbers keys; |
| 2037 | for (const auto & name : key_names) |
| 2038 | keys.push_back(header_before_merge.getPositionByName(name)); |
| 2039 | |
| 2040 | /** There are two modes of distributed aggregation. |
| 2041 | * |
| 2042 | * 1. In different threads read from the remote servers blocks. |
| 2043 | * Save all the blocks in the RAM. Merge blocks. |
| 2044 | * If the aggregation is two-level - parallelize to the number of buckets. |
| 2045 | * |
| 2046 | * 2. In one thread, read blocks from different servers in order. |
| 2047 | * RAM stores only one block from each server. |
| 2048 | * If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level. |
| 2049 | * |
| 2050 | * The second option consumes less memory (up to 256 times less) |
| 2051 | * in the case of two-level aggregation, which is used for large results after GROUP BY, |
| 2052 | * but it can work more slowly. |
| 2053 | */ |
| 2054 | |
| 2055 | const Settings & settings = context->getSettingsRef(); |
| 2056 | |
| 2057 | Aggregator::Params params(header_before_merge, keys, aggregates, overflow_row, settings.max_threads); |
| 2058 | |
| 2059 | auto transform_params = std::make_shared<AggregatingTransformParams>(params, final); |
| 2060 | |
| 2061 | if (!settings.distributed_aggregation_memory_efficient) |
| 2062 | { |
| 2063 | /// We union several sources into one, parallelizing the work. |
| 2064 | pipeline.resize(1); |
| 2065 | |
| 2066 | /// Now merge the aggregated blocks |
| 2067 | pipeline.addSimpleTransform([&](const Block & ) |
| 2068 | { |
| 2069 | return std::make_shared<MergingAggregatedTransform>(header, transform_params, settings.max_threads); |
| 2070 | }); |
| 2071 | } |
| 2072 | else |
| 2073 | { |
| 2074 | /// pipeline.resize(max_streams); - Seem we don't need it. |
| 2075 | auto num_merge_threads = settings.aggregation_memory_efficient_merge_threads |
| 2076 | ? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads) |
| 2077 | : static_cast<size_t>(settings.max_threads); |
| 2078 | |
| 2079 | auto pipe = createMergingAggregatedMemoryEfficientPipe( |
| 2080 | pipeline.getHeader(), |
| 2081 | transform_params, |
| 2082 | pipeline.getNumStreams(), |
| 2083 | num_merge_threads); |
| 2084 | |
| 2085 | pipeline.addPipe(std::move(pipe)); |
| 2086 | } |
| 2087 | } |
| 2088 | |
| 2089 | |
| 2090 | void InterpreterSelectQuery::executeHaving(Pipeline & pipeline, const ExpressionActionsPtr & expression) |
| 2091 | { |
| 2092 | pipeline.transform([&](auto & stream) |
| 2093 | { |
| 2094 | stream = std::make_shared<FilterBlockInputStream>(stream, expression, getSelectQuery().having()->getColumnName()); |
| 2095 | }); |
| 2096 | } |
| 2097 | |
| 2098 | void InterpreterSelectQuery::executeHaving(QueryPipeline & pipeline, const ExpressionActionsPtr & expression) |
| 2099 | { |
| 2100 | pipeline.addSimpleTransform([&](const Block & , QueryPipeline::StreamType stream_type) -> ProcessorPtr |
| 2101 | { |
| 2102 | if (stream_type == QueryPipeline::StreamType::Totals) |
| 2103 | return nullptr; |
| 2104 | |
| 2105 | /// TODO: do we need to save filter there? |
| 2106 | return std::make_shared<FilterTransform>(header, expression, getSelectQuery().having()->getColumnName(), false); |
| 2107 | }); |
| 2108 | } |
| 2109 | |
| 2110 | |
| 2111 | void InterpreterSelectQuery::executeTotalsAndHaving(Pipeline & pipeline, bool has_having, const ExpressionActionsPtr & expression, bool overflow_row, bool final) |
| 2112 | { |
| 2113 | executeUnion(pipeline, {}); |
| 2114 | |
| 2115 | const Settings & settings = context->getSettingsRef(); |
| 2116 | |
| 2117 | pipeline.firstStream() = std::make_shared<TotalsHavingBlockInputStream>( |
| 2118 | pipeline.firstStream(), |
| 2119 | overflow_row, |
| 2120 | expression, |
| 2121 | has_having ? getSelectQuery().having()->getColumnName() : "" , |
| 2122 | settings.totals_mode, |
| 2123 | settings.totals_auto_threshold, |
| 2124 | final); |
| 2125 | } |
| 2126 | |
| 2127 | void InterpreterSelectQuery::executeTotalsAndHaving(QueryPipeline & pipeline, bool has_having, const ExpressionActionsPtr & expression, bool overflow_row, bool final) |
| 2128 | { |
| 2129 | const Settings & settings = context->getSettingsRef(); |
| 2130 | |
| 2131 | auto totals_having = std::make_shared<TotalsHavingTransform>( |
| 2132 | pipeline.getHeader(), overflow_row, expression, |
