1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | // |
5 | // DacDbiImplStackWalk.cpp |
6 | // |
7 | |
8 | // |
9 | // This file contains the implementation of the stackwalking-related functions on the DacDbiInterface. |
10 | // |
11 | // ====================================================================================== |
12 | |
13 | #include "stdafx.h" |
14 | #include "dacdbiinterface.h" |
15 | #include "dacdbiimpl.h" |
16 | #include "excepcpu.h" |
17 | |
18 | #if defined(FEATURE_COMINTEROP) |
19 | #include "comtoclrcall.h" |
20 | #include "comcallablewrapper.h" |
21 | #endif // FEATURE_COMINTEROP |
22 | |
23 | typedef IDacDbiInterface::StackWalkHandle StackWalkHandle; |
24 | |
25 | |
26 | // Persistent data needed to do a stackwalk. This is allocated on the forDbi heap. |
27 | // It can survive across multiple DD calls. |
28 | // However, it has data structures that have raw pointers into the DAC cache, and so it must |
29 | // be re-iniatialized after each time the Dac cache is flushed. |
30 | struct StackWalkData |
31 | { |
32 | public: |
33 | StackWalkData(Thread * pThread, Frame * pFrame, ULONG32 flags) : |
34 | m_iterator(pThread, NULL, flags) |
35 | { SUPPORTS_DAC; |
36 | } |
37 | |
38 | // Unwrap a handle to get StackWalkData instance. |
39 | static StackWalkData * FromHandle(StackWalkHandle handle) |
40 | { |
41 | SUPPORTS_DAC; |
42 | _ASSERTE(handle != NULL); |
43 | return reinterpret_cast<StackWalkData *>(handle); |
44 | } |
45 | |
46 | // The stackwalk iterator. This has lots of pointers into the DAC cache. |
47 | StackFrameIterator m_iterator; |
48 | |
49 | // The context buffer, which can be pointed to by the RegDisplay. |
50 | T_CONTEXT m_context; |
51 | |
52 | // A regdisplay used by the stackwalker. |
53 | REGDISPLAY m_regdisplay; |
54 | }; |
55 | |
56 | // Helper to allocate stackwalk datastructures for given parameters. |
57 | // This is allocated on the local heap (and not via the forDbi allocator on the dac-cache), and then |
58 | // freed via code:DacDbiInterfaceImpl::DeleteStackWalk |
59 | // |
60 | // Throws on error (mainly OOM). |
61 | void AllocateStackwalk(StackWalkHandle * pHandle, Thread * pThread, Frame * pFrame, ULONG32 flags) |
62 | { |
63 | SUPPORTS_DAC; |
64 | |
65 | StackWalkData * p = new StackWalkData(pThread, NULL, flags); // throews |
66 | |
67 | StackWalkHandle h = reinterpret_cast<StackWalkHandle>(p); |
68 | *pHandle = h; |
69 | } |
70 | void DeleteStackwalk(StackWalkHandle pHandle) |
71 | { |
72 | SUPPORTS_DAC; |
73 | |
74 | StackWalkData * pBuffer = (StackWalkData *) pHandle; |
75 | _ASSERTE(pBuffer != NULL); |
76 | delete pBuffer; |
77 | } |
78 | |
79 | |
80 | // Helper to get the StackFrameIterator from a Stackwalker handle |
81 | StackFrameIterator * GetIteratorFromHandle(StackWalkHandle pSFIHandle) |
82 | { |
83 | SUPPORTS_DAC; |
84 | |
85 | StackWalkData * pBuffer = StackWalkData::FromHandle(pSFIHandle); |
86 | return &(pBuffer->m_iterator); |
87 | } |
88 | |
89 | // Helper to get a RegDisplay from a Stackwalker handle |
90 | REGDISPLAY * GetRegDisplayFromHandle(StackWalkHandle pSFIHandle) |
91 | { |
92 | SUPPORTS_DAC; |
93 | StackWalkData * pBuffer = StackWalkData::FromHandle(pSFIHandle); |
94 | return &(pBuffer->m_regdisplay); |
95 | } |
96 | |
97 | // Helper to get a Context buffer from a Stackwalker handle |
98 | T_CONTEXT * GetContextBufferFromHandle(StackWalkHandle pSFIHandle) |
99 | { |
100 | SUPPORTS_DAC; |
101 | StackWalkData * pBuffer = StackWalkData::FromHandle(pSFIHandle); |
102 | return &(pBuffer->m_context); |
103 | } |
104 | |
105 | |
106 | // Create and return a stackwalker on the specified thread. |
107 | void DacDbiInterfaceImpl::CreateStackWalk(VMPTR_Thread vmThread, |
108 | DT_CONTEXT * pInternalContextBuffer, |
109 | StackWalkHandle * ppSFIHandle) |
110 | { |
111 | DD_ENTER_MAY_THROW; |
112 | |
113 | _ASSERTE(ppSFIHandle != NULL); |
114 | |
115 | Thread * pThread = vmThread.GetDacPtr(); |
116 | |
117 | // Set the stackwalk flags. We pretty much want to stop at everything. |
118 | DWORD dwFlags = (NOTIFY_ON_U2M_TRANSITIONS | |
119 | NOTIFY_ON_NO_FRAME_TRANSITIONS | |
120 | NOTIFY_ON_INITIAL_NATIVE_CONTEXT); |
121 | |
122 | // allocate memory for various stackwalker buffers (StackFrameIterator, RegDisplay, Context) |
123 | AllocateStackwalk(ppSFIHandle, pThread, NULL, dwFlags); |
124 | |
125 | // initialize the the CONTEXT. |
126 | // SetStackWalk will initial the RegDisplay from this context. |
127 | GetContext(vmThread, pInternalContextBuffer); |
128 | |
129 | // initialize the stackwalker |
130 | SetStackWalkCurrentContext(vmThread, |
