1 | /* |
2 | * Double-precision e^x function. |
3 | * |
4 | * Copyright (c) 2018, Arm Limited. |
5 | * SPDX-License-Identifier: MIT |
6 | */ |
7 | |
8 | #include <math.h> |
9 | #include <stdint.h> |
10 | #include "libm.h" |
11 | #include "exp_data.h" |
12 | |
13 | #define N (1 << EXP_TABLE_BITS) |
14 | #define InvLn2N __exp_data.invln2N |
15 | #define NegLn2hiN __exp_data.negln2hiN |
16 | #define NegLn2loN __exp_data.negln2loN |
17 | #define Shift __exp_data.shift |
18 | #define T __exp_data.tab |
19 | #define C2 __exp_data.poly[5 - EXP_POLY_ORDER] |
20 | #define C3 __exp_data.poly[6 - EXP_POLY_ORDER] |
21 | #define C4 __exp_data.poly[7 - EXP_POLY_ORDER] |
22 | #define C5 __exp_data.poly[8 - EXP_POLY_ORDER] |
23 | |
24 | /* Handle cases that may overflow or underflow when computing the result that |
25 | is scale*(1+TMP) without intermediate rounding. The bit representation of |
26 | scale is in SBITS, however it has a computed exponent that may have |
27 | overflown into the sign bit so that needs to be adjusted before using it as |
28 | a double. (int32_t)KI is the k used in the argument reduction and exponent |
29 | adjustment of scale, positive k here means the result may overflow and |
30 | negative k means the result may underflow. */ |
31 | static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki) |
32 | { |
33 | double_t scale, y; |
34 | |
35 | if ((ki & 0x80000000) == 0) { |
36 | /* k > 0, the exponent of scale might have overflowed by <= 460. */ |
37 | sbits -= 1009ull << 52; |
38 | scale = asdouble(sbits); |
39 | y = 0x1p1009 * (scale + scale * tmp); |
40 | return eval_as_double(y); |
41 | } |
42 | /* k < 0, need special care in the subnormal range. */ |
43 | sbits += 1022ull << 52; |
44 | scale = asdouble(sbits); |
45 | y = scale + scale * tmp; |
46 | if (y < 1.0) { |
47 | /* Round y to the right precision before scaling it into the subnormal |
48 | range to avoid double rounding that can cause 0.5+E/2 ulp error where |
49 | E is the worst-case ulp error outside the subnormal range. So this |
50 | is only useful if the goal is better than 1 ulp worst-case error. */ |
51 | double_t hi, lo; |
52 | lo = scale - y + scale * tmp; |
53 | hi = 1.0 + y; |
54 | lo = 1.0 - hi + y + lo; |
55 | y = eval_as_double(hi + lo) - 1.0; |
56 | /* Avoid -0.0 with downward rounding. */ |
57 | if (WANT_ROUNDING && y == 0.0) |
58 | y = 0.0; |
59 | /* The underflow exception needs to be signaled explicitly. */ |
60 | fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022); |
61 | } |
62 | y = 0x1p-1022 * y; |
63 | return eval_as_double(y); |
64 | } |
65 | |
66 | /* Top 12 bits of a double (sign and exponent bits). */ |
67 | static inline uint32_t top12(double x) |
68 | { |
69 | return asuint64(x) >> 52; |
70 | } |
71 | |
72 | double exp(double x) |
73 | { |
74 | uint32_t abstop; |
75 | uint64_t ki, idx, top, sbits; |
76 | double_t kd, z, r, r2, scale, tail, tmp; |
77 | |
78 | abstop = top12(x) & 0x7ff; |
79 | if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) { |
80 | if (abstop - top12(0x1p-54) >= 0x80000000) |
81 | /* Avoid spurious underflow for tiny x. */ |
82 | /* Note: 0 is common input. */ |
83 | return WANT_ROUNDING ? 1.0 + x : 1.0; |
84 | if (abstop >= top12(1024.0)) { |
85 | if (asuint64(x) == asuint64(-INFINITY)) |
86 | return 0.0; |
87 | if (abstop >= top12(INFINITY)) |
88 | return 1.0 + x; |
89 | if (asuint64(x) >> 63) |
90 | return __math_uflow(0); |
91 | else |
92 | return __math_oflow(0); |
93 | } |
94 | /* Large x is special cased below. */ |
95 | abstop = 0; |
96 | } |
97 | |
98 | /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ |
99 | /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ |
100 | z = InvLn2N * x; |
101 | #if TOINT_INTRINSICS |
102 | kd = roundtoint(z); |
103 | ki = converttoint(z); |
104 | #elif EXP_USE_TOINT_NARROW |
105 | /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */ |
106 | kd = eval_as_double(z + Shift); |
107 | ki = asuint64(kd) >> 16; |
108 | kd = (double_t)(int32_t)ki; |
109 | #else |
110 | /* z - kd is in [-1, 1] in non-nearest rounding modes. */ |
111 | kd = eval_as_double(z + Shift); |
112 | ki = asuint64(kd); |
113 | kd -= Shift; |
114 | #endif |
115 | r = x + kd * NegLn2hiN + kd * NegLn2loN; |
116 | /* 2^(k/N) ~= scale * (1 + tail). */ |
117 | idx = 2 * (ki % N); |
118 | top = ki << (52 - EXP_TABLE_BITS); |
119 | tail = asdouble(T[idx]); |
120 | /* This is only a valid scale when -1023*N < k < 1024*N. */ |
121 | sbits = T[idx + 1] + top; |
122 | /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ |
123 | /* Evaluation is optimized assuming superscalar pipelined execution. */ |
124 | r2 = r * r; |
125 | /* Without fma the worst case error is 0.25/N ulp larger. */ |
126 | /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ |
127 | tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); |
128 | if (predict_false(abstop == 0)) |
129 | return specialcase(tmp, sbits, ki); |
130 | scale = asdouble(sbits); |
131 | /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there |
132 | is no spurious underflow here even without fma. */ |
133 | return eval_as_double(scale + scale * tmp); |
134 | } |
135 | |