1 | #include "config_formats.h" |
2 | #include "ArrowColumnToCHColumn.h" |
3 | |
4 | #if USE_ORC || USE_PARQUET |
5 | #include <DataTypes/DataTypeFactory.h> |
6 | #include <DataTypes/DataTypeNullable.h> |
7 | #include <DataTypes/DataTypeString.h> |
8 | #include <DataTypes/DataTypesDecimal.h> |
9 | #include <DataTypes/DataTypesNumber.h> |
10 | #include <common/DateLUTImpl.h> |
11 | #include <Core/Types.h> |
12 | #include <Core/Block.h> |
13 | #include <Columns/ColumnString.h> |
14 | #include <Columns/ColumnNullable.h> |
15 | #include <Interpreters/castColumn.h> |
16 | #include <algorithm> |
17 | |
18 | |
19 | namespace DB |
20 | { |
21 | namespace ErrorCodes |
22 | { |
23 | extern const int UNKNOWN_TYPE; |
24 | extern const int VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE; |
25 | extern const int CANNOT_READ_ALL_DATA; |
26 | extern const int EMPTY_DATA_PASSED; |
27 | extern const int SIZES_OF_COLUMNS_DOESNT_MATCH; |
28 | extern const int CANNOT_CONVERT_TYPE; |
29 | extern const int CANNOT_INSERT_NULL_IN_ORDINARY_COLUMN; |
30 | extern const int THERE_IS_NO_COLUMN; |
31 | } |
32 | |
33 | static const std::initializer_list<std::pair<arrow::Type::type, const char *>> arrow_type_to_internal_type = |
34 | { |
35 | {arrow::Type::UINT8, "UInt8" }, |
36 | {arrow::Type::INT8, "Int8" }, |
37 | {arrow::Type::UINT16, "UInt16" }, |
38 | {arrow::Type::INT16, "Int16" }, |
39 | {arrow::Type::UINT32, "UInt32" }, |
40 | {arrow::Type::INT32, "Int32" }, |
41 | {arrow::Type::UINT64, "UInt64" }, |
42 | {arrow::Type::INT64, "Int64" }, |
43 | {arrow::Type::HALF_FLOAT, "Float32" }, |
44 | {arrow::Type::FLOAT, "Float32" }, |
45 | {arrow::Type::DOUBLE, "Float64" }, |
46 | |
47 | {arrow::Type::BOOL, "UInt8" }, |
48 | {arrow::Type::DATE32, "Date" }, |
49 | {arrow::Type::DATE64, "DateTime" }, |
50 | {arrow::Type::TIMESTAMP, "DateTime" }, |
51 | |
52 | {arrow::Type::STRING, "String" }, |
53 | {arrow::Type::BINARY, "String" }, |
54 | |
55 | // TODO: add other types that are convertable to internal ones: |
56 | // 0. ENUM? |
57 | // 1. UUID -> String |
58 | // 2. JSON -> String |
59 | // Full list of types: contrib/arrow/cpp/src/arrow/type.h |
60 | }; |
61 | |
62 | /// Inserts numeric data right into internal column data to reduce an overhead |
63 | template <typename NumericType, typename VectorType = ColumnVector<NumericType>> |
64 | static void fillColumnWithNumericData(std::shared_ptr<arrow::ChunkedArray> & arrow_column, MutableColumnPtr & internal_column) |
65 | { |
66 | auto & column_data = static_cast<VectorType &>(*internal_column).getData(); |
67 | column_data.reserve(arrow_column->length()); |
68 | |
69 | for (size_t chunk_i = 0, num_chunks = static_cast<size_t>(arrow_column->num_chunks()); chunk_i < num_chunks; ++chunk_i) |
70 | { |
71 | std::shared_ptr<arrow::Array> chunk = arrow_column->chunk(chunk_i); |
72 | /// buffers[0] is a null bitmap and buffers[1] are actual values |
73 | std::shared_ptr<arrow::Buffer> buffer = chunk->data()->buffers[1]; |
74 | |
75 | const auto * raw_data = reinterpret_cast<const NumericType *>(buffer->data()); |
76 | column_data.insert_assume_reserved(raw_data, raw_data + chunk->length()); |
77 | } |
78 | } |
79 | |
80 | /// Inserts chars and offsets right into internal column data to reduce an overhead. |
81 | /// Internal offsets are shifted by one to the right in comparison with Arrow ones. So the last offset should map to the end of all chars. |
82 | /// Also internal strings are null terminated. |
83 | static void fillColumnWithStringData(std::shared_ptr<arrow::ChunkedArray> & arrow_column, MutableColumnPtr & internal_column) |
84 | { |
