| 1 | #pragma once |
| 2 | |
| 3 | #include <mutex> |
| 4 | #include <memory> |
| 5 | #include <functional> |
| 6 | |
| 7 | #include <common/logger_useful.h> |
| 8 | |
| 9 | #include <common/StringRef.h> |
| 10 | #include <Common/Arena.h> |
| 11 | #include <Common/HashTable/FixedHashMap.h> |
| 12 | #include <Common/HashTable/HashMap.h> |
| 13 | #include <Common/HashTable/TwoLevelHashMap.h> |
| 14 | #include <Common/HashTable/StringHashMap.h> |
| 15 | #include <Common/HashTable/TwoLevelStringHashMap.h> |
| 16 | |
| 17 | #include <Common/ThreadPool.h> |
| 18 | #include <Common/UInt128.h> |
| 19 | #include <Common/LRUCache.h> |
| 20 | #include <Common/ColumnsHashing.h> |
| 21 | #include <Common/assert_cast.h> |
| 22 | #include <Common/filesystemHelpers.h> |
| 23 | |
| 24 | #include <DataStreams/IBlockStream_fwd.h> |
| 25 | #include <DataStreams/SizeLimits.h> |
| 26 | |
| 27 | #include <Interpreters/AggregateDescription.h> |
| 28 | #include <Interpreters/AggregationCommon.h> |
| 29 | |
| 30 | #include <Columns/ColumnString.h> |
| 31 | #include <Columns/ColumnFixedString.h> |
| 32 | #include <Columns/ColumnAggregateFunction.h> |
| 33 | #include <Columns/ColumnVector.h> |
| 34 | #include <Columns/ColumnNullable.h> |
| 35 | #include <Columns/ColumnLowCardinality.h> |
| 36 | |
| 37 | |
| 38 | namespace DB |
| 39 | { |
| 40 | |
| 41 | namespace ErrorCodes |
| 42 | { |
| 43 | extern const int UNKNOWN_AGGREGATED_DATA_VARIANT; |
| 44 | extern const int NOT_ENOUGH_SPACE; |
| 45 | } |
| 46 | |
| 47 | class IBlockOutputStream; |
| 48 | |
| 49 | |
| 50 | /** Different data structures that can be used for aggregation |
| 51 | * For efficiency, the aggregation data itself is put into the pool. |
| 52 | * Data and pool ownership (states of aggregate functions) |
| 53 | * is acquired later - in `convertToBlocks` function, by the ColumnAggregateFunction object. |
| 54 | * |
| 55 | * Most data structures exist in two versions: normal and two-level (TwoLevel). |
| 56 | * A two-level hash table works a little slower with a small number of different keys, |
| 57 | * but with a large number of different keys scales better, because it allows |
| 58 | * parallelize some operations (merging, post-processing) in a natural way. |
| 59 | * |
| 60 | * To ensure efficient work over a wide range of conditions, |
| 61 | * first single-level hash tables are used, |
| 62 | * and when the number of different keys is large enough, |
| 63 | * they are converted to two-level ones. |
| 64 | * |
| 65 | * PS. There are many different approaches to the effective implementation of parallel and distributed aggregation, |
| 66 | * best suited for different cases, and this approach is just one of them, chosen for a combination of reasons. |
| 67 | */ |
| 68 | |
| 69 | using AggregatedDataWithoutKey = AggregateDataPtr; |
| 70 | |
| 71 | using AggregatedDataWithUInt8Key = FixedHashMap<UInt8, AggregateDataPtr>; |
| 72 | using AggregatedDataWithUInt16Key = FixedHashMap<UInt16, AggregateDataPtr>; |
| 73 | |
| 74 | using AggregatedDataWithUInt64Key = HashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>>; |
| 75 | |
| 76 | using AggregatedDataWithShortStringKey = StringHashMap<AggregateDataPtr>; |
| 77 | |
| 78 | using AggregatedDataWithStringKey = HashMapWithSavedHash<StringRef, AggregateDataPtr>; |
| 79 | |
| 80 | using AggregatedDataWithKeys128 = HashMap<UInt128, AggregateDataPtr, UInt128HashCRC32>; |
| 81 | using AggregatedDataWithKeys256 = HashMap<UInt256, AggregateDataPtr, UInt256HashCRC32>; |
| 82 | |
| 83 | using AggregatedDataWithUInt64KeyTwoLevel = TwoLevelHashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>>; |
| 84 | |
| 85 | using AggregatedDataWithShortStringKeyTwoLevel = TwoLevelStringHashMap<AggregateDataPtr>; |
| 86 | |
| 87 | using AggregatedDataWithStringKeyTwoLevel = TwoLevelHashMapWithSavedHash<StringRef, AggregateDataPtr>; |
| 88 | |
| 89 | using AggregatedDataWithKeys128TwoLevel = TwoLevelHashMap<UInt128, AggregateDataPtr, UInt128HashCRC32>; |
| 90 | using AggregatedDataWithKeys256TwoLevel = TwoLevelHashMap<UInt256, AggregateDataPtr, UInt256HashCRC32>; |
| 91 | |
| 92 | /** Variants with better hash function, using more than 32 bits for hash. |
| 93 | * Using for merging phase of external aggregation, where number of keys may be far greater than 4 billion, |
| 94 | * but we keep in memory and merge only sub-partition of them simultaneously. |
| 95 | * TODO We need to switch for better hash function not only for external aggregation, |
| 96 | * but also for huge aggregation results on machines with terabytes of RAM. |
| 97 | */ |
| 98 | |
| 99 | using AggregatedDataWithUInt64KeyHash64 = HashMap<UInt64, AggregateDataPtr, DefaultHash<UInt64>>; |
| 100 | using AggregatedDataWithStringKeyHash64 = HashMapWithSavedHash<StringRef, AggregateDataPtr, StringRefHash64>; |
| 101 | using AggregatedDataWithKeys128Hash64 = HashMap<UInt128, AggregateDataPtr, UInt128Hash>; |
| 102 | using AggregatedDataWithKeys256Hash64 = HashMap<UInt256, AggregateDataPtr, UInt256Hash>; |
| 103 | |
| 104 | template <typename Base> |
| 105 | struct AggregationDataWithNullKey : public Base |
| 106 | { |
| 107 | using Base::Base; |
| 108 | |
| 109 | bool & hasNullKeyData() { return has_null_key_data; } |
| 110 | AggregateDataPtr & getNullKeyData() { return null_key_data; } |
| 111 | bool hasNullKeyData() const { return has_null_key_data; } |
| 112 | const AggregateDataPtr & getNullKeyData() const { return null_key_data; } |
| 113 | size_t size() const { return Base::size() + (has_null_key_data ? 1 : 0); } |
| 114 | bool empty() const { return Base::empty() && !has_null_key_data; } |
| 115 | void clear() |
| 116 | { |
| 117 | Base::clear(); |
| 118 | has_null_key_data = false; |
| 119 | } |
| 120 | void clearAndShrink() |
| 121 | { |
| 122 | Base::clearAndShrink(); |
| 123 | has_null_key_data = false; |
| 124 | } |
| 125 | |
| 126 | private: |
| 127 | bool has_null_key_data = false; |
| 128 | AggregateDataPtr null_key_data = nullptr; |
| 129 | }; |
| 130 | |
| 131 | template <typename Base> |
| 132 | struct AggregationDataWithNullKeyTwoLevel : public Base |
| 133 | { |
| 134 | using Base::impls; |
| 135 | |
| 136 | AggregationDataWithNullKeyTwoLevel() {} |
| 137 | |
| 138 | template <typename Other> |
| 139 | explicit AggregationDataWithNullKeyTwoLevel(const Other & other) : Base(other) |
| 140 | { |
| 141 | impls[0].hasNullKeyData() = other.hasNullKeyData(); |
| 142 | impls[0].getNullKeyData() = other.getNullKeyData(); |
| 143 | } |
| 144 | |
| 145 | bool & hasNullKeyData() { return impls[0].hasNullKeyData(); } |
| 146 | AggregateDataPtr & getNullKeyData() { return impls[0].getNullKeyData(); } |
| 147 | bool hasNullKeyData() const { return impls[0].hasNullKeyData(); } |
| 148 | const AggregateDataPtr & getNullKeyData() const { return impls[0].getNullKeyData(); } |
| 149 | }; |
| 150 | |
| 151 | template <typename ... Types> |
| 152 | using HashTableWithNullKey = AggregationDataWithNullKey<HashMapTable<Types ...>>; |