131 | *ppSFIHandle, |
132 | SET_CONTEXT_FLAG_ACTIVE_FRAME, |
133 | pInternalContextBuffer); |
134 | } |
135 | |
136 | // Delete the stackwalk object allocated by code:AllocateStackwalk |
137 | void DacDbiInterfaceImpl::DeleteStackWalk(StackWalkHandle ppSFIHandle) |
138 | { |
139 | DeleteStackwalk(ppSFIHandle); |
140 | } |
141 | |
142 | // Get the CONTEXT of the current frame at which the stackwalker is stopped. |
143 | void DacDbiInterfaceImpl::GetStackWalkCurrentContext(StackWalkHandle pSFIHandle, |
144 | DT_CONTEXT * pContext) |
145 | { |
146 | DD_ENTER_MAY_THROW; |
147 | |
148 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
149 | |
150 | GetStackWalkCurrentContext(pIter, pContext); |
151 | } |
152 | |
153 | // Internal Worker for GetStackWalkCurrentContext(). |
154 | void DacDbiInterfaceImpl::GetStackWalkCurrentContext(StackFrameIterator * pIter, |
155 | DT_CONTEXT * pContext) |
156 | { |
157 | // convert the current REGDISPLAY to a CONTEXT |
158 | CrawlFrame * pCF = &(pIter->m_crawl); |
159 | UpdateContextFromRegDisp(pCF->GetRegisterSet(), reinterpret_cast<T_CONTEXT *>(pContext)); |
160 | } |
161 | |
162 | |
163 | |
164 | // Set the stackwalker to the specified CONTEXT. |
165 | void DacDbiInterfaceImpl::SetStackWalkCurrentContext(VMPTR_Thread vmThread, |
166 | StackWalkHandle pSFIHandle, |
167 | CorDebugSetContextFlag flag, |
168 | DT_CONTEXT * pContext) |
169 | { |
170 | DD_ENTER_MAY_THROW; |
171 | |
172 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
173 | REGDISPLAY * pRD = GetRegDisplayFromHandle(pSFIHandle); |
174 | |
175 | #if defined(_DEBUG) |
176 | // The caller should have checked this already. |
177 | _ASSERTE(CheckContext(vmThread, pContext) == S_OK); |
178 | #endif // _DEBUG |
179 | |
180 | // DD can't keep pointers back into the RS address space. |
181 | // Allocate a context in DDImpl's memory space. DDImpl can't contain raw pointers back into |
182 | // the client space since that may not marshal. |
183 | T_CONTEXT * pContext2 = GetContextBufferFromHandle(pSFIHandle); |
184 | *pContext2 = *reinterpret_cast<T_CONTEXT *>(pContext); // memcpy |
185 | |
186 | // update the REGDISPLAY with the given CONTEXT. |
187 | // Be sure that the context is in DDImpl's memory space and not the Right-sides. |
188 | FillRegDisplay(pRD, pContext2); |
189 | BOOL fSuccess = pIter->ResetRegDisp(pRD, (flag == SET_CONTEXT_FLAG_ACTIVE_FRAME)); |
190 | if (!fSuccess) |
191 | { |
192 | // ResetRegDisp() may fail for the same reason Init() may fail, i.e. |
193 | // because the stackwalker tries to unwind one frame ahead of time, |
194 | // or because the stackwalker needs to filter out some frames based on the stackwalk flags. |
195 | ThrowHR(E_FAIL); |
196 | } |
197 | } |
198 | |
199 | |
200 | // Unwind the stackwalker to the next frame. |
201 | BOOL DacDbiInterfaceImpl::UnwindStackWalkFrame(StackWalkHandle pSFIHandle) |
202 | { |
203 | DD_ENTER_MAY_THROW; |
204 | |
205 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
206 | |
207 | CrawlFrame * pCF = &(pIter->m_crawl); |
208 | |
209 | if ((pIter->GetFrameState() == StackFrameIterator::SFITER_INITIAL_NATIVE_CONTEXT) || |
210 | (pIter->GetFrameState() == StackFrameIterator::SFITER_NATIVE_MARKER_FRAME)) |
211 | { |
212 | if (IsRuntimeUnwindableStub(GetControlPC(pCF->GetRegisterSet()))) |
213 | { |
214 | // This is a native stack frame which the StackFrameIterator doesn't know how to unwind. |
215 | // Use our special unwind logic. |
216 | return UnwindRuntimeStackFrame(pIter); |
217 | } |
218 | } |
219 | |
220 | // On x86, we need to adjust the stack pointer for the callee parameter adjustment. |
221 | // This requires us to save the number of bytes used for the stack parameters of the callee. |
222 | // Thus, let's save it here before we unwind. |
223 | DWORD cbStackParameterSize = 0; |
224 | if (pIter->GetFrameState() == StackFrameIterator::SFITER_FRAMELESS_METHOD) |
225 | { |
226 | cbStackParameterSize = GetStackParameterSize(pCF->GetCodeInfo()); |
227 | } |
228 | |
229 | // If the stackwalker is invalid to begin with, we'll just say that it is at the end of the stack. |
230 | BOOL fIsAtEndOfStack = TRUE; |
231 | while (pIter->IsValid()) |
232 | { |
233 | StackWalkAction swa = pIter->Next(); |
234 | |
235 | if (swa == SWA_FAILED) |
236 | { |
237 | // The stackwalker is valid to begin with, so this must be a failure case. |
238 | ThrowHR(E_FAIL); |
239 | } |
240 | else if (swa == SWA_CONTINUE) |
241 | { |
242 | if (pIter->GetFrameState() == StackFrameIterator::SFITER_DONE) |
243 | { |
