| 1 | /* |
| 2 | * Double-precision log(x) function. |
| 3 | * |
| 4 | * Copyright (c) 2018, Arm Limited. |
| 5 | * SPDX-License-Identifier: MIT |
| 6 | */ |
| 7 | |
| 8 | #include <math.h> |
| 9 | #include <stdint.h> |
| 10 | #include "libm.h" |
| 11 | #include "log_data.h" |
| 12 | |
| 13 | #define T __log_data.tab |
| 14 | #define T2 __log_data.tab2 |
| 15 | #define B __log_data.poly1 |
| 16 | #define A __log_data.poly |
| 17 | #define Ln2hi __log_data.ln2hi |
| 18 | #define Ln2lo __log_data.ln2lo |
| 19 | #define N (1 << LOG_TABLE_BITS) |
| 20 | #define OFF 0x3fe6000000000000 |
| 21 | |
| 22 | /* Top 16 bits of a double. */ |
| 23 | static inline uint32_t top16(double x) |
| 24 | { |
| 25 | return asuint64(x) >> 48; |
| 26 | } |
| 27 | |
| 28 | double log(double x) |
| 29 | { |
| 30 | double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo; |
| 31 | uint64_t ix, iz, tmp; |
| 32 | uint32_t top; |
| 33 | int k, i; |
| 34 | |
| 35 | ix = asuint64(x); |
| 36 | top = top16(x); |
| 37 | #define LO asuint64(1.0 - 0x1p-4) |
| 38 | #define HI asuint64(1.0 + 0x1.09p-4) |
| 39 | if (predict_false(ix - LO < HI - LO)) { |
| 40 | /* Handle close to 1.0 inputs separately. */ |
| 41 | /* Fix sign of zero with downward rounding when x==1. */ |
| 42 | if (WANT_ROUNDING && predict_false(ix == asuint64(1.0))) |
| 43 | return 0; |
| 44 | r = x - 1.0; |
| 45 | r2 = r * r; |
| 46 | r3 = r * r2; |
| 47 | y = r3 * |
| 48 | (B[1] + r * B[2] + r2 * B[3] + |
| 49 | r3 * (B[4] + r * B[5] + r2 * B[6] + |
| 50 | r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10]))); |
| 51 | /* Worst-case error is around 0.507 ULP. */ |
| 52 | w = r * 0x1p27; |
| 53 | double_t rhi = r + w - w; |
| 54 | double_t rlo = r - rhi; |
| 55 | w = rhi * rhi * B[0]; /* B[0] == -0.5. */ |
| 56 | hi = r + w; |
| 57 | lo = r - hi + w; |
| 58 | lo += B[0] * rlo * (rhi + r); |
| 59 | y += lo; |
| 60 | y += hi; |
| 61 | return eval_as_double(y); |
| 62 | } |
| 63 | if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) { |
| 64 | /* x < 0x1p-1022 or inf or nan. */ |
| 65 | if (ix * 2 == 0) |
| 66 | return __math_divzero(1); |
| 67 | if (ix == asuint64(INFINITY)) /* log(inf) == inf. */ |
| 68 | return x; |
| 69 | if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) |
| 70 | return __math_invalid(x); |
| 71 | /* x is subnormal, normalize it. */ |
| 72 | ix = asuint64(x * 0x1p52); |
| 73 | ix -= 52ULL << 52; |
| 74 | } |
| 75 | |
| 76 | /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. |
| 77 | The range is split into N subintervals. |
| 78 | The ith subinterval contains z and c is near its center. */ |
| 79 | tmp = ix - OFF; |
| 80 | i = (tmp >> (52 - LOG_TABLE_BITS)) % N; |
| 81 | k = (int64_t)tmp >> 52; /* arithmetic shift */ |
| 82 | iz = ix - (tmp & 0xfffULL << 52); |
| 83 | invc = T[i].invc; |
| 84 | logc = T[i].logc; |
| 85 | z = asdouble(iz); |
| 86 | |
| 87 | /* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */ |
| 88 | /* r ~= z/c - 1, |r| < 1/(2*N). */ |
| 89 | #if __FP_FAST_FMA |
| 90 | /* rounding error: 0x1p-55/N. */ |
| 91 | r = __builtin_fma(z, invc, -1.0); |
| 92 | #else |
| 93 | /* rounding error: 0x1p-55/N + 0x1p-66. */ |
| 94 | r = (z - T2[i].chi - T2[i].clo) * invc; |
| 95 | #endif |
| 96 | kd = (double_t)k; |
| 97 | |
| 98 | /* hi + lo = r + log(c) + k*Ln2. */ |
| 99 | w = kd * Ln2hi + logc; |
| 100 | hi = w + r; |
| 101 | lo = w - hi + r + kd * Ln2lo; |
| 102 | |
| 103 | /* log(x) = lo + (log1p(r) - r) + hi. */ |
| 104 | r2 = r * r; /* rounding error: 0x1p-54/N^2. */ |
| 105 | /* Worst case error if |y| > 0x1p-5: |
| 106 | 0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma) |
| 107 | Worst case error if |y| > 0x1p-4: |
| 108 | 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */ |
| 109 | y = lo + r2 * A[0] + |
| 110 | r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi; |
| 111 | return eval_as_double(y); |
| 112 | } |
| 113 | |