85 | PaddedPODArray<UInt8> & column_chars_t = assert_cast<ColumnString &>(*internal_column).getChars(); |
86 | PaddedPODArray<UInt64> & column_offsets = assert_cast<ColumnString &>(*internal_column).getOffsets(); |
87 | |
88 | size_t chars_t_size = 0; |
89 | for (size_t chunk_i = 0, num_chunks = static_cast<size_t>(arrow_column->num_chunks()); chunk_i < num_chunks; ++chunk_i) |
90 | { |
91 | arrow::BinaryArray & chunk = static_cast<arrow::BinaryArray &>(*(arrow_column->chunk(chunk_i))); |
92 | const size_t chunk_length = chunk.length(); |
93 | |
94 | chars_t_size += chunk.value_offset(chunk_length - 1) + chunk.value_length(chunk_length - 1); |
95 | chars_t_size += chunk_length; /// additional space for null bytes |
96 | } |
97 | |
98 | column_chars_t.reserve(chars_t_size); |
99 | column_offsets.reserve(arrow_column->length()); |
100 | |
101 | for (size_t chunk_i = 0, num_chunks = static_cast<size_t>(arrow_column->num_chunks()); chunk_i < num_chunks; ++chunk_i) |
102 | { |
103 | arrow::BinaryArray & chunk = static_cast<arrow::BinaryArray &>(*(arrow_column->chunk(chunk_i))); |
104 | std::shared_ptr<arrow::Buffer> buffer = chunk.value_data(); |
105 | const size_t chunk_length = chunk.length(); |
106 | |
107 | for (size_t offset_i = 0; offset_i != chunk_length; ++offset_i) |
108 | { |
109 | if (!chunk.IsNull(offset_i) && buffer) |
110 | { |
111 | const UInt8 * raw_data = buffer->data() + chunk.value_offset(offset_i); |
112 | column_chars_t.insert_assume_reserved(raw_data, raw_data + chunk.value_length(offset_i)); |
113 | } |
114 | column_chars_t.emplace_back('\0'); |
115 | |
116 | column_offsets.emplace_back(column_chars_t.size()); |
117 | } |
118 | } |
119 | } |
120 | |
121 | static void fillColumnWithBooleanData(std::shared_ptr<arrow::ChunkedArray> & arrow_column, MutableColumnPtr & internal_column) |
122 | { |
123 | auto & column_data = assert_cast<ColumnVector<UInt8> &>(*internal_column).getData(); |
124 | column_data.reserve(arrow_column->length()); |
125 | |
126 | for (size_t chunk_i = 0, num_chunks = static_cast<size_t>(arrow_column->num_chunks()); chunk_i < num_chunks; ++chunk_i) |
127 | { |
128 | arrow::BooleanArray & chunk = static_cast<arrow::BooleanArray &>(*(arrow_column->chunk(chunk_i))); |
129 | /// buffers[0] is a null bitmap and buffers[1] are actual values |
130 | std::shared_ptr<arrow::Buffer> buffer = chunk.data()->buffers[1]; |
131 | |
132 | for (size_t bool_i = 0; bool_i != static_cast<size_t>(chunk.length()); ++bool_i) |
133 | column_data.emplace_back(chunk.Value(bool_i)); |
134 | } |
135 | } |
136 | |
137 | /// Arrow stores Parquet::DATE in Int32, while ClickHouse stores Date in UInt16. Therefore, it should be checked before saving |
138 | static void fillColumnWithDate32Data(std::shared_ptr<arrow::ChunkedArray> & arrow_column, MutableColumnPtr & internal_column) |
139 | { |
140 | PaddedPODArray<UInt16> & column_data = assert_cast<ColumnVector<UInt16> &>(*internal_column).getData(); |
141 | column_data.reserve(arrow_column->length()); |
142 | |
143 | for (size_t chunk_i = 0, num_chunks = static_cast<size_t>(arrow_column->num_chunks()); chunk_i < num_chunks; ++chunk_i) |
144 | { |
145 | arrow::Date32Array & chunk = static_cast<arrow::Date32Array &>(*(arrow_column->chunk(chunk_i))); |
146 | |
147 | for (size_t value_i = 0, length = static_cast<size_t>(chunk.length()); value_i < length; ++value_i) |
148 | { |
149 | UInt32 days_num = static_cast<UInt32>(chunk.Value(value_i)); |
150 | if (days_num > DATE_LUT_MAX_DAY_NUM) |
151 | { |
152 | // TODO: will it rollback correctly? |
153 | throw Exception{"Input value " + std::to_string(days_num) + " of a column \"" + internal_column->getName() |