244 | // We are at the end of the stack. We will break at the end of the loop and fIsAtEndOfStack |
245 | // will be TRUE. |
246 | } |
247 | else if ((pIter->GetFrameState() == StackFrameIterator::SFITER_FRAME_FUNCTION) || |
248 | (pIter->GetFrameState() == StackFrameIterator::SFITER_SKIPPED_FRAME_FUNCTION)) |
249 | { |
250 | // If the stackwalker is stopped at an explicit frame, unwind directly to the next frame. |
251 | // The V3 stackwalker doesn't stop on explicit frames. |
252 | continue; |
253 | } |
254 | else if (pIter->GetFrameState() == StackFrameIterator::SFITER_NO_FRAME_TRANSITION) |
255 | { |
256 | // No frame transitions are not exposed in V2. |
257 | // Just continue onto the next managed stack frame. |
258 | continue; |
259 | } |
260 | else |
261 | { |
262 | fIsAtEndOfStack = FALSE; |
263 | } |
264 | } |
265 | else |
266 | { |
267 | UNREACHABLE(); |
268 | } |
269 | |
270 | // If we get here, then we want to stop at this current frame. |
271 | break; |
272 | } |
273 | |
274 | if (fIsAtEndOfStack == FALSE) |
275 | { |
276 | // Currently the only case where we adjust the stack pointer is at M2U transitions. |
277 | if (pIter->GetFrameState() == StackFrameIterator::SFITER_NATIVE_MARKER_FRAME) |
278 | { |
279 | _ASSERTE(!pCF->IsActiveFrame()); |
280 | AdjustRegDisplayForStackParameter(pCF->GetRegisterSet(), |
281 | cbStackParameterSize, |
282 | pCF->IsActiveFrame(), |
283 | kFromManagedToUnmanaged); |
284 | } |
285 | } |
286 | |
287 | return (fIsAtEndOfStack == FALSE); |
288 | } |
289 | |
290 | bool g_fSkipStackCheck = false; |
291 | bool g_fSkipStackCheckInit = false; |
292 | |
293 | // Check whether the specified CONTEXT is valid. The only check we perform right now is whether the |
294 | // SP in the specified CONTEXT is in the stack range of the thread. |
295 | HRESULT DacDbiInterfaceImpl::CheckContext(VMPTR_Thread vmThread, |
296 | const DT_CONTEXT * pContext) |
297 | { |
298 | DD_ENTER_MAY_THROW; |
299 | |
300 | // If the SP in the CONTEXT isn't valid, then there's no point in checking. |
301 | if ((pContext->ContextFlags & CONTEXT_CONTROL) == 0) |
302 | { |
303 | return S_OK; |
304 | } |
305 | |
306 | if (!g_fSkipStackCheckInit) |
307 | { |
308 | g_fSkipStackCheck = (CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_DbgSkipStackCheck) != 0); |
309 | g_fSkipStackCheckInit = true; |
310 | } |
311 | |
312 | // Skip this check if the customer has set the reg key/env var. This is necessary for AutoCad. They |
313 | // enable fiber mode by calling the Win32 API ConvertThreadToFiber(), but when a managed debugger is |
314 | // attached, they don't actually call into our hosting APIs such as SwitchInLogicalThreadState(). This |
315 | // leads to the cached stack range on the Thread object being stale. |
316 | if (!g_fSkipStackCheck) |
317 | { |
318 | // We don't have the backing store boundaries stored on the thread, but this is just |
319 | // a sanity check anyway. |
320 | Thread * pThread = vmThread.GetDacPtr(); |
321 | PTR_VOID sp = GetSP(reinterpret_cast<const T_CONTEXT *>(pContext)); |
322 | |
323 | if ((sp < pThread->GetCachedStackLimit()) || (pThread->GetCachedStackBase() <= sp)) |
324 | { |
325 | return CORDBG_E_NON_MATCHING_CONTEXT; |
326 | } |
327 | } |
328 | |
329 | return S_OK; |
330 | } |
331 | |
332 | // Retrieve information about the current frame from the stackwalker. |
333 | IDacDbiInterface::FrameType DacDbiInterfaceImpl::GetStackWalkCurrentFrameInfo(StackWalkHandle pSFIHandle, |
334 | DebuggerIPCE_STRData * pFrameData) |
335 | { |
336 | DD_ENTER_MAY_THROW; |
337 | |
338 | _ASSERTE(pSFIHandle != NULL); |
339 | |
340 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
341 | |
342 | FrameType ftResult = kInvalid; |
343 | if (pIter->GetFrameState() == StackFrameIterator::SFITER_DONE) |
344 | { |
345 | _ASSERTE(!pIter->IsValid()); |
346 | ftResult = kAtEndOfStack; |
347 | } |
348 | else |
349 | { |
350 | BOOL fInitFrameData = FALSE; |
351 | switch (pIter->GetFrameState()) |
352 | { |
353 | case StackFrameIterator::SFITER_UNINITIALIZED: |
354 | ftResult = kInvalid; |
355 | break; |
356 | |
357 | case StackFrameIterator::SFITER_FRAMELESS_METHOD: |
358 | ftResult = kManagedStackFrame; |
359 | fInitFrameData = TRUE; |
360 | break; |
361 | |
362 | case StackFrameIterator::SFITER_FRAME_FUNCTION: |
363 | // |
364 | // fall through |
365 | // |
366 | case StackFrameIterator::SFITER_SKIPPED_FRAME_FUNCTION: |
367 | ftResult = kExplicitFrame; |
368 | fInitFrameData = TRUE; |
369 | break; |
370 | |
371 | case StackFrameIterator::SFITER_NO_FRAME_TRANSITION: |
372 | // no-frame transition represents an ExInfo for a native exception on x86. |