| 2133 | has_having ? getSelectQuery().having()->getColumnName() : "" , |
| 2134 | settings.totals_mode, settings.totals_auto_threshold, final); |
| 2135 | |
| 2136 | pipeline.addTotalsHavingTransform(std::move(totals_having)); |
| 2137 | } |
| 2138 | |
| 2139 | |
| 2140 | void InterpreterSelectQuery::executeRollupOrCube(Pipeline & pipeline, Modificator modificator) |
| 2141 | { |
| 2142 | executeUnion(pipeline, {}); |
| 2143 | |
| 2144 | Names key_names; |
| 2145 | AggregateDescriptions aggregates; |
| 2146 | query_analyzer->getAggregateInfo(key_names, aggregates); |
| 2147 | |
| 2148 | Block = pipeline.firstStream()->getHeader(); |
| 2149 | |
| 2150 | ColumnNumbers keys; |
| 2151 | |
| 2152 | for (const auto & name : key_names) |
| 2153 | keys.push_back(header.getPositionByName(name)); |
| 2154 | |
| 2155 | const Settings & settings = context->getSettingsRef(); |
| 2156 | |
| 2157 | Aggregator::Params params(header, keys, aggregates, |
| 2158 | false, settings.max_rows_to_group_by, settings.group_by_overflow_mode, |
| 2159 | SettingUInt64(0), SettingUInt64(0), |
| 2160 | settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, |
| 2161 | context->getTemporaryPath(), settings.max_threads, settings.min_free_disk_space_for_temporary_data); |
| 2162 | |
| 2163 | if (modificator == Modificator::ROLLUP) |
| 2164 | pipeline.firstStream() = std::make_shared<RollupBlockInputStream>(pipeline.firstStream(), params); |
| 2165 | else |
| 2166 | pipeline.firstStream() = std::make_shared<CubeBlockInputStream>(pipeline.firstStream(), params); |
| 2167 | } |
| 2168 | |
| 2169 | void InterpreterSelectQuery::executeRollupOrCube(QueryPipeline & pipeline, Modificator modificator) |
| 2170 | { |
| 2171 | pipeline.resize(1); |
| 2172 | |
| 2173 | Names key_names; |
| 2174 | AggregateDescriptions aggregates; |
| 2175 | query_analyzer->getAggregateInfo(key_names, aggregates); |
| 2176 | |
| 2177 | Block = pipeline.getHeader(); |
| 2178 | |
| 2179 | ColumnNumbers keys; |
| 2180 | |
| 2181 | for (const auto & name : key_names) |
| 2182 | keys.push_back(header_before_transform.getPositionByName(name)); |
| 2183 | |
| 2184 | const Settings & settings = context->getSettingsRef(); |
| 2185 | |
| 2186 | Aggregator::Params params(header_before_transform, keys, aggregates, |
| 2187 | false, settings.max_rows_to_group_by, settings.group_by_overflow_mode, |
| 2188 | SettingUInt64(0), SettingUInt64(0), |
| 2189 | settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, |
| 2190 | context->getTemporaryPath(), settings.max_threads, settings.min_free_disk_space_for_temporary_data); |
| 2191 | |
| 2192 | auto transform_params = std::make_shared<AggregatingTransformParams>(params, true); |
| 2193 | |
| 2194 | pipeline.addSimpleTransform([&](const Block & , QueryPipeline::StreamType stream_type) -> ProcessorPtr |
| 2195 | { |
| 2196 | if (stream_type == QueryPipeline::StreamType::Totals) |
| 2197 | return nullptr; |
| 2198 | |
| 2199 | if (modificator == Modificator::ROLLUP) |
| 2200 | return std::make_shared<RollupTransform>(header, std::move(transform_params)); |
| 2201 | else |
| 2202 | return std::make_shared<CubeTransform>(header, std::move(transform_params)); |
| 2203 | }); |
| 2204 | } |
| 2205 | |
| 2206 | |
| 2207 | void InterpreterSelectQuery::executeExpression(Pipeline & pipeline, const ExpressionActionsPtr & expression) |
| 2208 | { |
| 2209 | pipeline.transform([&](auto & stream) |
| 2210 | { |
| 2211 | stream = std::make_shared<ExpressionBlockInputStream>(stream, expression); |
| 2212 | }); |
| 2213 | } |
| 2214 | |
| 2215 | void InterpreterSelectQuery::executeExpression(QueryPipeline & pipeline, const ExpressionActionsPtr & expression) |
| 2216 | { |
| 2217 | pipeline.addSimpleTransform([&](const Block & ) -> ProcessorPtr |
| 2218 | { |
| 2219 | return std::make_shared<ExpressionTransform>(header, expression); |
| 2220 | }); |
| 2221 | } |
| 2222 | |
| 2223 | void InterpreterSelectQuery::executeOrder(Pipeline & pipeline, InputSortingInfoPtr input_sorting_info) |
| 2224 | { |
| 2225 | auto & query = getSelectQuery(); |
| 2226 | SortDescription output_order_descr = getSortDescription(query, *context); |
| 2227 | const Settings & settings = context->getSettingsRef(); |
| 2228 | UInt64 limit = getLimitForSorting(query, *context); |