| 153 | template <typename ... Types> |
| 154 | using StringHashTableWithNullKey = AggregationDataWithNullKey<StringHashMap<Types ...>>; |
| 155 | |
| 156 | using AggregatedDataWithNullableUInt8Key = AggregationDataWithNullKey<AggregatedDataWithUInt8Key>; |
| 157 | using AggregatedDataWithNullableUInt16Key = AggregationDataWithNullKey<AggregatedDataWithUInt16Key>; |
| 158 | |
| 159 | using AggregatedDataWithNullableUInt64Key = AggregationDataWithNullKey<AggregatedDataWithUInt64Key>; |
| 160 | using AggregatedDataWithNullableStringKey = AggregationDataWithNullKey<AggregatedDataWithStringKey>; |
| 161 | |
| 162 | using AggregatedDataWithNullableUInt64KeyTwoLevel = AggregationDataWithNullKeyTwoLevel< |
| 163 | TwoLevelHashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>, |
| 164 | TwoLevelHashTableGrower<>, HashTableAllocator, HashTableWithNullKey>>; |
| 165 | |
| 166 | using AggregatedDataWithNullableShortStringKeyTwoLevel = AggregationDataWithNullKeyTwoLevel< |
| 167 | TwoLevelStringHashMap<AggregateDataPtr, HashTableAllocator, StringHashTableWithNullKey>>; |
| 168 | |
| 169 | using AggregatedDataWithNullableStringKeyTwoLevel = AggregationDataWithNullKeyTwoLevel< |
| 170 | TwoLevelHashMapWithSavedHash<StringRef, AggregateDataPtr, DefaultHash<StringRef>, |
| 171 | TwoLevelHashTableGrower<>, HashTableAllocator, HashTableWithNullKey>>; |
| 172 | |
| 173 | |
| 174 | /// For the case where there is one numeric key. |
| 175 | /// FieldType is UInt8/16/32/64 for any type with corresponding bit width. |
| 176 | template <typename FieldType, typename TData, |
| 177 | bool consecutive_keys_optimization = true> |
| 178 | struct AggregationMethodOneNumber |
| 179 | { |
| 180 | using Data = TData; |
| 181 | using Key = typename Data::key_type; |
| 182 | using Mapped = typename Data::mapped_type; |
| 183 | |
| 184 | Data data; |
| 185 | |
| 186 | AggregationMethodOneNumber() {} |
| 187 | |
| 188 | template <typename Other> |
| 189 | AggregationMethodOneNumber(const Other & other) : data(other.data) {} |
| 190 | |
| 191 | /// To use one `Method` in different threads, use different `State`. |
| 192 | using State = ColumnsHashing::HashMethodOneNumber<typename Data::value_type, |
| 193 | Mapped, FieldType, consecutive_keys_optimization>; |
| 194 | |
| 195 | /// Use optimization for low cardinality. |
| 196 | static const bool low_cardinality_optimization = false; |
| 197 | |
| 198 | // Insert the key from the hash table into columns. |
| 199 | static void insertKeyIntoColumns(const Key & key, MutableColumns & key_columns, const Sizes & /*key_sizes*/) |
| 200 | { |
| 201 | auto key_holder = reinterpret_cast<const char *>(&key); |
| 202 | auto column = static_cast<ColumnVectorHelper *>(key_columns[0].get()); |
| 203 | column->insertRawData<sizeof(FieldType)>(key_holder); |
| 204 | } |
| 205 | }; |
| 206 | |
| 207 | |
| 208 | /// For the case where there is one string key. |
| 209 | template <typename TData> |
| 210 | struct AggregationMethodString |
| 211 | { |
| 212 | using Data = TData; |
| 213 | using Key = typename Data::key_type; |
| 214 | using Mapped = typename Data::mapped_type; |
| 215 | |
| 216 | Data data; |
| 217 | |
| 218 | AggregationMethodString() {} |
| 219 | |
| 220 | template <typename Other> |
| 221 | AggregationMethodString(const Other & other) : data(other.data) {} |
| 222 | |
| 223 | using State = ColumnsHashing::HashMethodString<typename Data::value_type, Mapped>; |
| 224 | |
| 225 | static const bool low_cardinality_optimization = false; |
| 226 | |
| 227 | static void insertKeyIntoColumns(const StringRef & key, MutableColumns & key_columns, const Sizes &) |
| 228 | { |
| 229 | key_columns[0]->insertData(key.data, key.size); |
| 230 | } |
| 231 | }; |
| 232 | |
| 233 | |
| 234 | /// Same as above but without cache |
| 235 | template <typename TData> |
| 236 | struct AggregationMethodStringNoCache |
| 237 | { |
| 238 | using Data = TData; |
| 239 | using Key = typename Data::key_type; |
| 240 | using Mapped = typename Data::mapped_type; |
| 241 | |
| 242 | Data data; |
| 243 | |
| 244 | AggregationMethodStringNoCache() {} |
| 245 | |
| 246 | template <typename Other> |
| 247 | AggregationMethodStringNoCache(const Other & other) : data(other.data) {} |
| 248 | |
| 249 | using State = ColumnsHashing::HashMethodString<typename Data::value_type, Mapped, true, false>; |
| 250 | |
| 251 | static const bool low_cardinality_optimization = false; |
| 252 | |
| 253 | static void insertKeyIntoColumns(const StringRef & key, MutableColumns & key_columns, const Sizes &) |
| 254 | { |
| 255 | key_columns[0]->insertData(key.data, key.size); |
| 256 | } |
| 257 | }; |
| 258 | |
| 259 | |
| 260 | /// For the case where there is one fixed-length string key. |
| 261 | template <typename TData> |
| 262 | struct AggregationMethodFixedString |
| 263 | { |
| 264 | using Data = TData; |
| 265 | using Key = typename Data::key_type; |
| 266 | using Mapped = typename Data::mapped_type; |
| 267 | |
| 268 | Data data; |
| 269 | |
| 270 | AggregationMethodFixedString() {} |
| 271 | |
| 272 | template <typename Other> |
| 273 | AggregationMethodFixedString(const Other & other) : data(other.data) {} |
| 274 | |
| 275 | using State = ColumnsHashing::HashMethodFixedString<typename Data::value_type, Mapped>; |
| 276 | |
| 277 | static const bool low_cardinality_optimization = false; |
| 278 | |
| 279 | static void insertKeyIntoColumns(const StringRef & key, MutableColumns & key_columns, const Sizes &) |
| 280 | { |
| 281 | key_columns[0]->insertData(key.data, key.size); |
| 282 | } |
| 283 | }; |
| 284 | |
| 285 | /// Same as above but without cache |
| 286 | template <typename TData> |
| 287 | struct AggregationMethodFixedStringNoCache |
| 288 | { |
| 289 | using Data = TData; |
| 290 | using Key = typename Data::key_type; |
| 291 | using Mapped = typename Data::mapped_type; |
| 292 | |
| 293 | Data data; |
| 294 | |
| 295 | AggregationMethodFixedStringNoCache() {} |
| 296 | |
| 297 | template <typename Other> |
| 298 | AggregationMethodFixedStringNoCache(const Other & other) : data(other.data) {} |
| 299 | |
| 300 | using State = ColumnsHashing::HashMethodFixedString<typename Data::value_type, Mapped, true, false>; |
| 301 | |
| 302 | static const bool low_cardinality_optimization = false; |
| 303 | |
| 304 | static void insertKeyIntoColumns(const StringRef & key, MutableColumns & key_columns, const Sizes &) |
| 305 | { |
| 306 | key_columns[0]->insertData(key.data, key.size); |
| 307 | } |
| 308 | }; |
| 309 | |
| 310 | |
| 311 | /// Single low cardinality column. |
| 312 | template <typename SingleColumnMethod> |
| 313 | struct AggregationMethodSingleLowCardinalityColumn : public SingleColumnMethod |
| 314 | { |
| 315 | using Base = SingleColumnMethod; |
| 316 | using BaseState = typename Base::State; |
| 317 | |
| 318 | using Data = typename Base::Data; |
| 319 | using Key = typename Base::Key; |
| 320 | using Mapped = typename Base::Mapped; |
| 321 | |
| 322 | using Base::data; |
| 323 | |