373 | // For all intents and purposes this should be treated just like another explicit frame. |
374 | ftResult = kExplicitFrame; |
375 | fInitFrameData = TRUE; |
376 | break; |
377 | |
378 | case StackFrameIterator::SFITER_NATIVE_MARKER_FRAME: |
379 | // |
380 | // fall through |
381 | // |
382 | case StackFrameIterator::SFITER_INITIAL_NATIVE_CONTEXT: |
383 | if (IsRuntimeUnwindableStub(GetControlPC(pIter->m_crawl.GetRegisterSet()))) |
384 | { |
385 | ftResult = kNativeRuntimeUnwindableStackFrame; |
386 | fInitFrameData = TRUE; |
387 | } |
388 | else |
389 | { |
390 | ftResult = kNativeStackFrame; |
391 | } |
392 | break; |
393 | |
394 | default: |
395 | UNREACHABLE(); |
396 | } |
397 | |
398 | if ((fInitFrameData == TRUE) && (pFrameData != NULL)) |
399 | { |
400 | InitFrameData(pIter, ftResult, pFrameData); |
401 | } |
402 | } |
403 | |
404 | return ftResult; |
405 | } |
406 | |
407 | //--------------------------------------------------------------------------------------- |
408 | // |
409 | // Return the number of internal frames on the specified thread. |
410 | // |
411 | // Arguments: |
412 | // vmThread - the thread to be walked |
413 | // |
414 | // Return Value: |
415 | // Return the number of interesting internal frames on the thread. |
416 | // |
417 | // Notes: |
418 | // Internal frames are interesting if they are not of type STUBFRAME_NONE. |
419 | // |
420 | |
421 | ULONG32 DacDbiInterfaceImpl::GetCountOfInternalFrames(VMPTR_Thread vmThread) |
422 | { |
423 | DD_ENTER_MAY_THROW; |
424 | |
425 | Thread * pThread = vmThread.GetDacPtr(); |
426 | Frame * pFrame = pThread->GetFrame(); |
427 | |
428 | // We could call EnumerateInternalFrames() here, but it would be a lot of overhead for what we need. |
429 | ULONG32 uCount = 0; |
430 | while (pFrame != FRAME_TOP) |
431 | { |
432 | CorDebugInternalFrameType ift = GetInternalFrameType(pFrame); |
433 | if (ift != STUBFRAME_NONE) |
434 | { |
435 | uCount++; |
436 | } |
437 | pFrame = pFrame->Next(); |
438 | } |
439 | return uCount; |
440 | } |
441 | |
442 | //--------------------------------------------------------------------------------------- |
443 | // |
444 | // Enumerate the internal frames on the specified thread and invoke the provided callback on each of them. |
445 | // |
446 | // Arguments: |
447 | // vmThread - the thread to be walked |
448 | // fpCallback - callback function to be invoked for each interesting internal frame |
449 | // pUserData - user-defined custom data to be passed to the callback |
450 | // |
451 | |
452 | void DacDbiInterfaceImpl::EnumerateInternalFrames(VMPTR_Thread vmThread, |
453 | FP_INTERNAL_FRAME_ENUMERATION_CALLBACK fpCallback, |
454 | void * pUserData) |
455 | { |
456 | DD_ENTER_MAY_THROW; |
457 | |
458 | DebuggerIPCE_STRData frameData; |
459 | |
460 | Thread * pThread = vmThread.GetDacPtr(); |
461 | Frame * pFrame = pThread->GetFrame(); |
462 | AppDomain * pAppDomain = pThread->GetDomain(INDEBUG(TRUE)); |
463 | |
464 | // This used to be only true for Enter-Managed chains. |
465 | // Since we don't have chains anymore, this can always be false. |
466 | frameData.quicklyUnwound = false; |
467 | frameData.eType = DebuggerIPCE_STRData::cStubFrame; |
468 | |
469 | while (pFrame != FRAME_TOP) |
470 | { |
471 | // check if the internal frame is interesting |
472 | frameData.stubFrame.frameType = GetInternalFrameType(pFrame); |
473 | if (frameData.stubFrame.frameType != STUBFRAME_NONE) |
474 | { |
475 | frameData.fp = FramePointer::MakeFramePointer(PTR_HOST_TO_TADDR(pFrame)); |
476 | |
477 | frameData.vmCurrentAppDomainToken.SetHostPtr(pAppDomain); |
478 | |
479 | MethodDesc * pMD = pFrame->GetFunction(); |
480 | #if defined(FEATURE_COMINTEROP) |
481 | if (frameData.stubFrame.frameType == STUBFRAME_U2M) |
482 | { |
483 | _ASSERTE(pMD == NULL); |
484 | |
485 | // U2M transition frame generally don't store the target MD because we know what the target |
486 | // is by looking at the callee stack frame. However, for reverse COM interop, we can try |
487 | // to get the MD for the interface. |
488 | // |
489 | // Note that some reverse COM interop cases don't have an intermediate interface MD, so |
490 | // pMD may still be NULL. |
491 | // |
492 | // Even if there is an MD on the ComMethodFrame, it could be in a different appdomain than |
493 | // the ComMethodFrame itself. The only known scenario is a cross-appdomain reverse COM |
494 | // interop call. We need to check for this case. The end result is that GetFunction() and |
495 | // GetFunctionToken() on ICDInternalFrame will return NULL. |
496 | |