| 2229 | |
| 2230 | if (input_sorting_info) |
| 2231 | { |
| 2232 | /* Case of sorting with optimization using sorting key. |
| 2233 | * We have several threads, each of them reads batch of parts in direct |
| 2234 | * or reverse order of sorting key using one input stream per part |
| 2235 | * and then merge them into one sorted stream. |
| 2236 | * At this stage we merge per-thread streams into one. |
| 2237 | * If the input is sorted by some prefix of the sorting key required for output, |
| 2238 | * we have to finish sorting after the merge. |
| 2239 | */ |
| 2240 | |
| 2241 | bool need_finish_sorting = (input_sorting_info->order_key_prefix_descr.size() < output_order_descr.size()); |
| 2242 | |
| 2243 | UInt64 limit_for_merging = (need_finish_sorting ? 0 : limit); |
| 2244 | executeMergeSorted(pipeline, input_sorting_info->order_key_prefix_descr, limit_for_merging); |
| 2245 | |
| 2246 | if (need_finish_sorting) |
| 2247 | { |
| 2248 | pipeline.transform([&](auto & stream) |
| 2249 | { |
| 2250 | stream = std::make_shared<PartialSortingBlockInputStream>(stream, output_order_descr, limit); |
| 2251 | }); |
| 2252 | |
| 2253 | pipeline.firstStream() = std::make_shared<FinishSortingBlockInputStream>( |
| 2254 | pipeline.firstStream(), input_sorting_info->order_key_prefix_descr, |
| 2255 | output_order_descr, settings.max_block_size, limit); |
| 2256 | } |
| 2257 | } |
| 2258 | else |
| 2259 | { |
| 2260 | pipeline.transform([&](auto & stream) |
| 2261 | { |
| 2262 | auto sorting_stream = std::make_shared<PartialSortingBlockInputStream>(stream, output_order_descr, limit); |
| 2263 | |
| 2264 | /// Limits on sorting |
| 2265 | IBlockInputStream::LocalLimits limits; |
| 2266 | limits.mode = IBlockInputStream::LIMITS_TOTAL; |
| 2267 | limits.size_limits = SizeLimits(settings.max_rows_to_sort, settings.max_bytes_to_sort, settings.sort_overflow_mode); |
| 2268 | sorting_stream->setLimits(limits); |
| 2269 | |
| 2270 | stream = sorting_stream; |
| 2271 | }); |
| 2272 | |
| 2273 | /// If there are several streams, we merge them into one |
| 2274 | executeUnion(pipeline, {}); |
| 2275 | |
| 2276 | /// Merge the sorted blocks. |
| 2277 | pipeline.firstStream() = std::make_shared<MergeSortingBlockInputStream>( |
| 2278 | pipeline.firstStream(), output_order_descr, settings.max_block_size, limit, |
| 2279 | settings.max_bytes_before_remerge_sort, |
| 2280 | settings.max_bytes_before_external_sort, context->getTemporaryPath(), settings.min_free_disk_space_for_temporary_data); |
| 2281 | } |
| 2282 | } |
| 2283 | |
| 2284 | void InterpreterSelectQuery::executeOrder(QueryPipeline & pipeline, InputSortingInfoPtr input_sorting_info) |
| 2285 | { |
| 2286 | auto & query = getSelectQuery(); |
| 2287 | SortDescription output_order_descr = getSortDescription(query, *context); |
| 2288 | UInt64 limit = getLimitForSorting(query, *context); |
| 2289 | |
| 2290 | const Settings & settings = context->getSettingsRef(); |
| 2291 | |
| 2292 | /// TODO: Limits on sorting |
| 2293 | // IBlockInputStream::LocalLimits limits; |
| 2294 | // limits.mode = IBlockInputStream::LIMITS_TOTAL; |
| 2295 | // limits.size_limits = SizeLimits(settings.max_rows_to_sort, settings.max_bytes_to_sort, settings.sort_overflow_mode); |
| 2296 | |
| 2297 | if (input_sorting_info) |
| 2298 | { |
| 2299 | /* Case of sorting with optimization using sorting key. |
| 2300 | * We have several threads, each of them reads batch of parts in direct |
| 2301 | * or reverse order of sorting key using one input stream per part |
| 2302 | * and then merge them into one sorted stream. |
| 2303 | * At this stage we merge per-thread streams into one. |
| 2304 | */ |
| 2305 | |
| 2306 | bool need_finish_sorting = (input_sorting_info->order_key_prefix_descr.size() < output_order_descr.size()); |
| 2307 | |
| 2308 | if (pipeline.getNumStreams() > 1) |
| 2309 | { |
| 2310 | UInt64 limit_for_merging = (need_finish_sorting ? 0 : limit); |
| 2311 | auto transform = std::make_shared<MergingSortedTransform>( |
| 2312 | pipeline.getHeader(), |
| 2313 | pipeline.getNumStreams(), |
| 2314 | input_sorting_info->order_key_prefix_descr, |
| 2315 | settings.max_block_size, limit_for_merging); |
| 2316 | |
| 2317 | pipeline.addPipe({ std::move(transform) }); |
| 2318 | } |
| 2319 | |