| 324 | AggregationMethodSingleLowCardinalityColumn() = default; |
| 325 | |
| 326 | template <typename Other> |
| 327 | explicit AggregationMethodSingleLowCardinalityColumn(const Other & other) : Base(other) {} |
| 328 | |
| 329 | using State = ColumnsHashing::HashMethodSingleLowCardinalityColumn<BaseState, Mapped, true>; |
| 330 | |
| 331 | static const bool low_cardinality_optimization = true; |
| 332 | |
| 333 | static void insertKeyIntoColumns(const Key & key, |
| 334 | MutableColumns & key_columns_low_cardinality, const Sizes & /*key_sizes*/) |
| 335 | { |
| 336 | auto col = assert_cast<ColumnLowCardinality *>(key_columns_low_cardinality[0].get()); |
| 337 | |
| 338 | if constexpr (std::is_same_v<Key, StringRef>) |
| 339 | { |
| 340 | col->insertData(key.data, key.size); |
| 341 | } |
| 342 | else |
| 343 | { |
| 344 | col->insertData(reinterpret_cast<const char *>(&key), sizeof(key)); |
| 345 | } |
| 346 | } |
| 347 | }; |
| 348 | |
| 349 | |
| 350 | /// For the case where all keys are of fixed length, and they fit in N (for example, 128) bits. |
| 351 | template <typename TData, bool has_nullable_keys_ = false, bool has_low_cardinality_ = false> |
| 352 | struct AggregationMethodKeysFixed |
| 353 | { |
| 354 | using Data = TData; |
| 355 | using Key = typename Data::key_type; |
| 356 | using Mapped = typename Data::mapped_type; |
| 357 | static constexpr bool has_nullable_keys = has_nullable_keys_; |
| 358 | static constexpr bool has_low_cardinality = has_low_cardinality_; |
| 359 | |
| 360 | Data data; |
| 361 | |
| 362 | AggregationMethodKeysFixed() {} |
| 363 | |
| 364 | template <typename Other> |
| 365 | AggregationMethodKeysFixed(const Other & other) : data(other.data) {} |
| 366 | |
| 367 | using State = ColumnsHashing::HashMethodKeysFixed<typename Data::value_type, Key, Mapped, has_nullable_keys, has_low_cardinality>; |
| 368 | |
| 369 | static const bool low_cardinality_optimization = false; |
| 370 | |
| 371 | static void insertKeyIntoColumns(const Key & key, MutableColumns & key_columns, const Sizes & key_sizes) |
| 372 | { |
| 373 | size_t keys_size = key_columns.size(); |
| 374 | |
| 375 | static constexpr auto bitmap_size = has_nullable_keys ? std::tuple_size<KeysNullMap<Key>>::value : 0; |
| 376 | /// In any hash key value, column values to be read start just after the bitmap, if it exists. |
| 377 | size_t pos = bitmap_size; |
| 378 | |
| 379 | for (size_t i = 0; i < keys_size; ++i) |
| 380 | { |
| 381 | IColumn * observed_column; |
| 382 | ColumnUInt8 * null_map; |
| 383 | |
| 384 | bool column_nullable = false; |
| 385 | if constexpr (has_nullable_keys) |
| 386 | column_nullable = isColumnNullable(*key_columns[i]); |
| 387 | |
| 388 | /// If we have a nullable column, get its nested column and its null map. |
| 389 | if (column_nullable) |
| 390 | { |
| 391 | ColumnNullable & nullable_col = assert_cast<ColumnNullable &>(*key_columns[i]); |
| 392 | observed_column = &nullable_col.getNestedColumn(); |
| 393 | null_map = assert_cast<ColumnUInt8 *>(&nullable_col.getNullMapColumn()); |
| 394 | } |
| 395 | else |
| 396 | { |
| 397 | observed_column = key_columns[i].get(); |
| 398 | null_map = nullptr; |
| 399 | } |
| 400 | |
| 401 | bool is_null = false; |
| 402 | if (column_nullable) |
| 403 | { |
| 404 | /// The current column is nullable. Check if the value of the |
| 405 | /// corresponding key is nullable. Update the null map accordingly. |
| 406 | size_t bucket = i / 8; |
| 407 | size_t offset = i % 8; |
| 408 | UInt8 val = (reinterpret_cast<const UInt8 *>(&key)[bucket] >> offset) & 1; |
| 409 | null_map->insertValue(val); |
| 410 | is_null = val == 1; |
| 411 | } |
| 412 | |
| 413 | if (has_nullable_keys && is_null) |
| 414 | observed_column->insertDefault(); |
| 415 | else |
| 416 | { |
| 417 | size_t size = key_sizes[i]; |
| 418 | observed_column->insertData(reinterpret_cast<const char *>(&key) + pos, size); |
| 419 | pos += size; |
| 420 | } |
| 421 | } |
| 422 | } |
| 423 | }; |
| 424 | |
| 425 | |
| 426 | /** Aggregates by concatenating serialized key values. |
| 427 | * The serialized value differs in that it uniquely allows to deserialize it, having only the position with which it starts. |
| 428 | * That is, for example, for strings, it contains first the serialized length of the string, and then the bytes. |
| 429 | * Therefore, when aggregating by several strings, there is no ambiguity. |
| 430 | */ |
| 431 | template <typename TData> |
| 432 | struct AggregationMethodSerialized |
| 433 | { |
| 434 | using Data = TData; |
| 435 | using Key = typename Data::key_type; |
| 436 | using Mapped = typename Data::mapped_type; |
| 437 | |
| 438 | Data data; |
| 439 | |
| 440 | AggregationMethodSerialized() {} |
| 441 | |
| 442 | template <typename Other> |
| 443 | AggregationMethodSerialized(const Other & other) : data(other.data) {} |
| 444 | |
| 445 | using State = ColumnsHashing::HashMethodSerialized<typename Data::value_type, Mapped>; |
| 446 | |
| 447 | static const bool low_cardinality_optimization = false; |
| 448 | |
| 449 | static void insertKeyIntoColumns(const StringRef & key, MutableColumns & key_columns, const Sizes &) |
| 450 | { |
| 451 | auto pos = key.data; |
| 452 | for (auto & column : key_columns) |
| 453 | pos = column->deserializeAndInsertFromArena(pos); |
| 454 | } |
| 455 | }; |
| 456 | |
| 457 | |
| 458 | class Aggregator; |
| 459 | |
| 460 | using ColumnsHashing::HashMethodContext; |
| 461 | using ColumnsHashing::HashMethodContextPtr; |
| 462 | |
| 463 | struct AggregatedDataVariants : private boost::noncopyable |
| 464 | { |
| 465 | /** Working with states of aggregate functions in the pool is arranged in the following (inconvenient) way: |
| 466 | * - when aggregating, states are created in the pool using IAggregateFunction::create (inside - `placement new` of arbitrary structure); |
| 467 | * - they must then be destroyed using IAggregateFunction::destroy (inside - calling the destructor of arbitrary structure); |
| 468 | * - if aggregation is complete, then, in the Aggregator::convertToBlocks function, pointers to the states of aggregate functions |
| 469 | * are written to ColumnAggregateFunction; ColumnAggregateFunction "acquires ownership" of them, that is - calls `destroy` in its destructor. |
| 470 | * - if during the aggregation, before call to Aggregator::convertToBlocks, an exception was thrown, |
| 471 | * then the states of aggregate functions must still be destroyed, |
| 472 | * otherwise, for complex states (eg, AggregateFunctionUniq), there will be memory leaks; |
| 473 | * - in this case, to destroy states, the destructor calls Aggregator::destroyAggregateStates method, |
| 474 | * but only if the variable aggregator (see below) is not nullptr; |
| 475 | * - that is, until you transfer ownership of the aggregate function states in the ColumnAggregateFunction, set the variable `aggregator`, |
| 476 | * so that when an exception occurs, the states are correctly destroyed. |
| 477 | * |