154 | + "\" is greater than " |
155 | "max allowed Date value, which is " |
156 | + std::to_string(DATE_LUT_MAX_DAY_NUM), |
157 | ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE}; |
158 | } |
159 | |
160 | column_data.emplace_back(days_num); |
161 | } |
162 | } |
163 | } |
164 | |
165 | /// Arrow stores Parquet::DATETIME in Int64, while ClickHouse stores DateTime in UInt32. Therefore, it should be checked before saving |
166 | static void fillColumnWithDate64Data(std::shared_ptr<arrow::ChunkedArray> & arrow_column, MutableColumnPtr & internal_column) |
167 | { |
168 | auto & column_data = assert_cast<ColumnVector<UInt32> &>(*internal_column).getData(); |
169 | column_data.reserve(arrow_column->length()); |
170 | |
171 | for (size_t chunk_i = 0, num_chunks = static_cast<size_t>(arrow_column->num_chunks()); chunk_i < num_chunks; ++chunk_i) |
172 | { |
173 | auto & chunk = static_cast<arrow::Date64Array &>(*(arrow_column->chunk(chunk_i))); |
174 | for (size_t value_i = 0, length = static_cast<size_t>(chunk.length()); value_i < length; ++value_i) |
175 | { |
176 | auto timestamp = static_cast<UInt32>(chunk.Value(value_i) / 1000); // Always? in ms |
177 | column_data.emplace_back(timestamp); |
178 | } |
179 | } |
180 | } |
181 | |
182 | static void fillColumnWithTimestampData(std::shared_ptr<arrow::ChunkedArray> & arrow_column, MutableColumnPtr & internal_column) |
183 | { |
184 | auto & column_data = assert_cast<ColumnVector<UInt32> &>(*internal_column).getData(); |
185 | column_data.reserve(arrow_column->length()); |
186 | |
187 | for (size_t chunk_i = 0, num_chunks = static_cast<size_t>(arrow_column->num_chunks()); chunk_i < num_chunks; ++chunk_i) |
188 | { |
189 | auto & chunk = static_cast<arrow::TimestampArray &>(*(arrow_column->chunk(chunk_i))); |
190 | const auto & type = static_cast<const ::arrow::TimestampType &>(*chunk.type()); |
191 | |
192 | UInt32 divide = 1; |
193 | const auto unit = type.unit(); |
194 | switch (unit) |
195 | { |
196 | case arrow::TimeUnit::SECOND: |
197 | divide = 1; |
198 | break; |
199 | case arrow::TimeUnit::MILLI: |
200 | divide = 1000; |
201 | break; |
202 | case arrow::TimeUnit::MICRO: |
203 | divide = 1000000; |
204 | break; |
205 | case arrow::TimeUnit::NANO: |
206 | divide = 1000000000; |
207 | break; |
208 | } |
209 | |
210 | for (size_t value_i = 0, length = static_cast<size_t>(chunk.length()); value_i < length; ++value_i) |
211 | { |
212 | auto timestamp = static_cast<UInt32>(chunk.Value(value_i) / divide); // ms! TODO: check other 's' 'ns' ... |
213 | column_data.emplace_back(timestamp); |
214 | } |
215 | } |
216 | } |
217 | |
218 | static void fillColumnWithDecimalData(std::shared_ptr<arrow::ChunkedArray> & arrow_column, MutableColumnPtr & internal_column) |
219 | { |
220 | auto & column = assert_cast<ColumnDecimal<Decimal128> &>(*internal_column); |
221 | auto & column_data = column.getData(); |
222 | column_data.reserve(arrow_column->length()); |
223 | |
224 | for (size_t chunk_i = 0, num_chunks = static_cast<size_t>(arrow_column->num_chunks()); chunk_i < num_chunks; ++chunk_i) |
225 | { |
226 | auto & chunk = static_cast<arrow::DecimalArray &>(*(arrow_column->chunk(chunk_i))); |
227 | for (size_t value_i = 0, length = static_cast<size_t>(chunk.length()); value_i < length; ++value_i) |
228 | { |
229 | column_data.emplace_back(chunk.IsNull(value_i) ? Decimal128(0) : *reinterpret_cast<const Decimal128 *>(chunk.Value(value_i))); // TODO: copy column |
230 | } |
231 | } |
232 | } |
233 | |
234 | /// Creates a null bytemap from arrow's null bitmap |
235 | static void fillByteMapFromArrowColumn(std::shared_ptr<arrow::ChunkedArray> & arrow_column, MutableColumnPtr & bytemap) |