497 | // Minidumps without full memory don't guarantee to capture the CCW since we can do without |
498 | // it. In this case, pMD will remain NULL. |
499 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY |
500 | { |
501 | if (pFrame->GetVTablePtr() == ComMethodFrame::GetMethodFrameVPtr()) |
502 | { |
503 | ComMethodFrame * pCOMFrame = dac_cast<PTR_ComMethodFrame>(pFrame); |
504 | PTR_VOID pUnkStackSlot = pCOMFrame->GetPointerToArguments(); |
505 | PTR_IUnknown pUnk = dac_cast<PTR_IUnknown>(*dac_cast<PTR_TADDR>(pUnkStackSlot)); |
506 | ComCallWrapper * pCCW = ComCallWrapper::GetWrapperFromIP(pUnk); |
507 | |
508 | ComCallMethodDesc * pCMD = NULL; |
509 | pCMD = dac_cast<PTR_ComCallMethodDesc>(pCOMFrame->ComMethodFrame::GetDatum()); |
510 | pMD = pCMD->GetInterfaceMethodDesc(); |
511 | } |
512 | } |
513 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY |
514 | } |
515 | #endif // FEATURE_COMINTEROP |
516 | |
517 | Module * pModule = (pMD ? pMD->GetModule() : NULL); |
518 | DomainFile * pDomainFile = (pModule ? pModule->GetDomainFile(pAppDomain) : NULL); |
519 | |
520 | if (frameData.stubFrame.frameType == STUBFRAME_FUNC_EVAL) |
521 | { |
522 | FuncEvalFrame * pFEF = dac_cast<PTR_FuncEvalFrame>(pFrame); |
523 | DebuggerEval * pDE = pFEF->GetDebuggerEval(); |
524 | |
525 | frameData.stubFrame.funcMetadataToken = pDE->m_methodToken; |
526 | frameData.stubFrame.vmDomainFile.SetHostPtr( |
527 | pDE->m_debuggerModule ? pDE->m_debuggerModule->GetDomainFile() : NULL); |
528 | frameData.stubFrame.vmMethodDesc = VMPTR_MethodDesc::NullPtr(); |
529 | } |
530 | else |
531 | { |
532 | frameData.stubFrame.funcMetadataToken = (pMD == NULL ? NULL : pMD->GetMemberDef()); |
533 | frameData.stubFrame.vmDomainFile.SetHostPtr(pDomainFile); |
534 | frameData.stubFrame.vmMethodDesc.SetHostPtr(pMD); |
535 | } |
536 | |
537 | // invoke the callback |
538 | fpCallback(&frameData, pUserData); |
539 | } |
540 | |
541 | // update the current appdomain if necessary |
542 | AppDomain * pRetDomain = pFrame->GetReturnDomain(); |
543 | if (pRetDomain != NULL) |
544 | { |
545 | pAppDomain = pRetDomain; |
546 | } |
547 | |
548 | // move on to the next internal frame |
549 | pFrame = pFrame->Next(); |
550 | } |
551 | } |
552 | |
553 | // Given the FramePointer of the parent frame and the FramePointer of the current frame, |
554 | // check if the current frame is the parent frame. |
555 | BOOL DacDbiInterfaceImpl::IsMatchingParentFrame(FramePointer fpToCheck, FramePointer fpParent) |
556 | { |
557 | DD_ENTER_MAY_THROW; |
558 | |
559 | #ifdef WIN64EXCEPTIONS |
560 | StackFrame sfToCheck = StackFrame((UINT_PTR)fpToCheck.GetSPValue()); |
561 | |
562 | StackFrame sfParent = StackFrame((UINT_PTR)fpParent.GetSPValue()); |
563 | |
564 | // Ask the ExceptionTracker to figure out the answer. |
565 | // Don't try to compare the StackFrames/FramePointers ourselves. |
566 | return ExceptionTracker::IsUnwoundToTargetParentFrame(sfToCheck, sfParent); |
567 | |
568 | #else // !WIN64EXCEPTIONS |
569 | return FALSE; |
570 | |
571 | #endif // WIN64EXCEPTIONS |
572 | } |
573 | |
574 | // Return the stack parameter size of the given method. |
575 | ULONG32 DacDbiInterfaceImpl::GetStackParameterSize(CORDB_ADDRESS controlPC) |
576 | { |
577 | DD_ENTER_MAY_THROW; |
578 | |
579 | PCODE currentPC = PCODE(controlPC); |
580 | |
581 | EECodeInfo codeInfo(currentPC); |
582 | return GetStackParameterSize(&codeInfo); |
583 | } |
584 | |
585 | // Return the FramePointer of the current frame at which the stackwalker is stopped. |
586 | FramePointer DacDbiInterfaceImpl::GetFramePointer(StackWalkHandle pSFIHandle) |
587 | { |
588 | DD_ENTER_MAY_THROW; |
589 | |
590 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
591 | return GetFramePointerWorker(pIter); |
592 | } |
593 | |
594 | // Internal helper for GetFramePointer. |
595 | FramePointer DacDbiInterfaceImpl::GetFramePointerWorker(StackFrameIterator * pIter) |
596 | { |
597 | CrawlFrame * pCF = &(pIter->m_crawl); |
598 | REGDISPLAY * pRD = pCF->GetRegisterSet(); |
599 | |
600 | FramePointer fp; |
601 | switch (pIter->GetFrameState()) |
602 | { |
603 | // For managed methods, we have the full CONTEXT. Additionally, we also have the caller CONTEXT |
604 | // on WIN64. |
605 | case StackFrameIterator::SFITER_FRAMELESS_METHOD: |
606 | fp = FramePointer::MakeFramePointer(GetRegdisplayStackMark(pRD)); |
607 | break; |
608 | |
609 | // In these cases, we only have the full CONTEXT, not the caller CONTEXT. |
610 | case StackFrameIterator::SFITER_NATIVE_MARKER_FRAME: |
611 | // |
612 | // fall through |
613 | // |
