| 1 | /* | 
|---|
| 2 | * Single-precision log function. | 
|---|
| 3 | * | 
|---|
| 4 | * Copyright (c) 2017-2018, Arm Limited. | 
|---|
| 5 | * SPDX-License-Identifier: MIT | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include <math.h> | 
|---|
| 9 | #include <stdint.h> | 
|---|
| 10 | #include "libm.h" | 
|---|
| 11 | #include "logf_data.h" | 
|---|
| 12 |  | 
|---|
| 13 | /* | 
|---|
| 14 | LOGF_TABLE_BITS = 4 | 
|---|
| 15 | LOGF_POLY_ORDER = 4 | 
|---|
| 16 |  | 
|---|
| 17 | ULP error: 0.818 (nearest rounding.) | 
|---|
| 18 | Relative error: 1.957 * 2^-26 (before rounding.) | 
|---|
| 19 | */ | 
|---|
| 20 |  | 
|---|
| 21 | #define T __logf_data.tab | 
|---|
| 22 | #define A __logf_data.poly | 
|---|
| 23 | #define Ln2 __logf_data.ln2 | 
|---|
| 24 | #define N (1 << LOGF_TABLE_BITS) | 
|---|
| 25 | #define OFF 0x3f330000 | 
|---|
| 26 |  | 
|---|
| 27 | float logf(float x) | 
|---|
| 28 | { | 
|---|
| 29 | double_t z, r, r2, y, y0, invc, logc; | 
|---|
| 30 | uint32_t ix, iz, tmp; | 
|---|
| 31 | int k, i; | 
|---|
| 32 |  | 
|---|
| 33 | ix = asuint(x); | 
|---|
| 34 | /* Fix sign of zero with downward rounding when x==1.  */ | 
|---|
| 35 | if (WANT_ROUNDING && predict_false(ix == 0x3f800000)) | 
|---|
| 36 | return 0; | 
|---|
| 37 | if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) { | 
|---|
| 38 | /* x < 0x1p-126 or inf or nan.  */ | 
|---|
| 39 | if (ix * 2 == 0) | 
|---|
| 40 | return __math_divzerof(1); | 
|---|
| 41 | if (ix == 0x7f800000) /* log(inf) == inf.  */ | 
|---|
| 42 | return x; | 
|---|
| 43 | if ((ix & 0x80000000) || ix * 2 >= 0xff000000) | 
|---|
| 44 | return __math_invalidf(x); | 
|---|
| 45 | /* x is subnormal, normalize it.  */ | 
|---|
| 46 | ix = asuint(x * 0x1p23f); | 
|---|
| 47 | ix -= 23 << 23; | 
|---|
| 48 | } | 
|---|
| 49 |  | 
|---|
| 50 | /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. | 
|---|
| 51 | The range is split into N subintervals. | 
|---|
| 52 | The ith subinterval contains z and c is near its center.  */ | 
|---|
| 53 | tmp = ix - OFF; | 
|---|
| 54 | i = (tmp >> (23 - LOGF_TABLE_BITS)) % N; | 
|---|
| 55 | k = (int32_t)tmp >> 23; /* arithmetic shift */ | 
|---|
| 56 | iz = ix - (tmp & 0x1ff << 23); | 
|---|
| 57 | invc = T[i].invc; | 
|---|
| 58 | logc = T[i].logc; | 
|---|
| 59 | z = (double_t)asfloat(iz); | 
|---|
| 60 |  | 
|---|
| 61 | /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */ | 
|---|
| 62 | r = z * invc - 1; | 
|---|
| 63 | y0 = logc + (double_t)k * Ln2; | 
|---|
| 64 |  | 
|---|
| 65 | /* Pipelined polynomial evaluation to approximate log1p(r).  */ | 
|---|
| 66 | r2 = r * r; | 
|---|
| 67 | y = A[1] * r + A[2]; | 
|---|
| 68 | y = A[0] * r2 + y; | 
|---|
| 69 | y = y * r2 + (y0 + r); | 
|---|
| 70 | return eval_as_float(y); | 
|---|
| 71 | } | 
|---|
| 72 |  | 
|---|