1 | /* |
2 | * Double-precision log2(x) function. |
3 | * |
4 | * Copyright (c) 2018, Arm Limited. |
5 | * SPDX-License-Identifier: MIT |
6 | */ |
7 | |
8 | #include <math.h> |
9 | #include <stdint.h> |
10 | #include "libm.h" |
11 | #include "log2_data.h" |
12 | |
13 | #define T __log2_data.tab |
14 | #define T2 __log2_data.tab2 |
15 | #define B __log2_data.poly1 |
16 | #define A __log2_data.poly |
17 | #define InvLn2hi __log2_data.invln2hi |
18 | #define InvLn2lo __log2_data.invln2lo |
19 | #define N (1 << LOG2_TABLE_BITS) |
20 | #define OFF 0x3fe6000000000000 |
21 | |
22 | /* Top 16 bits of a double. */ |
23 | static inline uint32_t top16(double x) |
24 | { |
25 | return asuint64(x) >> 48; |
26 | } |
27 | |
28 | double log2(double x) |
29 | { |
30 | double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p; |
31 | uint64_t ix, iz, tmp; |
32 | uint32_t top; |
33 | int k, i; |
34 | |
35 | ix = asuint64(x); |
36 | top = top16(x); |
37 | #define LO asuint64(1.0 - 0x1.5b51p-5) |
38 | #define HI asuint64(1.0 + 0x1.6ab2p-5) |
39 | if (predict_false(ix - LO < HI - LO)) { |
40 | /* Handle close to 1.0 inputs separately. */ |
41 | /* Fix sign of zero with downward rounding when x==1. */ |
42 | if (WANT_ROUNDING && predict_false(ix == asuint64(1.0))) |
43 | return 0; |
44 | r = x - 1.0; |
45 | #if __FP_FAST_FMA |
46 | hi = r * InvLn2hi; |
47 | lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi); |
48 | #else |
49 | double_t rhi, rlo; |
50 | rhi = asdouble(asuint64(r) & -1ULL << 32); |
51 | rlo = r - rhi; |
52 | hi = rhi * InvLn2hi; |
53 | lo = rlo * InvLn2hi + r * InvLn2lo; |
54 | #endif |
55 | r2 = r * r; /* rounding error: 0x1p-62. */ |
56 | r4 = r2 * r2; |
57 | /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */ |
58 | p = r2 * (B[0] + r * B[1]); |
59 | y = hi + p; |
60 | lo += hi - y + p; |
61 | lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) + |
62 | r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9]))); |
63 | y += lo; |
64 | return eval_as_double(y); |
65 | } |
66 | if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) { |
67 | /* x < 0x1p-1022 or inf or nan. */ |
68 | if (ix * 2 == 0) |
69 | return __math_divzero(1); |
70 | if (ix == asuint64(INFINITY)) /* log(inf) == inf. */ |
71 | return x; |
72 | if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) |
73 | return __math_invalid(x); |
74 | /* x is subnormal, normalize it. */ |
75 | ix = asuint64(x * 0x1p52); |
76 | ix -= 52ULL << 52; |
77 | } |
78 | |
79 | /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. |
80 | The range is split into N subintervals. |
81 | The ith subinterval contains z and c is near its center. */ |
82 | tmp = ix - OFF; |
83 | i = (tmp >> (52 - LOG2_TABLE_BITS)) % N; |
84 | k = (int64_t)tmp >> 52; /* arithmetic shift */ |
85 | iz = ix - (tmp & 0xfffULL << 52); |
86 | invc = T[i].invc; |
87 | logc = T[i].logc; |
88 | z = asdouble(iz); |
89 | kd = (double_t)k; |
90 | |
91 | /* log2(x) = log2(z/c) + log2(c) + k. */ |
92 | /* r ~= z/c - 1, |r| < 1/(2*N). */ |
93 | #if __FP_FAST_FMA |
94 | /* rounding error: 0x1p-55/N. */ |
95 | r = __builtin_fma(z, invc, -1.0); |
96 | t1 = r * InvLn2hi; |
97 | t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1); |
98 | #else |
99 | double_t rhi, rlo; |
100 | /* rounding error: 0x1p-55/N + 0x1p-65. */ |
101 | r = (z - T2[i].chi - T2[i].clo) * invc; |
102 | rhi = asdouble(asuint64(r) & -1ULL << 32); |
103 | rlo = r - rhi; |
104 | t1 = rhi * InvLn2hi; |
105 | t2 = rlo * InvLn2hi + r * InvLn2lo; |
106 | #endif |
107 | |
108 | /* hi + lo = r/ln2 + log2(c) + k. */ |
109 | t3 = kd + logc; |
110 | hi = t3 + t1; |
111 | lo = t3 - hi + t1 + t2; |
112 | |
113 | /* log2(r+1) = r/ln2 + r^2*poly(r). */ |
114 | /* Evaluation is optimized assuming superscalar pipelined execution. */ |
115 | r2 = r * r; /* rounding error: 0x1p-54/N^2. */ |
116 | r4 = r2 * r2; |
117 | /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). |
118 | ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */ |
119 | p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]); |
120 | y = lo + r2 * p + hi; |
121 | return eval_as_double(y); |
122 | } |
123 | |