1 | /* |
2 | * Single-precision 2^x function. |
3 | * |
4 | * Copyright (c) 2017-2018, Arm Limited. |
5 | * SPDX-License-Identifier: MIT |
6 | */ |
7 | |
8 | #include <math.h> |
9 | #include <stdint.h> |
10 | #include "libm.h" |
11 | #include "exp2f_data.h" |
12 | |
13 | /* |
14 | EXP2F_TABLE_BITS = 5 |
15 | EXP2F_POLY_ORDER = 3 |
16 | |
17 | ULP error: 0.502 (nearest rounding.) |
18 | Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.) |
19 | Wrong count: 168353 (all nearest rounding wrong results with fma.) |
20 | Non-nearest ULP error: 1 (rounded ULP error) |
21 | */ |
22 | |
23 | #define N (1 << EXP2F_TABLE_BITS) |
24 | #define T __exp2f_data.tab |
25 | #define C __exp2f_data.poly |
26 | #define SHIFT __exp2f_data.shift_scaled |
27 | |
28 | static inline uint32_t top12(float x) |
29 | { |
30 | return asuint(x) >> 20; |
31 | } |
32 | |
33 | float exp2f(float x) |
34 | { |
35 | uint32_t abstop; |
36 | uint64_t ki, t; |
37 | double_t kd, xd, z, r, r2, y, s; |
38 | |
39 | xd = (double_t)x; |
40 | abstop = top12(x) & 0x7ff; |
41 | if (predict_false(abstop >= top12(128.0f))) { |
42 | /* |x| >= 128 or x is nan. */ |
43 | if (asuint(x) == asuint(-INFINITY)) |
44 | return 0.0f; |
45 | if (abstop >= top12(INFINITY)) |
46 | return x + x; |
47 | if (x > 0.0f) |
48 | return __math_oflowf(0); |
49 | if (x <= -150.0f) |
50 | return __math_uflowf(0); |
51 | } |
52 | |
53 | /* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. */ |
54 | kd = eval_as_double(xd + SHIFT); |
55 | ki = asuint64(kd); |
56 | kd -= SHIFT; /* k/N for int k. */ |
57 | r = xd - kd; |
58 | |
59 | /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ |
60 | t = T[ki % N]; |
61 | t += ki << (52 - EXP2F_TABLE_BITS); |
62 | s = asdouble(t); |
63 | z = C[0] * r + C[1]; |
64 | r2 = r * r; |
65 | y = C[2] * r + 1; |
66 | y = z * r2 + y; |
67 | y = y * s; |
68 | return eval_as_float(y); |
69 | } |
70 | |