| 2320 | if (need_finish_sorting) |
| 2321 | { |
| 2322 | pipeline.addSimpleTransform([&](const Block & , QueryPipeline::StreamType stream_type) |
| 2323 | { |
| 2324 | bool do_count_rows = stream_type == QueryPipeline::StreamType::Main; |
| 2325 | return std::make_shared<PartialSortingTransform>(header, output_order_descr, limit, do_count_rows); |
| 2326 | }); |
| 2327 | |
| 2328 | pipeline.addSimpleTransform([&](const Block & ) -> ProcessorPtr |
| 2329 | { |
| 2330 | return std::make_shared<FinishSortingTransform>( |
| 2331 | header, input_sorting_info->order_key_prefix_descr, |
| 2332 | output_order_descr, settings.max_block_size, limit); |
| 2333 | }); |
| 2334 | } |
| 2335 | |
| 2336 | return; |
| 2337 | } |
| 2338 | |
| 2339 | pipeline.addSimpleTransform([&](const Block & , QueryPipeline::StreamType stream_type) |
| 2340 | { |
| 2341 | bool do_count_rows = stream_type == QueryPipeline::StreamType::Main; |
| 2342 | return std::make_shared<PartialSortingTransform>(header, output_order_descr, limit, do_count_rows); |
| 2343 | }); |
| 2344 | |
| 2345 | /// If there are several streams, we merge them into one |
| 2346 | pipeline.resize(1); |
| 2347 | |
| 2348 | /// Merge the sorted blocks. |
| 2349 | pipeline.addSimpleTransform([&](const Block & , QueryPipeline::StreamType stream_type) -> ProcessorPtr |
| 2350 | { |
| 2351 | if (stream_type == QueryPipeline::StreamType::Totals) |
| 2352 | return nullptr; |
| 2353 | |
| 2354 | return std::make_shared<MergeSortingTransform>( |
| 2355 | header, output_order_descr, settings.max_block_size, limit, |
| 2356 | settings.max_bytes_before_remerge_sort, |
| 2357 | settings.max_bytes_before_external_sort, context->getTemporaryPath(), settings.min_free_disk_space_for_temporary_data); |
| 2358 | }); |
| 2359 | } |
| 2360 | |
| 2361 | |
| 2362 | void InterpreterSelectQuery::executeMergeSorted(Pipeline & pipeline) |
| 2363 | { |
| 2364 | auto & query = getSelectQuery(); |
| 2365 | SortDescription order_descr = getSortDescription(query, *context); |
| 2366 | UInt64 limit = getLimitForSorting(query, *context); |
| 2367 | |
| 2368 | /// If there are several streams, then we merge them into one |
| 2369 | if (pipeline.hasMoreThanOneStream()) |
| 2370 | { |
| 2371 | unifyStreams(pipeline, pipeline.firstStream()->getHeader()); |
| 2372 | executeMergeSorted(pipeline, order_descr, limit); |
| 2373 | } |
| 2374 | } |
| 2375 | |
| 2376 | |
| 2377 | void InterpreterSelectQuery::executeMergeSorted(Pipeline & pipeline, const SortDescription & sort_description, UInt64 limit) |
| 2378 | { |
| 2379 | if (pipeline.hasMoreThanOneStream()) |
| 2380 | { |
| 2381 | const Settings & settings = context->getSettingsRef(); |
| 2382 | |
| 2383 | /** MergingSortedBlockInputStream reads the sources sequentially. |
| 2384 | * To make the data on the remote servers prepared in parallel, we wrap it in AsynchronousBlockInputStream. |
| 2385 | */ |
| 2386 | pipeline.transform([&](auto & stream) |
| 2387 | { |
| 2388 | stream = std::make_shared<AsynchronousBlockInputStream>(stream); |
| 2389 | }); |
| 2390 | |
| 2391 | pipeline.firstStream() = std::make_shared<MergingSortedBlockInputStream>( |
| 2392 | pipeline.streams, sort_description, settings.max_block_size, limit); |
| 2393 | pipeline.streams.resize(1); |
| 2394 | } |
| 2395 | } |
| 2396 | |
| 2397 | void InterpreterSelectQuery::executeMergeSorted(QueryPipeline & pipeline) |
| 2398 | { |
| 2399 | auto & query = getSelectQuery(); |
| 2400 | SortDescription order_descr = getSortDescription(query, *context); |
| 2401 | UInt64 limit = getLimitForSorting(query, *context); |
| 2402 | |
| 2403 | executeMergeSorted(pipeline, order_descr, limit); |
| 2404 | } |
| 2405 | |
| 2406 | void InterpreterSelectQuery::executeMergeSorted(QueryPipeline & pipeline, const SortDescription & sort_description, UInt64 limit) |
| 2407 | { |
| 2408 | /// If there are several streams, then we merge them into one |
| 2409 | if (pipeline.getNumStreams() > 1) |
| 2410 | { |
| 2411 | const Settings & settings = context->getSettingsRef(); |
| 2412 | |
| 2413 | auto transform = std::make_shared<MergingSortedTransform>( |
| 2414 | pipeline.getHeader(), |
| 2415 | pipeline.getNumStreams(), |
| 2416 | sort_description, |
| 2417 | settings.max_block_size, limit); |
| 2418 | |