236 | { |
237 | PaddedPODArray<UInt8> & bytemap_data = assert_cast<ColumnVector<UInt8> &>(*bytemap).getData(); |
238 | bytemap_data.reserve(arrow_column->length()); |
239 | |
240 | for (size_t chunk_i = 0; chunk_i != static_cast<size_t>(arrow_column->num_chunks()); ++chunk_i) |
241 | { |
242 | std::shared_ptr<arrow::Array> chunk = arrow_column->chunk(chunk_i); |
243 | |
244 | for (size_t value_i = 0; value_i != static_cast<size_t>(chunk->length()); ++value_i) |
245 | bytemap_data.emplace_back(chunk->IsNull(value_i)); |
246 | } |
247 | } |
248 | |
249 | void ArrowColumnToCHColumn::arrowTableToCHChunk(Chunk &res, std::shared_ptr<arrow::Table> &table, |
250 | arrow::Status &read_status, const Block &, |
251 | int &row_group_current, std::string format_name) |
252 | { |
253 | Columns columns_list; |
254 | UInt64 num_rows = 0; |
255 | |
256 | columns_list.reserve(header.rows()); |
257 | |
258 | using NameToColumnPtr = std::unordered_map<std::string, std::shared_ptr<arrow::ChunkedArray>>; |
259 | if (!read_status.ok()) |
260 | throw Exception{"Error while reading " + format_name + " data: " + read_status.ToString(), |
261 | ErrorCodes::CANNOT_READ_ALL_DATA}; |
262 | |
263 | if (0 == table->num_rows()) |
264 | throw Exception{"Empty table in input data" , ErrorCodes::EMPTY_DATA_PASSED}; |
265 | |
266 | if (header.columns() > static_cast<size_t>(table->num_columns())) |
267 | // TODO: What if some columns were not presented? Insert NULLs? What if a column is not nullable? |
268 | throw Exception{"Number of columns is less than the table has" , ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH}; |
269 | |
270 | ++row_group_current; |
271 | |
272 | NameToColumnPtr name_to_column_ptr; |
273 | for (const auto& column_name : table->ColumnNames()) |
274 | { |
275 | std::shared_ptr<arrow::ChunkedArray> arrow_column = table->GetColumnByName(column_name); |
276 | name_to_column_ptr[column_name] = arrow_column; |
277 | } |
278 | |
279 | for (size_t column_i = 0, columns = header.columns(); column_i < columns; ++column_i) |
280 | { |
281 | ColumnWithTypeAndName header_column = header.getByPosition(column_i); |
282 | |
283 | if (name_to_column_ptr.find(header_column.name) == name_to_column_ptr.end()) |
284 | // TODO: What if some columns were not presented? Insert NULLs? What if a column is not nullable? |
285 | throw Exception{"Column \"" + header_column.name + "\" is not presented in input data" , |
286 | ErrorCodes::THERE_IS_NO_COLUMN}; |
287 | |
288 | std::shared_ptr<arrow::ChunkedArray> arrow_column = name_to_column_ptr[header_column.name]; |
289 | arrow::Type::type arrow_type = arrow_column->type()->id(); |
290 | |
291 | // TODO: check if a column is const? |
292 | if (!header_column.type->isNullable() && arrow_column->null_count()) |
293 | { |
294 | throw Exception{"Can not insert NULL data into non-nullable column \"" + header_column.name + "\"" , |
295 | ErrorCodes::CANNOT_INSERT_NULL_IN_ORDINARY_COLUMN}; |
296 | } |
297 | |
298 | const bool target_column_is_nullable = header_column.type->isNullable() || arrow_column->null_count(); |
299 | |
300 | DataTypePtr internal_nested_type; |
301 | |
302 | if (arrow_type == arrow::Type::DECIMAL) |
303 | { |
304 | const auto decimal_type = static_cast<arrow::DecimalType *>(arrow_column->type().get()); |
305 | internal_nested_type = std::make_shared<DataTypeDecimal<Decimal128>>(decimal_type->precision(), |
306 | decimal_type->scale()); |
307 | } |
308 | else if (auto internal_type_it = std::find_if(arrow_type_to_internal_type.begin(), arrow_type_to_internal_type.end(), |
309 | [=](auto && elem) { return elem.first == arrow_type; }); |