614 | case StackFrameIterator::SFITER_INITIAL_NATIVE_CONTEXT: |
615 | fp = FramePointer::MakeFramePointer(GetRegdisplayStackMark(pRD)); |
616 | break; |
617 | |
618 | // In these cases, we use the address of the explicit frame as the frame marker. |
619 | case StackFrameIterator::SFITER_FRAME_FUNCTION: |
620 | // |
621 | // fall through |
622 | // |
623 | case StackFrameIterator::SFITER_SKIPPED_FRAME_FUNCTION: |
624 | fp = FramePointer::MakeFramePointer(PTR_HOST_TO_TADDR(pCF->GetFrame())); |
625 | break; |
626 | |
627 | // No-frame transition represents an ExInfo for a native exception on x86. |
628 | // For all intents and purposes this should be treated just like another explicit frame. |
629 | case StackFrameIterator::SFITER_NO_FRAME_TRANSITION: |
630 | fp = FramePointer::MakeFramePointer(pCF->GetNoFrameTransitionMarker()); |
631 | break; |
632 | |
633 | case StackFrameIterator::SFITER_UNINITIALIZED: |
634 | // |
635 | // fall through |
636 | // |
637 | default: |
638 | UNREACHABLE(); |
639 | } |
640 | |
641 | return fp; |
642 | } |
643 | |
644 | // Return TRUE if the specified CONTEXT is the CONTEXT of the leaf frame. |
645 | // @dbgtodo filter CONTEXT - Currently we check for the filter CONTEXT first. |
646 | BOOL DacDbiInterfaceImpl::IsLeafFrame(VMPTR_Thread vmThread, |
647 | const DT_CONTEXT * pContext) |
648 | { |
649 | DD_ENTER_MAY_THROW; |
650 | |
651 | DT_CONTEXT ctxLeaf; |
652 | GetContext(vmThread, &ctxLeaf); |
653 | |
654 | // Call a platform-specific helper to compare the two contexts. |
655 | return CompareControlRegisters(pContext, &ctxLeaf); |
656 | } |
657 | |
658 | // This is a simple helper function to convert a CONTEXT to a DebuggerREGDISPLAY. We need to do this |
659 | // inside DDI because the RS has no notion of REGDISPLAY. |
660 | void DacDbiInterfaceImpl::ConvertContextToDebuggerRegDisplay(const DT_CONTEXT * pInContext, |
661 | DebuggerREGDISPLAY * pOutDRD, |
662 | BOOL fActive) |
663 | { |
664 | DD_ENTER_MAY_THROW; |
665 | |
666 | // This is a bit cumbersome. First we need to convert the CONTEXT into a REGDISPLAY. Then we need |
667 | // to convert the REGDISPLAY to a DebuggerREGDISPLAY. |
668 | REGDISPLAY rd; |
669 | FillRegDisplay(&rd, reinterpret_cast<T_CONTEXT *>(const_cast<DT_CONTEXT *>(pInContext))); |
670 | SetDebuggerREGDISPLAYFromREGDISPLAY(pOutDRD, &rd); |
671 | } |
672 | |
673 | //--------------------------------------------------------------------------------------- |
674 | // |
675 | // Fill in the structure with information about the current frame at which the stackwalker is stopped. |
676 | // |
677 | // Arguments: |
678 | // pIter - the stackwalker |
679 | // pFrameData - the structure to be filled out |
680 | // |
681 | |
682 | void DacDbiInterfaceImpl::InitFrameData(StackFrameIterator * pIter, |
683 | FrameType ft, |
684 | DebuggerIPCE_STRData * pFrameData) |
685 | { |
686 | CrawlFrame * pCF = &(pIter->m_crawl); |
687 | |
688 | // |
689 | // do common initialization of DebuggerIPCE_STRData for both managed stack frames and explicit frames |
690 | // |
691 | |
692 | pFrameData->fp = GetFramePointerWorker(pIter); |
693 | |
694 | // This used to be only true for Enter-Managed chains. |
695 | // Since we don't have chains anymore, this can always be false. |
696 | pFrameData->quicklyUnwound = false; |
697 | |
698 | AppDomain * pAppDomain = pCF->GetAppDomain(); |
699 | pFrameData->vmCurrentAppDomainToken.SetHostPtr(pAppDomain); |
700 | |
701 | if (ft == kNativeRuntimeUnwindableStackFrame) |
702 | { |
703 | pFrameData->eType = DebuggerIPCE_STRData::cRuntimeNativeFrame; |
704 | |
705 | GetStackWalkCurrentContext(pIter, &(pFrameData->ctx)); |
706 | } |
707 | else if (ft == kManagedStackFrame) |
708 | { |
709 | MethodDesc * pMD = pCF->GetFunction(); |
710 | Module * pModule = (pMD ? pMD->GetModule() : NULL); |
711 | // Although MiniDumpNormal tries to dump all AppDomains, it's possible |
712 | // target corruption will keep one from being present. This should mean |
713 | // we'll just fail later, but struggle on for now. |
714 | DomainFile *pDomainFile = NULL; |
715 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY |
716 | { |
717 | pDomainFile = (pModule ? pModule->GetDomainFile(pAppDomain) : NULL); |
718 | _ASSERTE(pDomainFile != NULL); |
719 | } |
720 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY |
721 | |
722 | // |
723 | // This is a managed stack frame. |
724 | // |
725 | |
726 | _ASSERTE(pMD != NULL); |
727 | _ASSERTE(pModule != NULL); |
728 | |
729 | // |
730 | // initialize the rest of the DebuggerIPCE_STRData |
731 | // |
732 | |