| 478 | * PS. This can be corrected by making a pool that knows about which states of aggregate functions and in which order are put in it, and knows how to destroy them. |
| 479 | * But this can hardly be done simply because it is planned to put variable-length strings into the same pool. |
| 480 | * In this case, the pool will not be able to know with what offsets objects are stored. |
| 481 | */ |
| 482 | Aggregator * aggregator = nullptr; |
| 483 | |
| 484 | size_t keys_size{}; /// Number of keys. NOTE do we need this field? |
| 485 | Sizes key_sizes; /// Dimensions of keys, if keys of fixed length |
| 486 | |
| 487 | /// Pools for states of aggregate functions. Ownership will be later transferred to ColumnAggregateFunction. |
| 488 | Arenas aggregates_pools; |
| 489 | Arena * aggregates_pool{}; /// The pool that is currently used for allocation. |
| 490 | |
| 491 | /** Specialization for the case when there are no keys, and for keys not fitted into max_rows_to_group_by. |
| 492 | */ |
| 493 | AggregatedDataWithoutKey without_key = nullptr; |
| 494 | |
| 495 | // Disable consecutive key optimization for Uint8/16, because they use a FixedHashMap |
| 496 | // and the lookup there is almost free, so we don't need to cache the last lookup result |
| 497 | std::unique_ptr<AggregationMethodOneNumber<UInt8, AggregatedDataWithUInt8Key, false>> key8; |
| 498 | std::unique_ptr<AggregationMethodOneNumber<UInt16, AggregatedDataWithUInt16Key, false>> key16; |
| 499 | |
| 500 | std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithUInt64Key>> key32; |
| 501 | std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64Key>> key64; |
| 502 | std::unique_ptr<AggregationMethodStringNoCache<AggregatedDataWithShortStringKey>> key_string; |
| 503 | std::unique_ptr<AggregationMethodFixedStringNoCache<AggregatedDataWithShortStringKey>> key_fixed_string; |
| 504 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128>> keys128; |
| 505 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256>> keys256; |
| 506 | std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKey>> serialized; |
| 507 | |
| 508 | std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithUInt64KeyTwoLevel>> key32_two_level; |
| 509 | std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64KeyTwoLevel>> key64_two_level; |
| 510 | std::unique_ptr<AggregationMethodStringNoCache<AggregatedDataWithShortStringKeyTwoLevel>> key_string_two_level; |
| 511 | std::unique_ptr<AggregationMethodFixedStringNoCache<AggregatedDataWithShortStringKeyTwoLevel>> key_fixed_string_two_level; |
| 512 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128TwoLevel>> keys128_two_level; |
| 513 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256TwoLevel>> keys256_two_level; |
| 514 | std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKeyTwoLevel>> serialized_two_level; |
| 515 | |
| 516 | std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64KeyHash64>> key64_hash64; |
| 517 | std::unique_ptr<AggregationMethodString<AggregatedDataWithStringKeyHash64>> key_string_hash64; |
| 518 | std::unique_ptr<AggregationMethodFixedString<AggregatedDataWithStringKeyHash64>> key_fixed_string_hash64; |
| 519 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128Hash64>> keys128_hash64; |
| 520 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256Hash64>> keys256_hash64; |
| 521 | std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKeyHash64>> serialized_hash64; |
| 522 | |
| 523 | /// Support for nullable keys. |
| 524 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128, true>> nullable_keys128; |
| 525 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256, true>> nullable_keys256; |
| 526 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128TwoLevel, true>> nullable_keys128_two_level; |
| 527 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256TwoLevel, true>> nullable_keys256_two_level; |
| 528 | |
| 529 | /// Support for low cardinality. |
| 530 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt8, AggregatedDataWithNullableUInt8Key, false>>> low_cardinality_key8; |
| 531 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt16, AggregatedDataWithNullableUInt16Key, false>>> low_cardinality_key16; |
| 532 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt32, AggregatedDataWithNullableUInt64Key>>> low_cardinality_key32; |
| 533 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt64, AggregatedDataWithNullableUInt64Key>>> low_cardinality_key64; |
| 534 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodString<AggregatedDataWithNullableStringKey>>> low_cardinality_key_string; |
| 535 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodFixedString<AggregatedDataWithNullableStringKey>>> low_cardinality_key_fixed_string; |
| 536 | |
| 537 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt32, AggregatedDataWithNullableUInt64KeyTwoLevel>>> low_cardinality_key32_two_level; |
| 538 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt64, AggregatedDataWithNullableUInt64KeyTwoLevel>>> low_cardinality_key64_two_level; |
| 539 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodString<AggregatedDataWithNullableStringKeyTwoLevel>>> low_cardinality_key_string_two_level; |
| 540 | std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodFixedString<AggregatedDataWithNullableStringKeyTwoLevel>>> low_cardinality_key_fixed_string_two_level; |
| 541 | |
| 542 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128, false, true>> low_cardinality_keys128; |
| 543 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256, false, true>> low_cardinality_keys256; |
| 544 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128TwoLevel, false, true>> low_cardinality_keys128_two_level; |
| 545 | std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256TwoLevel, false, true>> low_cardinality_keys256_two_level; |
| 546 | |
| 547 | /// In this and similar macros, the option without_key is not considered. |
| 548 | #define APPLY_FOR_AGGREGATED_VARIANTS(M) \ |
| 549 | M(key8, false) \ |
| 550 | M(key16, false) \ |
| 551 | M(key32, false) \ |
| 552 | M(key64, false) \ |
| 553 | M(key_string, false) \ |
| 554 | M(key_fixed_string, false) \ |
| 555 | M(keys128, false) \ |
| 556 | M(keys256, false) \ |
| 557 | M(serialized, false) \ |
| 558 | M(key32_two_level, true) \ |
| 559 | M(key64_two_level, true) \ |
| 560 | M(key_string_two_level, true) \ |
| 561 | M(key_fixed_string_two_level, true) \ |
| 562 | M(keys128_two_level, true) \ |
| 563 | M(keys256_two_level, true) \ |
| 564 | M(serialized_two_level, true) \ |
| 565 | M(key64_hash64, false) \ |
| 566 | M(key_string_hash64, false) \ |
| 567 | M(key_fixed_string_hash64, false) \ |
| 568 | M(keys128_hash64, false) \ |
| 569 | M(keys256_hash64, false) \ |
| 570 | M(serialized_hash64, false) \ |
| 571 | M(nullable_keys128, false) \ |
| 572 | M(nullable_keys256, false) \ |
| 573 | M(nullable_keys128_two_level, true) \ |
| 574 | M(nullable_keys256_two_level, true) \ |
| 575 | M(low_cardinality_key8, false) \ |