| 2419 | pipeline.addPipe({ std::move(transform) }); |
| 2420 | } |
| 2421 | } |
| 2422 | |
| 2423 | |
| 2424 | void InterpreterSelectQuery::executeProjection(Pipeline & pipeline, const ExpressionActionsPtr & expression) |
| 2425 | { |
| 2426 | pipeline.transform([&](auto & stream) |
| 2427 | { |
| 2428 | stream = std::make_shared<ExpressionBlockInputStream>(stream, expression); |
| 2429 | }); |
| 2430 | } |
| 2431 | |
| 2432 | void InterpreterSelectQuery::executeProjection(QueryPipeline & pipeline, const ExpressionActionsPtr & expression) |
| 2433 | { |
| 2434 | pipeline.addSimpleTransform([&](const Block & ) -> ProcessorPtr |
| 2435 | { |
| 2436 | return std::make_shared<ExpressionTransform>(header, expression); |
| 2437 | }); |
| 2438 | } |
| 2439 | |
| 2440 | |
| 2441 | void InterpreterSelectQuery::executeDistinct(Pipeline & pipeline, bool before_order, Names columns) |
| 2442 | { |
| 2443 | auto & query = getSelectQuery(); |
| 2444 | if (query.distinct) |
| 2445 | { |
| 2446 | const Settings & settings = context->getSettingsRef(); |
| 2447 | |
| 2448 | auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, *context); |
| 2449 | UInt64 limit_for_distinct = 0; |
| 2450 | |
| 2451 | /// If after this stage of DISTINCT ORDER BY is not executed, then you can get no more than limit_length + limit_offset of different rows. |
| 2452 | if ((!query.orderBy() || !before_order) && !query.limit_with_ties) |
| 2453 | limit_for_distinct = limit_length + limit_offset; |
| 2454 | |
| 2455 | pipeline.transform([&](auto & stream) |
| 2456 | { |
| 2457 | SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode); |
| 2458 | stream = std::make_shared<DistinctBlockInputStream>(stream, limits, limit_for_distinct, columns); |
| 2459 | }); |
| 2460 | } |
| 2461 | } |
| 2462 | |
| 2463 | void InterpreterSelectQuery::executeDistinct(QueryPipeline & pipeline, bool before_order, Names columns) |
| 2464 | { |
| 2465 | auto & query = getSelectQuery(); |
| 2466 | if (query.distinct) |
| 2467 | { |
| 2468 | const Settings & settings = context->getSettingsRef(); |
| 2469 | |
| 2470 | auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, *context); |
| 2471 | UInt64 limit_for_distinct = 0; |
| 2472 | |
| 2473 | /// If after this stage of DISTINCT ORDER BY is not executed, then you can get no more than limit_length + limit_offset of different rows. |
| 2474 | if (!query.orderBy() || !before_order) |
| 2475 | limit_for_distinct = limit_length + limit_offset; |
| 2476 | |
| 2477 | SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode); |
| 2478 | |
| 2479 | pipeline.addSimpleTransform([&](const Block & , QueryPipeline::StreamType stream_type) -> ProcessorPtr |
| 2480 | { |
| 2481 | if (stream_type == QueryPipeline::StreamType::Totals) |
| 2482 | return nullptr; |
| 2483 | |
| 2484 | return std::make_shared<DistinctTransform>(header, limits, limit_for_distinct, columns); |
| 2485 | }); |
| 2486 | } |
| 2487 | } |
| 2488 | |
| 2489 | |
| 2490 | void InterpreterSelectQuery::executeUnion(Pipeline & pipeline, Block ) |
| 2491 | { |
| 2492 | /// If there are still several streams, then we combine them into one |
| 2493 | if (pipeline.hasMoreThanOneStream()) |
| 2494 | { |
| 2495 | if (!header) |
| 2496 | header = pipeline.firstStream()->getHeader(); |
| 2497 | |
| 2498 | unifyStreams(pipeline, std::move(header)); |
| 2499 | |
| 2500 | pipeline.firstStream() = std::make_shared<UnionBlockInputStream>(pipeline.streams, pipeline.stream_with_non_joined_data, max_streams); |
| 2501 | pipeline.stream_with_non_joined_data = nullptr; |
| 2502 | pipeline.streams.resize(1); |
| 2503 | pipeline.union_stream = true; |
| 2504 | } |
| 2505 | else if (pipeline.stream_with_non_joined_data) |
| 2506 | { |
| 2507 | pipeline.streams.push_back(pipeline.stream_with_non_joined_data); |
| 2508 | pipeline.stream_with_non_joined_data = nullptr; |
| 2509 | } |
| 2510 | } |
| 2511 | |
| 2512 | |
| 2513 | /// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined. |
| 2514 | void InterpreterSelectQuery::executePreLimit(Pipeline & pipeline) |
| 2515 | { |
| 2516 | auto & query = getSelectQuery(); |
| 2517 | /// If there is LIMIT |
| 2518 | if (query.limitLength()) |
| 2519 | { |
| 2520 | auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, *context); |
| 2521 | SortDescription sort_descr; |