310 | internal_type_it != arrow_type_to_internal_type.end()) |
311 | { |
312 | internal_nested_type = DataTypeFactory::instance().get(internal_type_it->second); |
313 | } |
314 | else |
315 | { |
316 | throw Exception{"The type \"" + arrow_column->type()->name() + "\" of an input column \"" + header_column.name |
317 | + "\" is not supported for conversion from a " + format_name + " data format" , |
318 | ErrorCodes::CANNOT_CONVERT_TYPE}; |
319 | } |
320 | |
321 | const DataTypePtr internal_type = target_column_is_nullable ? makeNullable(internal_nested_type) |
322 | : internal_nested_type; |
323 | const std::string internal_nested_type_name = internal_nested_type->getName(); |
324 | |
325 | const DataTypePtr column_nested_type = header_column.type->isNullable() |
326 | ? static_cast<const DataTypeNullable *>(header_column.type.get())->getNestedType() |
327 | : header_column.type; |
328 | |
329 | const DataTypePtr column_type = header_column.type; |
330 | |
331 | const std::string column_nested_type_name = column_nested_type->getName(); |
332 | |
333 | ColumnWithTypeAndName column; |
334 | column.name = header_column.name; |
335 | column.type = internal_type; |
336 | |
337 | /// Data |
338 | MutableColumnPtr read_column = internal_nested_type->createColumn(); |
339 | switch (arrow_type) |
340 | { |
341 | case arrow::Type::STRING: |
342 | case arrow::Type::BINARY: |
343 | //case arrow::Type::FIXED_SIZE_BINARY: |
344 | fillColumnWithStringData(arrow_column, read_column); |
345 | break; |
346 | case arrow::Type::BOOL: |
347 | fillColumnWithBooleanData(arrow_column, read_column); |
348 | break; |
349 | case arrow::Type::DATE32: |
350 | fillColumnWithDate32Data(arrow_column, read_column); |
351 | break; |
352 | case arrow::Type::DATE64: |
353 | fillColumnWithDate64Data(arrow_column, read_column); |
354 | break; |
355 | case arrow::Type::TIMESTAMP: |
356 | fillColumnWithTimestampData(arrow_column, read_column); |
357 | break; |
358 | case arrow::Type::DECIMAL: |
359 | //fillColumnWithNumericData<Decimal128, ColumnDecimal<Decimal128>>(arrow_column, read_column); // Have problems with trash values under NULL, but faster |
360 | fillColumnWithDecimalData(arrow_column, read_column /*, internal_nested_type*/); |
361 | |
362 | break; |
363 | # define DISPATCH(ARROW_NUMERIC_TYPE, CPP_NUMERIC_TYPE) \ |
364 | case ARROW_NUMERIC_TYPE: \ |
365 | fillColumnWithNumericData<CPP_NUMERIC_TYPE>(arrow_column, read_column); \ |
366 | break; |
367 | |
368 | FOR_ARROW_NUMERIC_TYPES(DISPATCH) |
369 | # undef DISPATCH |
370 | // TODO: support TIMESTAMP_MICROS and TIMESTAMP_MILLIS with truncated micro- and milliseconds? |
371 | // TODO: read JSON as a string? |
372 | // TODO: read UUID as a string? |
373 | default: |
374 | throw Exception |
375 | { |
376 | "Unsupported " + format_name + " type \"" + arrow_column->type()->name() + "\" of an input column \"" |
377 | + header_column.name + "\"" , |
378 | ErrorCodes::UNKNOWN_TYPE |
379 | }; |
380 | } |
381 | |
382 | |
383 | if (column.type->isNullable()) |
384 | { |
385 | MutableColumnPtr null_bytemap = DataTypeUInt8().createColumn(); |
386 | fillByteMapFromArrowColumn(arrow_column, null_bytemap); |
387 | column.column = ColumnNullable::create(std::move(read_column), std::move(null_bytemap)); |
388 | } |
389 | else |
390 | column.column = std::move(read_column); |
391 | |
392 | column.column = castColumn(column, column_type); |
393 | column.type = column_type; |
394 | num_rows = column.column->size(); |
395 | columns_list.push_back(std::move(column.column)); |
396 | } |
397 | |
398 | res.setColumns(columns_list, num_rows); |
399 | } |
400 | } |
401 | #endif |
402 | |