| 576 | M(low_cardinality_key16, false) \ |
| 577 | M(low_cardinality_key32, false) \ |
| 578 | M(low_cardinality_key64, false) \ |
| 579 | M(low_cardinality_keys128, false) \ |
| 580 | M(low_cardinality_keys256, false) \ |
| 581 | M(low_cardinality_key_string, false) \ |
| 582 | M(low_cardinality_key_fixed_string, false) \ |
| 583 | M(low_cardinality_key32_two_level, true) \ |
| 584 | M(low_cardinality_key64_two_level, true) \ |
| 585 | M(low_cardinality_keys128_two_level, true) \ |
| 586 | M(low_cardinality_keys256_two_level, true) \ |
| 587 | M(low_cardinality_key_string_two_level, true) \ |
| 588 | M(low_cardinality_key_fixed_string_two_level, true) \ |
| 589 | |
| 590 | enum class Type |
| 591 | { |
| 592 | EMPTY = 0, |
| 593 | without_key, |
| 594 | |
| 595 | #define M(NAME, IS_TWO_LEVEL) NAME, |
| 596 | APPLY_FOR_AGGREGATED_VARIANTS(M) |
| 597 | #undef M |
| 598 | }; |
| 599 | Type type = Type::EMPTY; |
| 600 | |
| 601 | AggregatedDataVariants() : aggregates_pools(1, std::make_shared<Arena>()), aggregates_pool(aggregates_pools.back().get()) {} |
| 602 | bool empty() const { return type == Type::EMPTY; } |
| 603 | void invalidate() { type = Type::EMPTY; } |
| 604 | |
| 605 | ~AggregatedDataVariants(); |
| 606 | |
| 607 | void init(Type type_) |
| 608 | { |
| 609 | switch (type_) |
| 610 | { |
| 611 | case Type::EMPTY: break; |
| 612 | case Type::without_key: break; |
| 613 | |
| 614 | #define M(NAME, IS_TWO_LEVEL) \ |
| 615 | case Type::NAME: NAME = std::make_unique<decltype(NAME)::element_type>(); break; |
| 616 | APPLY_FOR_AGGREGATED_VARIANTS(M) |
| 617 | #undef M |
| 618 | } |
| 619 | |
| 620 | type = type_; |
| 621 | } |
| 622 | |
| 623 | /// Number of rows (different keys). |
| 624 | size_t size() const |
| 625 | { |
| 626 | switch (type) |
| 627 | { |
| 628 | case Type::EMPTY: return 0; |
| 629 | case Type::without_key: return 1; |
| 630 | |
| 631 | #define M(NAME, IS_TWO_LEVEL) \ |
| 632 | case Type::NAME: return NAME->data.size() + (without_key != nullptr); |
| 633 | APPLY_FOR_AGGREGATED_VARIANTS(M) |
| 634 | #undef M |
| 635 | } |
| 636 | |
| 637 | __builtin_unreachable(); |
| 638 | } |
| 639 | |
| 640 | /// The size without taking into account the row in which data is written for the calculation of TOTALS. |
| 641 | size_t sizeWithoutOverflowRow() const |
| 642 | { |
| 643 | switch (type) |
| 644 | { |
| 645 | case Type::EMPTY: return 0; |
| 646 | case Type::without_key: return 1; |
| 647 | |
| 648 | #define M(NAME, IS_TWO_LEVEL) \ |
| 649 | case Type::NAME: return NAME->data.size(); |
| 650 | APPLY_FOR_AGGREGATED_VARIANTS(M) |
| 651 | #undef M |
| 652 | } |
| 653 | |
| 654 | __builtin_unreachable(); |
| 655 | } |
| 656 | |
| 657 | const char * getMethodName() const |
| 658 | { |
| 659 | switch (type) |
| 660 | { |
| 661 | case Type::EMPTY: return "EMPTY" ; |
| 662 | case Type::without_key: return "without_key" ; |
| 663 | |
| 664 | #define M(NAME, IS_TWO_LEVEL) \ |
| 665 | case Type::NAME: return #NAME; |
| 666 | APPLY_FOR_AGGREGATED_VARIANTS(M) |
| 667 | #undef M |
| 668 | } |
| 669 | |
| 670 | __builtin_unreachable(); |
| 671 | } |
| 672 | |
| 673 | bool isTwoLevel() const |
| 674 | { |
| 675 | switch (type) |
| 676 | { |
| 677 | case Type::EMPTY: return false; |
| 678 | case Type::without_key: return false; |
| 679 | |
| 680 | #define M(NAME, IS_TWO_LEVEL) \ |
| 681 | case Type::NAME: return IS_TWO_LEVEL; |
| 682 | APPLY_FOR_AGGREGATED_VARIANTS(M) |
| 683 | #undef M |
| 684 | } |
| 685 | |
| 686 | __builtin_unreachable(); |
| 687 | } |
| 688 | |
| 689 | #define APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M) \ |
| 690 | M(key32) \ |
| 691 | M(key64) \ |
| 692 | M(key_string) \ |
| 693 | M(key_fixed_string) \ |
| 694 | M(keys128) \ |
| 695 | M(keys256) \ |
| 696 | M(serialized) \ |
| 697 | M(nullable_keys128) \ |
| 698 | M(nullable_keys256) \ |
| 699 | M(low_cardinality_key32) \ |
| 700 | M(low_cardinality_key64) \ |
| 701 | M(low_cardinality_keys128) \ |
| 702 | M(low_cardinality_keys256) \ |
| 703 | M(low_cardinality_key_string) \ |
| 704 | M(low_cardinality_key_fixed_string) \ |
| 705 | |
| 706 | #define APPLY_FOR_VARIANTS_NOT_CONVERTIBLE_TO_TWO_LEVEL(M) \ |
| 707 | M(key8) \ |
| 708 | M(key16) \ |
| 709 | M(key64_hash64) \ |
| 710 | M(key_string_hash64)\ |
| 711 | M(key_fixed_string_hash64) \ |
| 712 | M(keys128_hash64) \ |
| 713 | M(keys256_hash64) \ |
| 714 | M(serialized_hash64) \ |
| 715 | M(low_cardinality_key8) \ |
| 716 | M(low_cardinality_key16) \ |
| 717 | |
| 718 | #define APPLY_FOR_VARIANTS_SINGLE_LEVEL(M) \ |
| 719 | APPLY_FOR_VARIANTS_NOT_CONVERTIBLE_TO_TWO_LEVEL(M) \ |
| 720 | APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M) \ |
| 721 | |
| 722 | bool isConvertibleToTwoLevel() const |
| 723 | { |
| 724 | switch (type) |
| 725 | { |
| 726 | #define M(NAME) \ |
| 727 | case Type::NAME: return true; |
| 728 | |
| 729 | APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M) |
| 730 | |
| 731 | #undef M |
| 732 | default: |
| 733 | return false; |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | void convertToTwoLevel(); |
| 738 | |
| 739 | #define APPLY_FOR_VARIANTS_TWO_LEVEL(M) \ |
| 740 | M(key32_two_level) \ |
| 741 | M(key64_two_level) \ |
| 742 | M(key_string_two_level) \ |
| 743 | M(key_fixed_string_two_level) \ |
| 744 | M(keys128_two_level) \ |
| 745 | M(keys256_two_level) \ |
| 746 | M(serialized_two_level) \ |
| 747 | M(nullable_keys128_two_level) \ |
| 748 | M(nullable_keys256_two_level) \ |
| 749 | M(low_cardinality_key32_two_level) \ |
| 750 | M(low_cardinality_key64_two_level) \ |
| 751 | M(low_cardinality_keys128_two_level) \ |
| 752 | M(low_cardinality_keys256_two_level) \ |
| 753 | M(low_cardinality_key_string_two_level) \ |
| 754 | M(low_cardinality_key_fixed_string_two_level) \ |
| 755 | |
| 756 | #define APPLY_FOR_LOW_CARDINALITY_VARIANTS(M) \ |
| 757 | M(low_cardinality_key8) \ |
| 758 | M(low_cardinality_key16) \ |
| 759 | M(low_cardinality_key32) \ |
| 760 | M(low_cardinality_key64) \ |
| 761 | M(low_cardinality_keys128) \ |
| 762 | M(low_cardinality_keys256) \ |
| 763 | M(low_cardinality_key_string) \ |
| 764 | M(low_cardinality_key_fixed_string) \ |
| 765 | M(low_cardinality_key32_two_level) \ |
| 766 | M(low_cardinality_key64_two_level) \ |
| 767 | M(low_cardinality_keys128_two_level) \ |
| 768 | M(low_cardinality_keys256_two_level) \ |
| 769 | M(low_cardinality_key_string_two_level) \ |
| 770 | M(low_cardinality_key_fixed_string_two_level) \ |
| 771 | |
| 772 | bool isLowCardinality() |
| 773 | { |
| 774 | switch (type) |
| 775 | { |
| 776 | #define M(NAME) \ |
| 777 | case Type::NAME: return true; |
| 778 | |
| 779 | APPLY_FOR_LOW_CARDINALITY_VARIANTS(M) |
| 780 | #undef M |
| 781 | default: |
| 782 | return false; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | static HashMethodContextPtr createCache(Type type, const HashMethodContext::Settings & settings) |
| 787 | { |
| 788 | switch (type) |
| 789 | { |
| 790 | case Type::without_key: return nullptr; |
| 791 | |