| 2522 | if (query.limit_with_ties) |
| 2523 | { |
| 2524 | if (!query.orderBy()) |
| 2525 | throw Exception("LIMIT WITH TIES without ORDER BY" , ErrorCodes::LOGICAL_ERROR); |
| 2526 | sort_descr = getSortDescription(query, *context); |
| 2527 | } |
| 2528 | pipeline.transform([&, limit = limit_length + limit_offset](auto & stream) |
| 2529 | { |
| 2530 | stream = std::make_shared<LimitBlockInputStream>(stream, limit, 0, false, false, query.limit_with_ties, sort_descr); |
| 2531 | }); |
| 2532 | } |
| 2533 | } |
| 2534 | |
| 2535 | /// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined. |
| 2536 | void InterpreterSelectQuery::executePreLimit(QueryPipeline & pipeline) |
| 2537 | { |
| 2538 | auto & query = getSelectQuery(); |
| 2539 | /// If there is LIMIT |
| 2540 | if (query.limitLength()) |
| 2541 | { |
| 2542 | auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, *context); |
| 2543 | pipeline.addSimpleTransform([&, limit = limit_length + limit_offset](const Block & , QueryPipeline::StreamType stream_type) -> ProcessorPtr |
| 2544 | { |
| 2545 | if (stream_type == QueryPipeline::StreamType::Totals) |
| 2546 | return nullptr; |
| 2547 | |
| 2548 | return std::make_shared<LimitTransform>(header, limit, 0); |
| 2549 | }); |
| 2550 | } |
| 2551 | } |
| 2552 | |
| 2553 | |
| 2554 | void InterpreterSelectQuery::executeLimitBy(Pipeline & pipeline) |
| 2555 | { |
| 2556 | auto & query = getSelectQuery(); |
| 2557 | if (!query.limitByLength() || !query.limitBy()) |
| 2558 | return; |
| 2559 | |
| 2560 | Names columns; |
| 2561 | for (const auto & elem : query.limitBy()->children) |
| 2562 | columns.emplace_back(elem->getColumnName()); |
| 2563 | UInt64 length = getLimitUIntValue(query.limitByLength(), *context); |
| 2564 | UInt64 offset = (query.limitByOffset() ? getLimitUIntValue(query.limitByOffset(), *context) : 0); |
| 2565 | |
| 2566 | pipeline.transform([&](auto & stream) |
| 2567 | { |
| 2568 | stream = std::make_shared<LimitByBlockInputStream>(stream, length, offset, columns); |
| 2569 | }); |
| 2570 | } |
| 2571 | |
| 2572 | void InterpreterSelectQuery::executeLimitBy(QueryPipeline & pipeline) |
| 2573 | { |
| 2574 | auto & query = getSelectQuery(); |
| 2575 | if (!query.limitByLength() || !query.limitBy()) |
| 2576 | return; |
| 2577 | |
| 2578 | Names columns; |
| 2579 | for (const auto & elem : query.limitBy()->children) |
| 2580 | columns.emplace_back(elem->getColumnName()); |
| 2581 | |
| 2582 | UInt64 length = getLimitUIntValue(query.limitByLength(), *context); |
| 2583 | UInt64 offset = (query.limitByOffset() ? getLimitUIntValue(query.limitByOffset(), *context) : 0); |
| 2584 | |
| 2585 | pipeline.addSimpleTransform([&](const Block & , QueryPipeline::StreamType stream_type) -> ProcessorPtr |
| 2586 | { |
| 2587 | if (stream_type == QueryPipeline::StreamType::Totals) |
| 2588 | return nullptr; |
| 2589 | |
| 2590 | return std::make_shared<LimitByTransform>(header, length, offset, columns); |
| 2591 | }); |
| 2592 | } |
| 2593 | |
| 2594 | |
| 2595 | namespace |
| 2596 | { |
| 2597 | bool hasWithTotalsInAnySubqueryInFromClause(const ASTSelectQuery & query) |
| 2598 | { |
| 2599 | if (query.group_by_with_totals) |
| 2600 | return true; |
| 2601 | |
| 2602 | /** NOTE You can also check that the table in the subquery is distributed, and that it only looks at one shard. |
| 2603 | * In other cases, totals will be computed on the initiating server of the query, and it is not necessary to read the data to the end. |
| 2604 | */ |
| 2605 | |
| 2606 | if (auto query_table = extractTableExpression(query, 0)) |
| 2607 | { |
| 2608 | if (const auto * ast_union = query_table->as<ASTSelectWithUnionQuery>()) |
| 2609 | { |
| 2610 | for (const auto & elem : ast_union->list_of_selects->children) |
| 2611 | if (hasWithTotalsInAnySubqueryInFromClause(elem->as<ASTSelectQuery &>())) |
| 2612 | return true; |
| 2613 | } |
| 2614 | } |
| 2615 | |
| 2616 | return false; |
| 2617 | } |
| 2618 | } |
| 2619 | |
| 2620 | void InterpreterSelectQuery::executeLimit(Pipeline & pipeline) |
| 2621 | { |
| 2622 | auto & query = getSelectQuery(); |
| 2623 | /// If there is LIMIT |
| 2624 | if (query.limitLength()) |
| 2625 | { |
| 2626 | /** Rare case: |
| 2627 | * if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels, |