733 | pFrameData->eType = DebuggerIPCE_STRData::cMethodFrame; |
734 | |
735 | SetDebuggerREGDISPLAYFromREGDISPLAY(&(pFrameData->rd), pCF->GetRegisterSet()); |
736 | |
737 | GetStackWalkCurrentContext(pIter, &(pFrameData->ctx)); |
738 | |
739 | // |
740 | // initialize the fields in DebuggerIPCE_STRData::v |
741 | // |
742 | |
743 | // These fields will be filled in later. We don't have the sequence point mapping information here. |
744 | pFrameData->v.ILOffset = (SIZE_T)(-1); |
745 | pFrameData->v.mapping = MAPPING_NO_INFO; |
746 | |
747 | // Check if this is a vararg method by getting the managed calling convention from the signature. |
748 | // Strictly speaking, we can do this in CordbJITILFrame::Init(), but it's just easier and more |
749 | // efficiently to do it here. CordbJITILFrame::Init() will initialize the other vararg-related |
750 | // fields. We don't have the native var info here to fully initialize everything. |
751 | pFrameData->v.fVarArgs = (pMD->IsVarArg() == TRUE); |
752 | |
753 | pFrameData->v.fNoMetadata = (pMD->IsNoMetadata() == TRUE); |
754 | |
755 | pFrameData->v.taAmbientESP = pCF->GetAmbientSPFromCrawlFrame(); |
756 | if (pMD->IsSharedByGenericInstantiations()) |
757 | { |
758 | // This method has a generic type token which is required to figure out the exact instantiation |
759 | // of the method. CrawlFrame::GetExactGenericArgsToken() can't always successfully retrieve |
760 | // the token because the JIT doesn't generate the required information all the time. As such, |
761 | // we need to save the variable index of the generic type token in order to do the look up later. |
762 | ALLOW_DATATARGET_MISSING_MEMORY( |
763 | pFrameData->v.exactGenericArgsToken = (GENERICS_TYPE_TOKEN)(dac_cast<TADDR>(pCF->GetExactGenericArgsToken())); |
764 | ); |
765 | |
766 | if (pMD->AcquiresInstMethodTableFromThis()) |
767 | { |
768 | // The generic type token is the "this" object. |
769 | pFrameData->v.dwExactGenericArgsTokenIndex = 0; |
770 | } |
771 | else |
772 | { |
773 | // The generic type token is one of the secret arguments. |
774 | pFrameData->v.dwExactGenericArgsTokenIndex = (DWORD)ICorDebugInfo::TYPECTXT_ILNUM; |
775 | } |
776 | } |
777 | else |
778 | { |
779 | pFrameData->v.exactGenericArgsToken = NULL; |
780 | pFrameData->v.dwExactGenericArgsTokenIndex = (DWORD)ICorDebugInfo::MAX_ILNUM; |
781 | } |
782 | |
783 | // |
784 | // initialize the DebuggerIPCE_FuncData and DebuggerIPCE_JITFuncData |
785 | // |
786 | |
787 | DebuggerIPCE_FuncData * pFuncData = &(pFrameData->v.funcData); |
788 | DebuggerIPCE_JITFuncData * pJITFuncData = &(pFrameData->v.jitFuncData); |
789 | |
790 | // |
791 | // initialize the "easy" fields of DebuggerIPCE_FuncData |
792 | // |
793 | |
794 | pFuncData->funcMetadataToken = pMD->GetMemberDef(); |
795 | pFuncData->vmDomainFile.SetHostPtr(pDomainFile); |
796 | |
797 | // PERF: this is expensive to get so I stopped fetching it eagerly |
798 | // It is only needed if we haven't already got a cached copy |
799 | pFuncData->classMetadataToken = mdTokenNil; |
800 | |
801 | // |
802 | // initialize the remaining fields of DebuggerIPCE_FuncData to the default values |
803 | // |
804 | |
805 | pFuncData->ilStartAddress = NULL; |
806 | pFuncData->ilSize = 0; |
807 | pFuncData->currentEnCVersion = CorDB_DEFAULT_ENC_FUNCTION_VERSION; |
808 | pFuncData->localVarSigToken = mdSignatureNil; |
809 | |
810 | // |
811 | // inititalize the fields of DebuggerIPCE_JITFuncData |
812 | // |
813 | |
814 | // For MiniDumpNormal, we do not guarantee method region info for all JIT tokens |
815 | // is present in the dump. |
816 | ALLOW_DATATARGET_MISSING_MEMORY( |
817 | pJITFuncData->nativeStartAddressPtr = PCODEToPINSTR(pCF->GetCodeInfo()->GetStartAddress()); |
818 | ); |
819 | |
820 | // PERF: this is expensive to get so I stopped fetching it eagerly |
821 | // It is only needed if we haven't already got a cached copy |
822 | pJITFuncData->nativeHotSize = 0; |
823 | pJITFuncData->nativeStartAddressColdPtr = 0; |
824 | pJITFuncData->nativeColdSize = 0; |
825 | |
826 | pJITFuncData->nativeOffset = pCF->GetRelOffset(); |
827 | |
828 | // Here we detect (and set the appropriate flag) if the nativeOffset in the current frame points to the return address of IL_Throw() |
829 | // (or other exception related JIT helpers like IL_Throw, IL_Rethrow, JIT_RngChkFail, IL_VerificationError, JIT_Overflow etc). |
830 | // Since return addres point to the next(!) instruction after [call IL_Throw] this sometimes can lead to incorrect exception stacktraces |