| 792 | #define M(NAME, IS_TWO_LEVEL) \ |
| 793 | case Type::NAME: \ |
| 794 | { \ |
| 795 | using TPtr ## NAME = decltype(AggregatedDataVariants::NAME); \ |
| 796 | using T ## NAME = typename TPtr ## NAME ::element_type; \ |
| 797 | return T ## NAME ::State::createContext(settings); \ |
| 798 | } |
| 799 | |
| 800 | APPLY_FOR_AGGREGATED_VARIANTS(M) |
| 801 | #undef M |
| 802 | |
| 803 | default: |
| 804 | throw Exception("Unknown aggregated data variant." , ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); |
| 805 | } |
| 806 | } |
| 807 | }; |
| 808 | |
| 809 | using AggregatedDataVariantsPtr = std::shared_ptr<AggregatedDataVariants>; |
| 810 | using ManyAggregatedDataVariants = std::vector<AggregatedDataVariantsPtr>; |
| 811 | using ManyAggregatedDataVariantsPtr = std::shared_ptr<ManyAggregatedDataVariants>; |
| 812 | |
| 813 | /** How are "total" values calculated with WITH TOTALS? |
| 814 | * (For more details, see TotalsHavingBlockInputStream.) |
| 815 | * |
| 816 | * In the absence of group_by_overflow_mode = 'any', the data is aggregated as usual, but the states of the aggregate functions are not finalized. |
| 817 | * Later, the aggregate function states for all rows (passed through HAVING) are merged into one - this will be TOTALS. |
| 818 | * |
| 819 | * If there is group_by_overflow_mode = 'any', the data is aggregated as usual, except for the keys that did not fit in max_rows_to_group_by. |
| 820 | * For these keys, the data is aggregated into one additional row - see below under the names `overflow_row`, `overflows`... |
| 821 | * Later, the aggregate function states for all rows (passed through HAVING) are merged into one, |
| 822 | * also overflow_row is added or not added (depending on the totals_mode setting) also - this will be TOTALS. |
| 823 | */ |
| 824 | |
| 825 | |
| 826 | /** Aggregates the source of the blocks. |
| 827 | */ |
| 828 | class Aggregator |
| 829 | { |
| 830 | public: |
| 831 | struct Params |
| 832 | { |
| 833 | /// Data structure of source blocks. |
| 834 | Block ; |
| 835 | /// Data structure of intermediate blocks before merge. |
| 836 | Block ; |
| 837 | |
| 838 | /// What to count. |
| 839 | const ColumnNumbers keys; |
| 840 | const AggregateDescriptions aggregates; |
| 841 | const size_t keys_size; |
| 842 | const size_t aggregates_size; |
| 843 | |
| 844 | /// The settings of approximate calculation of GROUP BY. |
| 845 | const bool overflow_row; /// Do we need to put into AggregatedDataVariants::without_key aggregates for keys that are not in max_rows_to_group_by. |
| 846 | const size_t max_rows_to_group_by; |
| 847 | const OverflowMode group_by_overflow_mode; |
| 848 | |
| 849 | /// Two-level aggregation settings (used for a large number of keys). |
| 850 | /** With how many keys or the size of the aggregation state in bytes, |
| 851 | * two-level aggregation begins to be used. Enough to reach of at least one of the thresholds. |
| 852 | * 0 - the corresponding threshold is not specified. |
| 853 | */ |
| 854 | const size_t group_by_two_level_threshold; |
| 855 | const size_t group_by_two_level_threshold_bytes; |
| 856 | |
| 857 | /// Settings to flush temporary data to the filesystem (external aggregation). |
| 858 | const size_t max_bytes_before_external_group_by; /// 0 - do not use external aggregation. |
| 859 | |
| 860 | /// Return empty result when aggregating without keys on empty set. |
| 861 | bool empty_result_for_aggregation_by_empty_set; |
| 862 | |
| 863 | const std::string tmp_path; |
| 864 | |
| 865 | /// Settings is used to determine cache size. No threads are created. |
| 866 | size_t max_threads; |
| 867 | |
| 868 | const size_t min_free_disk_space; |
| 869 | Params( |
| 870 | const Block & , |
| 871 | const ColumnNumbers & keys_, const AggregateDescriptions & aggregates_, |
| 872 | bool overflow_row_, size_t max_rows_to_group_by_, OverflowMode group_by_overflow_mode_, |
| 873 | size_t group_by_two_level_threshold_, size_t group_by_two_level_threshold_bytes_, |
| 874 | size_t max_bytes_before_external_group_by_, |
| 875 | bool empty_result_for_aggregation_by_empty_set_, |
| 876 | const std::string & tmp_path_, size_t max_threads_, |
| 877 | size_t min_free_disk_space_) |
| 878 | : src_header(src_header_), |
| 879 | keys(keys_), aggregates(aggregates_), keys_size(keys.size()), aggregates_size(aggregates.size()), |
| 880 | overflow_row(overflow_row_), max_rows_to_group_by(max_rows_to_group_by_), group_by_overflow_mode(group_by_overflow_mode_), |
| 881 | group_by_two_level_threshold(group_by_two_level_threshold_), group_by_two_level_threshold_bytes(group_by_two_level_threshold_bytes_), |
| 882 | max_bytes_before_external_group_by(max_bytes_before_external_group_by_), |
| 883 | empty_result_for_aggregation_by_empty_set(empty_result_for_aggregation_by_empty_set_), |
| 884 | tmp_path(tmp_path_), max_threads(max_threads_), |
| 885 | min_free_disk_space(min_free_disk_space_) |
| 886 | { |
| 887 | } |
| 888 | |
| 889 | /// Only parameters that matter during merge. |
| 890 | Params(const Block & , |
| 891 | const ColumnNumbers & keys_, const AggregateDescriptions & aggregates_, bool overflow_row_, size_t max_threads_) |
| 892 | : Params(Block(), keys_, aggregates_, overflow_row_, 0, OverflowMode::THROW, 0, 0, 0, false, "" , max_threads_, 0) |
| 893 | { |
| 894 | intermediate_header = intermediate_header_; |
| 895 | } |
| 896 | }; |
| 897 | |
| 898 | Aggregator(const Params & params_); |
| 899 | |
| 900 | /// Aggregate the source. Get the result in the form of one of the data structures. |
| 901 | void execute(const BlockInputStreamPtr & stream, AggregatedDataVariants & result); |
| 902 | |
| 903 | using AggregateColumns = std::vector<ColumnRawPtrs>; |
| 904 | using AggregateColumnsData = std::vector<ColumnAggregateFunction::Container *>; |
| 905 | using AggregateColumnsConstData = std::vector<const ColumnAggregateFunction::Container *>; |
| 906 | using AggregateFunctionsPlainPtrs = std::vector<IAggregateFunction *>; |
| 907 | |
| 908 | /// Process one block. Return false if the processing should be aborted (with group_by_overflow_mode = 'break'). |
| 909 | bool executeOnBlock(const Block & block, AggregatedDataVariants & result, |
| 910 | ColumnRawPtrs & key_columns, AggregateColumns & aggregate_columns, /// Passed to not create them anew for each block |
| 911 | bool & no_more_keys); |
| 912 | |
| 913 | bool executeOnBlock(Columns columns, UInt64 num_rows, AggregatedDataVariants & result, |
| 914 | ColumnRawPtrs & key_columns, AggregateColumns & aggregate_columns, /// Passed to not create them anew for each block |
| 915 | bool & no_more_keys); |
| 916 | |
| 917 | /** Convert the aggregation data structure into a block. |
| 918 | * If overflow_row = true, then aggregates for rows that are not included in max_rows_to_group_by are put in the first block. |
| 919 | * |
| 920 | * If final = false, then ColumnAggregateFunction is created as the aggregation columns with the state of the calculations, |