| 2628 | * then when using LIMIT, you should read the data to the end, rather than cancel the query earlier, |
| 2629 | * because if you cancel the query, we will not get `totals` data from the remote server. |
| 2630 | * |
| 2631 | * Another case: |
| 2632 | * if there is WITH TOTALS and there is no ORDER BY, then read the data to the end, |
| 2633 | * otherwise TOTALS is counted according to incomplete data. |
| 2634 | */ |
| 2635 | bool always_read_till_end = false; |
| 2636 | |
| 2637 | if (query.group_by_with_totals && !query.orderBy()) |
| 2638 | always_read_till_end = true; |
| 2639 | |
| 2640 | if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query)) |
| 2641 | always_read_till_end = true; |
| 2642 | |
| 2643 | SortDescription order_descr; |
| 2644 | if (query.limit_with_ties) |
| 2645 | { |
| 2646 | if (!query.orderBy()) |
| 2647 | throw Exception("LIMIT WITH TIES without ORDER BY" , ErrorCodes::LOGICAL_ERROR); |
| 2648 | order_descr = getSortDescription(query, *context); |
| 2649 | } |
| 2650 | |
| 2651 | UInt64 limit_length; |
| 2652 | UInt64 limit_offset; |
| 2653 | std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, *context); |
| 2654 | |
| 2655 | pipeline.transform([&](auto & stream) |
| 2656 | { |
| 2657 | stream = std::make_shared<LimitBlockInputStream>(stream, limit_length, limit_offset, always_read_till_end, false, query.limit_with_ties, order_descr); |
| 2658 | }); |
| 2659 | } |
| 2660 | } |
| 2661 | |
| 2662 | |
| 2663 | void InterpreterSelectQuery::executeWithFill(Pipeline & pipeline) |
| 2664 | { |
| 2665 | auto & query = getSelectQuery(); |
| 2666 | if (query.orderBy()) |
| 2667 | { |
| 2668 | SortDescription order_descr = getSortDescription(query, *context); |
| 2669 | SortDescription fill_descr; |
| 2670 | for (auto & desc : order_descr) |
| 2671 | { |
| 2672 | if (desc.with_fill) |
| 2673 | fill_descr.push_back(desc); |
| 2674 | } |
| 2675 | |
| 2676 | if (fill_descr.empty()) |
| 2677 | return; |
| 2678 | |
| 2679 | pipeline.transform([&](auto & stream) |
| 2680 | { |
| 2681 | stream = std::make_shared<FillingBlockInputStream>(stream, fill_descr); |
| 2682 | }); |
| 2683 | } |
| 2684 | } |
| 2685 | |
| 2686 | void InterpreterSelectQuery::executeWithFill(QueryPipeline & pipeline) |
| 2687 | { |
| 2688 | auto & query = getSelectQuery(); |
| 2689 | if (query.orderBy()) |
| 2690 | { |
| 2691 | SortDescription order_descr = getSortDescription(query, *context); |
| 2692 | SortDescription fill_descr; |
| 2693 | for (auto & desc : order_descr) |
| 2694 | { |
| 2695 | if (desc.with_fill) |
| 2696 | fill_descr.push_back(desc); |
| 2697 | } |
| 2698 | |
| 2699 | if (fill_descr.empty()) |
| 2700 | return; |
| 2701 | |
| 2702 | pipeline.addSimpleTransform([&](const Block & ) |
| 2703 | { |
| 2704 | return std::make_shared<FillingTransform>(header, fill_descr); |
| 2705 | }); |
| 2706 | } |
| 2707 | } |
| 2708 | |
| 2709 | |
| 2710 | void InterpreterSelectQuery::executeLimit(QueryPipeline & pipeline) |
| 2711 | { |
| 2712 | auto & query = getSelectQuery(); |
| 2713 | /// If there is LIMIT |
| 2714 | if (query.limitLength()) |
| 2715 | { |
| 2716 | /** Rare case: |
| 2717 | * if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels, |
| 2718 | * then when using LIMIT, you should read the data to the end, rather than cancel the query earlier, |
| 2719 | * because if you cancel the query, we will not get `totals` data from the remote server. |
| 2720 | * |
| 2721 | * Another case: |
| 2722 | * if there is WITH TOTALS and there is no ORDER BY, then read the data to the end, |
| 2723 | * otherwise TOTALS is counted according to incomplete data. |
| 2724 | */ |
| 2725 | bool always_read_till_end = false; |
| 2726 | |
| 2727 | if (query.group_by_with_totals && !query.orderBy()) |
| 2728 | always_read_till_end = true; |
| 2729 | |
| 2730 | if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query)) |
| 2731 | always_read_till_end = true; |
| 2732 | |
| 2733 | UInt64 limit_length; |
| 2734 | UInt64 limit_offset; |
| 2735 | std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, *context); |
| 2736 | |
| 2737 | SortDescription order_descr; |
| 2738 | if (query.limit_with_ties) |
| 2739 | { |
| 2740 | if (!query.orderBy()) |
| 2741 | throw Exception("LIMIT WITH TIES without ORDER BY" , ErrorCodes::LOGICAL_ERROR); |
