| 1 | /* | 
|---|
| 2 | * Double-precision 2^x function. | 
|---|
| 3 | * | 
|---|
| 4 | * Copyright (c) 2018, Arm Limited. | 
|---|
| 5 | * SPDX-License-Identifier: MIT | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include <math.h> | 
|---|
| 9 | #include <stdint.h> | 
|---|
| 10 | #include "libm.h" | 
|---|
| 11 | #include "exp_data.h" | 
|---|
| 12 |  | 
|---|
| 13 | #define N (1 << EXP_TABLE_BITS) | 
|---|
| 14 | #define Shift __exp_data.exp2_shift | 
|---|
| 15 | #define T __exp_data.tab | 
|---|
| 16 | #define C1 __exp_data.exp2_poly[0] | 
|---|
| 17 | #define C2 __exp_data.exp2_poly[1] | 
|---|
| 18 | #define C3 __exp_data.exp2_poly[2] | 
|---|
| 19 | #define C4 __exp_data.exp2_poly[3] | 
|---|
| 20 | #define C5 __exp_data.exp2_poly[4] | 
|---|
| 21 |  | 
|---|
| 22 | /* Handle cases that may overflow or underflow when computing the result that | 
|---|
| 23 | is scale*(1+TMP) without intermediate rounding.  The bit representation of | 
|---|
| 24 | scale is in SBITS, however it has a computed exponent that may have | 
|---|
| 25 | overflown into the sign bit so that needs to be adjusted before using it as | 
|---|
| 26 | a double.  (int32_t)KI is the k used in the argument reduction and exponent | 
|---|
| 27 | adjustment of scale, positive k here means the result may overflow and | 
|---|
| 28 | negative k means the result may underflow.  */ | 
|---|
| 29 | static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki) | 
|---|
| 30 | { | 
|---|
| 31 | double_t scale, y; | 
|---|
| 32 |  | 
|---|
| 33 | if ((ki & 0x80000000) == 0) { | 
|---|
| 34 | /* k > 0, the exponent of scale might have overflowed by 1.  */ | 
|---|
| 35 | sbits -= 1ull << 52; | 
|---|
| 36 | scale = asdouble(sbits); | 
|---|
| 37 | y = 2 * (scale + scale * tmp); | 
|---|
| 38 | return eval_as_double(y); | 
|---|
| 39 | } | 
|---|
| 40 | /* k < 0, need special care in the subnormal range.  */ | 
|---|
| 41 | sbits += 1022ull << 52; | 
|---|
| 42 | scale = asdouble(sbits); | 
|---|
| 43 | y = scale + scale * tmp; | 
|---|
| 44 | if (y < 1.0) { | 
|---|
| 45 | /* Round y to the right precision before scaling it into the subnormal | 
|---|
| 46 | range to avoid double rounding that can cause 0.5+E/2 ulp error where | 
|---|
| 47 | E is the worst-case ulp error outside the subnormal range.  So this | 
|---|
| 48 | is only useful if the goal is better than 1 ulp worst-case error.  */ | 
|---|
| 49 | double_t hi, lo; | 
|---|
| 50 | lo = scale - y + scale * tmp; | 
|---|
| 51 | hi = 1.0 + y; | 
|---|
| 52 | lo = 1.0 - hi + y + lo; | 
|---|
| 53 | y = eval_as_double(hi + lo) - 1.0; | 
|---|
| 54 | /* Avoid -0.0 with downward rounding.  */ | 
|---|
| 55 | if (WANT_ROUNDING && y == 0.0) | 
|---|
| 56 | y = 0.0; | 
|---|
| 57 | /* The underflow exception needs to be signaled explicitly.  */ | 
|---|
| 58 | fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022); | 
|---|
| 59 | } | 
|---|
| 60 | y = 0x1p-1022 * y; | 
|---|
| 61 | return eval_as_double(y); | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | /* Top 12 bits of a double (sign and exponent bits).  */ | 
|---|
| 65 | static inline uint32_t top12(double x) | 
|---|
| 66 | { | 
|---|
| 67 | return asuint64(x) >> 52; | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | double exp2(double x) | 
|---|
| 71 | { | 
|---|
| 72 | uint32_t abstop; | 
|---|
| 73 | uint64_t ki, idx, top, sbits; | 
|---|
| 74 | double_t kd, r, r2, scale, tail, tmp; | 
|---|
| 75 |  | 
|---|
| 76 | abstop = top12(x) & 0x7ff; | 
|---|
| 77 | if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) { | 
|---|
| 78 | if (abstop - top12(0x1p-54) >= 0x80000000) | 
|---|
| 79 | /* Avoid spurious underflow for tiny x.  */ | 
|---|
| 80 | /* Note: 0 is common input.  */ | 
|---|
| 81 | return WANT_ROUNDING ? 1.0 + x : 1.0; | 
|---|
| 82 | if (abstop >= top12(1024.0)) { | 
|---|
| 83 | if (asuint64(x) == asuint64(-INFINITY)) | 
|---|
| 84 | return 0.0; | 
|---|
| 85 | if (abstop >= top12(INFINITY)) | 
|---|
| 86 | return 1.0 + x; | 
|---|
| 87 | if (!(asuint64(x) >> 63)) | 
|---|
| 88 | return __math_oflow(0); | 
|---|
| 89 | else if (asuint64(x) >= asuint64(-1075.0)) | 
|---|
| 90 | return __math_uflow(0); | 
|---|
| 91 | } | 
|---|
| 92 | if (2 * asuint64(x) > 2 * asuint64(928.0)) | 
|---|
| 93 | /* Large x is special cased below.  */ | 
|---|
| 94 | abstop = 0; | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | /* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)].  */ | 
|---|
| 98 | /* x = k/N + r, with int k and r in [-1/2N, 1/2N].  */ | 
|---|
| 99 | kd = eval_as_double(x + Shift); | 
|---|
| 100 | ki = asuint64(kd); /* k.  */ | 
|---|
| 101 | kd -= Shift; /* k/N for int k.  */ | 
|---|
| 102 | r = x - kd; | 
|---|
| 103 | /* 2^(k/N) ~= scale * (1 + tail).  */ | 
|---|
| 104 | idx = 2 * (ki % N); | 
|---|
| 105 | top = ki << (52 - EXP_TABLE_BITS); | 
|---|
| 106 | tail = asdouble(T[idx]); | 
|---|
| 107 | /* This is only a valid scale when -1023*N < k < 1024*N.  */ | 
|---|
| 108 | sbits = T[idx + 1] + top; | 
|---|
| 109 | /* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1).  */ | 
|---|
| 110 | /* Evaluation is optimized assuming superscalar pipelined execution.  */ | 
|---|
| 111 | r2 = r * r; | 
|---|
| 112 | /* Without fma the worst case error is 0.5/N ulp larger.  */ | 
|---|
| 113 | /* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp.  */ | 
|---|
| 114 | tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); | 
|---|
| 115 | if (predict_false(abstop == 0)) | 
|---|
| 116 | return specialcase(tmp, sbits, ki); | 
|---|
| 117 | scale = asdouble(sbits); | 
|---|
| 118 | /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there | 
|---|
| 119 | is no spurious underflow here even without fma.  */ | 
|---|
| 120 | return eval_as_double(scale + scale * tmp); | 
|---|
| 121 | } | 
|---|
| 122 |  | 
|---|