| 921 | * which can then be combined with other states (for distributed query processing). |
| 922 | * If final = true, then columns with ready values are created as aggregate columns. |
| 923 | */ |
| 924 | BlocksList convertToBlocks(AggregatedDataVariants & data_variants, bool final, size_t max_threads) const; |
| 925 | |
| 926 | /** Merge several aggregation data structures and output the result as a block stream. |
| 927 | */ |
| 928 | std::unique_ptr<IBlockInputStream> mergeAndConvertToBlocks(ManyAggregatedDataVariants & data_variants, bool final, size_t max_threads) const; |
| 929 | ManyAggregatedDataVariants prepareVariantsToMerge(ManyAggregatedDataVariants & data_variants) const; |
| 930 | |
| 931 | /** Merge the stream of partially aggregated blocks into one data structure. |
| 932 | * (Pre-aggregate several blocks that represent the result of independent aggregations from remote servers.) |
| 933 | */ |
| 934 | void mergeStream(const BlockInputStreamPtr & stream, AggregatedDataVariants & result, size_t max_threads); |
| 935 | |
| 936 | using BucketToBlocks = std::map<Int32, BlocksList>; |
| 937 | /// Merge partially aggregated blocks separated to buckets into one data structure. |
| 938 | void mergeBlocks(BucketToBlocks bucket_to_blocks, AggregatedDataVariants & result, size_t max_threads); |
| 939 | |
| 940 | /// Merge several partially aggregated blocks into one. |
| 941 | /// Precondition: for all blocks block.info.is_overflows flag must be the same. |
| 942 | /// (either all blocks are from overflow data or none blocks are). |
| 943 | /// The resulting block has the same value of is_overflows flag. |
| 944 | Block mergeBlocks(BlocksList & blocks, bool final); |
| 945 | |
| 946 | /** Split block with partially-aggregated data to many blocks, as if two-level method of aggregation was used. |
| 947 | * This is needed to simplify merging of that data with other results, that are already two-level. |
| 948 | */ |
| 949 | std::vector<Block> convertBlockToTwoLevel(const Block & block); |
| 950 | |
| 951 | using CancellationHook = std::function<bool()>; |
| 952 | |
| 953 | /** Set a function that checks whether the current task can be aborted. |
| 954 | */ |
| 955 | void setCancellationHook(const CancellationHook cancellation_hook); |
| 956 | |
| 957 | /// For external aggregation. |
| 958 | void writeToTemporaryFile(AggregatedDataVariants & data_variants); |
| 959 | |
| 960 | bool hasTemporaryFiles() const { return !temporary_files.empty(); } |
| 961 | |
| 962 | struct TemporaryFiles |
| 963 | { |
| 964 | std::vector<std::unique_ptr<Poco::TemporaryFile>> files; |
| 965 | size_t sum_size_uncompressed = 0; |
| 966 | size_t sum_size_compressed = 0; |
| 967 | mutable std::mutex mutex; |
| 968 | |
| 969 | bool empty() const |
| 970 | { |
| 971 | std::lock_guard lock(mutex); |
| 972 | return files.empty(); |
| 973 | } |
| 974 | }; |
| 975 | |
| 976 | const TemporaryFiles & getTemporaryFiles() const { return temporary_files; } |
| 977 | |
| 978 | /// Get data structure of the result. |
| 979 | Block (bool final) const; |
| 980 | |
| 981 | protected: |
| 982 | friend struct AggregatedDataVariants; |
| 983 | friend class MergingAndConvertingBlockInputStream; |
| 984 | friend class ConvertingAggregatedToChunksTransform; |
| 985 | friend class ConvertingAggregatedToChunksSource; |
| 986 | |
| 987 | Params params; |
| 988 | |
| 989 | AggregatedDataVariants::Type method_chosen; |
| 990 | Sizes key_sizes; |
| 991 | |
| 992 | HashMethodContextPtr aggregation_state_cache; |
| 993 | |
| 994 | AggregateFunctionsPlainPtrs aggregate_functions; |
| 995 | |
| 996 | /** This array serves two purposes. |
| 997 | * |
| 998 | * 1. Function arguments are collected side by side, and they do not need to be collected from different places. Also the array is made zero-terminated. |
| 999 | * The inner loop (for the case without_key) is almost twice as compact; performance gain of about 30%. |
| 1000 | * |
| 1001 | * 2. Calling a function by pointer is better than a virtual call, because in the case of a virtual call, |
| 1002 | * GCC 5.1.2 generates code that, at each iteration of the loop, reloads the function address from memory into the register |
| 1003 | * (the offset value in the virtual function table). |
| 1004 | */ |
| 1005 | struct AggregateFunctionInstruction |
| 1006 | { |
| 1007 | const IAggregateFunction * that; |
| 1008 | IAggregateFunction::AddFunc func; |
| 1009 | size_t state_offset; |
| 1010 | const IColumn ** arguments; |
| 1011 | const IAggregateFunction * batch_that; |
| 1012 | const IColumn ** batch_arguments; |
| 1013 | const UInt64 * offsets = nullptr; |
| 1014 | }; |
| 1015 | |
| 1016 | using AggregateFunctionInstructions = std::vector<AggregateFunctionInstruction>; |
| 1017 | |
| 1018 | Sizes offsets_of_aggregate_states; /// The offset to the n-th aggregate function in a row of aggregate functions. |
| 1019 | size_t total_size_of_aggregate_states = 0; /// The total size of the row from the aggregate functions. |
| 1020 | |
| 1021 | // add info to track alignment requirement |
| 1022 | // If there are states whose alignmentment are v1, ..vn, align_aggregate_states will be max(v1, ... vn) |
| 1023 | size_t align_aggregate_states = 1; |
| 1024 | |
| 1025 | bool all_aggregates_has_trivial_destructor = false; |
| 1026 | |
| 1027 | /// How many RAM were used to process the query before processing the first block. |
| 1028 | Int64 memory_usage_before_aggregation = 0; |
| 1029 | |
| 1030 | std::mutex mutex; |
| 1031 | |
| 1032 | Logger * log = &Logger::get("Aggregator" ); |
| 1033 | |
| 1034 | /// Returns true if you can abort the current task. |
| 1035 | CancellationHook isCancelled; |
| 1036 | |
| 1037 | /// For external aggregation. |
| 1038 | TemporaryFiles temporary_files; |
| 1039 | |
| 1040 | /** Select the aggregation method based on the number and types of keys. */ |
| 1041 | AggregatedDataVariants::Type chooseAggregationMethod(); |
| 1042 | |
| 1043 | /** Create states of aggregate functions for one key. |
| 1044 | */ |
| 1045 | void createAggregateStates(AggregateDataPtr & aggregate_data) const; |
| 1046 | |
| 1047 | /** Call `destroy` methods for states of aggregate functions. |
| 1048 | * Used in the exception handler for aggregation, since RAII in this case is not applicable. |
| 1049 | */ |
| 1050 | void destroyAllAggregateStates(AggregatedDataVariants & result); |
| 1051 | |
| 1052 | |
| 1053 | /// Process one data block, aggregate the data into a hash table. |
| 1054 | template <typename Method> |
| 1055 | void executeImpl( |
| 1056 | Method & method, |
| 1057 | Arena * aggregates_pool, |
| 1058 | size_t rows, |
| 1059 | ColumnRawPtrs & key_columns, |
| 1060 | AggregateFunctionInstruction * aggregate_instructions, |
| 1061 | bool no_more_keys, |
| 1062 | AggregateDataPtr overflow_row) const; |
| 1063 | |
| 1064 | /// Specialization for a particular value no_more_keys. |
| 1065 | template <bool no_more_keys, typename Method> |
| 1066 | void executeImplCase( |