| 2742 | order_descr = getSortDescription(query, *context); |
| 2743 | } |
| 2744 | |
| 2745 | pipeline.addSimpleTransform([&](const Block & , QueryPipeline::StreamType stream_type) -> ProcessorPtr |
| 2746 | { |
| 2747 | if (stream_type != QueryPipeline::StreamType::Main) |
| 2748 | return nullptr; |
| 2749 | |
| 2750 | return std::make_shared<LimitTransform>( |
| 2751 | header, limit_length, limit_offset, always_read_till_end, query.limit_with_ties, order_descr); |
| 2752 | }); |
| 2753 | } |
| 2754 | } |
| 2755 | |
| 2756 | |
| 2757 | void InterpreterSelectQuery::executeExtremes(Pipeline & pipeline) |
| 2758 | { |
| 2759 | if (!context->getSettingsRef().extremes) |
| 2760 | return; |
| 2761 | |
| 2762 | pipeline.transform([&](auto & stream) |
| 2763 | { |
| 2764 | stream->enableExtremes(); |
| 2765 | }); |
| 2766 | } |
| 2767 | |
| 2768 | void InterpreterSelectQuery::executeExtremes(QueryPipeline & pipeline) |
| 2769 | { |
| 2770 | if (!context->getSettingsRef().extremes) |
| 2771 | return; |
| 2772 | |
| 2773 | auto transform = std::make_shared<ExtremesTransform>(pipeline.getHeader()); |
| 2774 | pipeline.addExtremesTransform(std::move(transform)); |
| 2775 | } |
| 2776 | |
| 2777 | |
| 2778 | void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(Pipeline & pipeline, SubqueriesForSets & subqueries_for_sets) |
| 2779 | { |
| 2780 | /// Merge streams to one. Use MergeSorting if data was read in sorted order, Union otherwise. |
| 2781 | if (query_info.input_sorting_info) |
| 2782 | { |
| 2783 | if (pipeline.stream_with_non_joined_data) |
| 2784 | throw Exception("Using read in order optimization, but has stream with non-joined data in pipeline" , ErrorCodes::LOGICAL_ERROR); |
| 2785 | executeMergeSorted(pipeline, query_info.input_sorting_info->order_key_prefix_descr, 0); |
| 2786 | } |
| 2787 | else |
| 2788 | executeUnion(pipeline, {}); |
| 2789 | |
| 2790 | pipeline.firstStream() = std::make_shared<CreatingSetsBlockInputStream>( |
| 2791 | pipeline.firstStream(), subqueries_for_sets, *context); |
| 2792 | } |
| 2793 | |
| 2794 | void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(QueryPipeline & pipeline, SubqueriesForSets & subqueries_for_sets) |
| 2795 | { |
| 2796 | if (query_info.input_sorting_info) |
| 2797 | { |
| 2798 | if (pipeline.hasDelayedStream()) |
| 2799 | throw Exception("Using read in order optimization, but has delayed stream in pipeline" , ErrorCodes::LOGICAL_ERROR); |
| 2800 | executeMergeSorted(pipeline, query_info.input_sorting_info->order_key_prefix_descr, 0); |
| 2801 | } |
| 2802 | |
| 2803 | const Settings & settings = context->getSettingsRef(); |
| 2804 | |
| 2805 | auto creating_sets = std::make_shared<CreatingSetsTransform>( |
| 2806 | pipeline.getHeader(), subqueries_for_sets, |
| 2807 | SizeLimits(settings.max_rows_to_transfer, settings.max_bytes_to_transfer, settings.transfer_overflow_mode), |
| 2808 | *context); |
| 2809 | |
| 2810 | pipeline.addCreatingSetsTransform(std::move(creating_sets)); |
| 2811 | } |
| 2812 | |
| 2813 | |
| 2814 | void InterpreterSelectQuery::unifyStreams(Pipeline & pipeline, Block ) |
| 2815 | { |
| 2816 | /// Unify streams in case they have different headers. |
| 2817 | |
| 2818 | /// TODO: remove previos addition of _dummy column. |
| 2819 | if (header.columns() > 1 && header.has("_dummy" )) |
| 2820 | header.erase("_dummy" ); |
| 2821 | |
| 2822 | for (size_t i = 0; i < pipeline.streams.size(); ++i) |
| 2823 | { |
| 2824 | auto & stream = pipeline.streams[i]; |
| 2825 | auto = stream->getHeader(); |
| 2826 | auto mode = ConvertingBlockInputStream::MatchColumnsMode::Name; |
| 2827 | |
| 2828 | if (!blocksHaveEqualStructure(header, stream_header)) |
| 2829 | stream = std::make_shared<ConvertingBlockInputStream>(*context, stream, header, mode); |
| 2830 | } |
| 2831 | } |
| 2832 | |
| 2833 | |
| 2834 | void InterpreterSelectQuery::ignoreWithTotals() |
| 2835 | { |
| 2836 | getSelectQuery().group_by_with_totals = false; |
| 2837 | } |
| 2838 | |
| 2839 | |
| 2840 | void InterpreterSelectQuery::initSettings() |
| 2841 | { |
| 2842 | auto & query = getSelectQuery(); |
| 2843 | if (query.settings()) |
| 2844 | InterpreterSetQuery(query.settings(), *context).executeForCurrentContext(); |
| 2845 | } |
| 2846 | |
| 2847 | } |
| 2848 | |