| 1067 | Method & method, |
| 1068 | typename Method::State & state, |
| 1069 | Arena * aggregates_pool, |
| 1070 | size_t rows, |
| 1071 | AggregateFunctionInstruction * aggregate_instructions, |
| 1072 | AggregateDataPtr overflow_row) const; |
| 1073 | |
| 1074 | template <typename Method> |
| 1075 | void executeImplBatch( |
| 1076 | Method & method, |
| 1077 | typename Method::State & state, |
| 1078 | Arena * aggregates_pool, |
| 1079 | size_t rows, |
| 1080 | AggregateFunctionInstruction * aggregate_instructions) const; |
| 1081 | |
| 1082 | /// For case when there are no keys (all aggregate into one row). |
| 1083 | void executeWithoutKeyImpl( |
| 1084 | AggregatedDataWithoutKey & res, |
| 1085 | size_t rows, |
| 1086 | AggregateFunctionInstruction * aggregate_instructions, |
| 1087 | Arena * arena) const; |
| 1088 | |
| 1089 | template <typename Method> |
| 1090 | void writeToTemporaryFileImpl( |
| 1091 | AggregatedDataVariants & data_variants, |
| 1092 | Method & method, |
| 1093 | IBlockOutputStream & out); |
| 1094 | |
| 1095 | protected: |
| 1096 | /// Merge NULL key data from hash table `src` into `dst`. |
| 1097 | template <typename Method, typename Table> |
| 1098 | void mergeDataNullKey( |
| 1099 | Table & table_dst, |
| 1100 | Table & table_src, |
| 1101 | Arena * arena) const; |
| 1102 | |
| 1103 | /// Merge data from hash table `src` into `dst`. |
| 1104 | template <typename Method, typename Table> |
| 1105 | void mergeDataImpl( |
| 1106 | Table & table_dst, |
| 1107 | Table & table_src, |
| 1108 | Arena * arena) const; |
| 1109 | |
| 1110 | /// Merge data from hash table `src` into `dst`, but only for keys that already exist in dst. In other cases, merge the data into `overflows`. |
| 1111 | template <typename Method, typename Table> |
| 1112 | void mergeDataNoMoreKeysImpl( |
| 1113 | Table & table_dst, |
| 1114 | AggregatedDataWithoutKey & overflows, |
| 1115 | Table & table_src, |
| 1116 | Arena * arena) const; |
| 1117 | |
| 1118 | /// Same, but ignores the rest of the keys. |
| 1119 | template <typename Method, typename Table> |
| 1120 | void mergeDataOnlyExistingKeysImpl( |
| 1121 | Table & table_dst, |
| 1122 | Table & table_src, |
| 1123 | Arena * arena) const; |
| 1124 | |
| 1125 | void mergeWithoutKeyDataImpl( |
| 1126 | ManyAggregatedDataVariants & non_empty_data) const; |
| 1127 | |
| 1128 | template <typename Method> |
| 1129 | void mergeSingleLevelDataImpl( |
| 1130 | ManyAggregatedDataVariants & non_empty_data) const; |
| 1131 | |
| 1132 | template <typename Method, typename Table> |
| 1133 | void convertToBlockImpl( |
| 1134 | Method & method, |
| 1135 | Table & data, |
| 1136 | MutableColumns & key_columns, |
| 1137 | AggregateColumnsData & aggregate_columns, |
| 1138 | MutableColumns & final_aggregate_columns, |
| 1139 | bool final) const; |
| 1140 | |
| 1141 | template <typename Method, typename Table> |
| 1142 | void convertToBlockImplFinal( |
| 1143 | Method & method, |
| 1144 | Table & data, |
| 1145 | MutableColumns & key_columns, |
| 1146 | MutableColumns & final_aggregate_columns) const; |
| 1147 | |
| 1148 | template <typename Method, typename Table> |
| 1149 | void convertToBlockImplNotFinal( |
| 1150 | Method & method, |
| 1151 | Table & data, |
| 1152 | MutableColumns & key_columns, |
| 1153 | AggregateColumnsData & aggregate_columns) const; |
| 1154 | |
| 1155 | template <typename Filler> |
| 1156 | Block prepareBlockAndFill( |
| 1157 | AggregatedDataVariants & data_variants, |
| 1158 | bool final, |
| 1159 | size_t rows, |
| 1160 | Filler && filler) const; |
| 1161 | |
| 1162 | template <typename Method> |
| 1163 | Block convertOneBucketToBlock( |
| 1164 | AggregatedDataVariants & data_variants, |
| 1165 | Method & method, |
| 1166 | bool final, |
| 1167 | size_t bucket) const; |
| 1168 | |
| 1169 | Block mergeAndConvertOneBucketToBlock( |
| 1170 | ManyAggregatedDataVariants & variants, |
| 1171 | Arena * arena, |
| 1172 | bool final, |
| 1173 | size_t bucket) const; |
| 1174 | |
| 1175 | Block prepareBlockAndFillWithoutKey(AggregatedDataVariants & data_variants, bool final, bool is_overflows) const; |
| 1176 | Block prepareBlockAndFillSingleLevel(AggregatedDataVariants & data_variants, bool final) const; |
| 1177 | BlocksList prepareBlocksAndFillTwoLevel(AggregatedDataVariants & data_variants, bool final, ThreadPool * thread_pool) const; |
| 1178 | |
| 1179 | template <typename Method> |
| 1180 | BlocksList prepareBlocksAndFillTwoLevelImpl( |
| 1181 | AggregatedDataVariants & data_variants, |
| 1182 | Method & method, |
| 1183 | bool final, |
| 1184 | ThreadPool * thread_pool) const; |
| 1185 | |
| 1186 | template <bool no_more_keys, typename Method, typename Table> |
| 1187 | void mergeStreamsImplCase( |
| 1188 | Block & block, |
| 1189 | Arena * aggregates_pool, |
| 1190 | Method & method, |
| 1191 | Table & data, |
| 1192 | AggregateDataPtr overflow_row) const; |
| 1193 | |
| 1194 | template <typename Method, typename Table> |
| 1195 | void mergeStreamsImpl( |
| 1196 | Block & block, |
| 1197 | Arena * aggregates_pool, |
| 1198 | Method & method, |
| 1199 | Table & data, |
| 1200 | AggregateDataPtr overflow_row, |
| 1201 | bool no_more_keys) const; |
| 1202 | |
| 1203 | void mergeWithoutKeyStreamsImpl( |
| 1204 | Block & block, |
| 1205 | AggregatedDataVariants & result) const; |
| 1206 | |
| 1207 | template <typename Method> |
| 1208 | void mergeBucketImpl( |
| 1209 | ManyAggregatedDataVariants & data, Int32 bucket, Arena * arena) const; |
| 1210 | |
| 1211 | template <typename Method> |
| 1212 | void convertBlockToTwoLevelImpl( |
| 1213 | Method & method, |
| 1214 | Arena * pool, |
| 1215 | ColumnRawPtrs & key_columns, |
| 1216 | const Block & source, |
| 1217 | std::vector<Block> & destinations) const; |
| 1218 | |
| 1219 | template <typename Method, typename Table> |
| 1220 | void destroyImpl(Table & table) const; |
| 1221 | |
| 1222 | void destroyWithoutKey( |
| 1223 | AggregatedDataVariants & result) const; |
| 1224 | |
| 1225 | |
| 1226 | /** Checks constraints on the maximum number of keys for aggregation. |
| 1227 | * If it is exceeded, then, depending on the group_by_overflow_mode, either |
| 1228 | * - throws an exception; |
| 1229 | * - returns false, which means that execution must be aborted; |
| 1230 | * - sets the variable no_more_keys to true. |
| 1231 | */ |
| 1232 | bool checkLimits(size_t result_size, bool & no_more_keys) const; |
| 1233 | }; |
| 1234 | |
| 1235 | |
| 1236 | /** Get the aggregation variant by its type. */ |
| 1237 | template <typename Method> Method & getDataVariant(AggregatedDataVariants & variants); |
| 1238 | |
| 1239 | #define M(NAME, IS_TWO_LEVEL) \ |
| 1240 | template <> inline decltype(AggregatedDataVariants::NAME)::element_type & getDataVariant<decltype(AggregatedDataVariants::NAME)::element_type>(AggregatedDataVariants & variants) { return *variants.NAME; } |
| 1241 | |
| 1242 | APPLY_FOR_AGGREGATED_VARIANTS(M) |
| 1243 | |
| 1244 | #undef M |
| 1245 | |
| 1246 | } |
| 1247 | |