831 | // where a next source line is spotted as an exception origin. This happends when the next instruction after [call IL_Throw] belongs to |
832 | // a sequence point and a source line different from a sequence point and a source line of [call IL_Throw]. |
833 | // Later on this flag is used in order to adjust nativeOffset and make ICorDebugILFrame::GetIP return IL offset withing |
834 | // the same sequence point as an actuall IL throw instruction. |
835 | |
836 | // Here is how we detect it: |
837 | // We can assume that nativeOffset points to an the instruction after [call IL_Throw] when these conditioins are met: |
838 | // 1. pCF->IsInterrupted() - Exception has been thrown by this managed frame (frame attr FRAME_ATTR_EXCEPTION) |
839 | // 2. !pCF->HasFaulted() - It wasn't a "hardware" exception (Access violation, dev by 0, etc.) |
840 | // 3. !pCF->IsIPadjusted() - It hasn't been previously adjusted to point to [call IL_Throw] |
841 | // 4. pJITFuncData->nativeOffset != 0 - nativeOffset contains something that looks like a real return address. |
842 | pJITFuncData->jsutAfterILThrow = pCF->IsInterrupted() |
843 | && !pCF->HasFaulted() |
844 | && !pCF->IsIPadjusted() |
845 | && pJITFuncData->nativeOffset != 0; |
846 | |
847 | pJITFuncData->nativeCodeJITInfoToken.Set(NULL); |
848 | pJITFuncData->vmNativeCodeMethodDescToken.SetHostPtr(pMD); |
849 | |
850 | InitParentFrameInfo(pCF, pJITFuncData); |
851 | |
852 | ALLOW_DATATARGET_MISSING_MEMORY( |
853 | pJITFuncData->isInstantiatedGeneric = pMD->HasClassOrMethodInstantiation(); |
854 | ); |
855 | pJITFuncData->enCVersion = CorDB_DEFAULT_ENC_FUNCTION_VERSION; |
856 | |
857 | // PERF: this is expensive to get so I stopped fetching it eagerly |
858 | // It is only needed if we haven't already got a cached copy |
859 | pFuncData->localVarSigToken = 0; |
860 | pFuncData->ilStartAddress = 0; |
861 | pFuncData->ilSize = 0; |
862 | |
863 | |
864 | // See the comment for LookupEnCVersions(). |
865 | // PERF: this is expensive to get so I stopped fetching it eagerly |
866 | pFuncData->currentEnCVersion = 0; |
867 | pJITFuncData->enCVersion = 0; |
868 | } |
869 | else |
870 | { |
871 | _ASSERTE(!"DDII::InitFrameData() - We should never stop at internal frames." ); |
872 | ThrowHR(CORDBG_E_TARGET_INCONSISTENT); |
873 | } |
874 | } |
875 | |
876 | //--------------------------------------------------------------------------------------- |
877 | // |
878 | // Initialize the address and the size of the jitted code, including both hot and cold regions. |
879 | // |
880 | // Arguments: |
881 | // methodToken - METHODTOKEN of the method in question; this should actually be the CodeHeader address |
882 | // pJITFuncData - structure to be filled out |
883 | // |
884 | |
885 | void DacDbiInterfaceImpl::InitNativeCodeAddrAndSize(TADDR taStartAddr, |
886 | DebuggerIPCE_JITFuncData * pJITFuncData) |
887 | { |
888 | PTR_CORDB_ADDRESS_TYPE pAddr = dac_cast<PTR_CORDB_ADDRESS_TYPE>(taStartAddr); |
889 | CodeRegionInfo crInfo = CodeRegionInfo::GetCodeRegionInfo(NULL, NULL, pAddr); |
890 | |
891 | pJITFuncData->nativeStartAddressPtr = PCODEToPINSTR(crInfo.getAddrOfHotCode()); |
892 | pJITFuncData->nativeHotSize = crInfo.getSizeOfHotCode(); |
893 | |
894 | pJITFuncData->nativeStartAddressColdPtr = PCODEToPINSTR(crInfo.getAddrOfColdCode()); |
895 | pJITFuncData->nativeColdSize = crInfo.getSizeOfColdCode(); |
896 | } |
897 | |
898 | //--------------------------------------------------------------------------------------- |
899 | // |
900 | // Initialize the funclet-related fields of DebuggerIPCE_JITFuncData. This is an nop on non-WIN64 platforms. |
901 | // |
902 | // Arguments: |
903 | // pCF - the CrawlFrame for the current frame |
904 | // pJITFuncData - the structure to be filled out |
905 | // |
906 | |
907 | void DacDbiInterfaceImpl::InitParentFrameInfo(CrawlFrame * pCF, |
908 | DebuggerIPCE_JITFuncData * pJITFuncData) |
909 | { |
910 | #ifdef WIN64EXCEPTIONS |
911 | pJITFuncData->fIsFilterFrame = pCF->IsFilterFunclet(); |
912 | |
913 | if (pCF->IsFunclet()) |
914 | { |
915 | DWORD dwParentOffset; |
916 | StackFrame sfParent = ExceptionTracker::FindParentStackFrameEx(pCF, &dwParentOffset, NULL); |
917 | |
918 | // |
919 | // For funclets, fpParentOrSelf is the FramePointer of the parent. |
920 | // Don't mess around with this FramePointer. The only thing we can do with it is to pass it back |
921 | // to the ExceptionTracker when we are checking if a particular frame is the parent frame. |
922 | // |
923 | |
924 | pJITFuncData->fpParentOrSelf = FramePointer::MakeFramePointer(sfParent.SP); |
925 | pJITFuncData->parentNativeOffset = dwParentOffset; |
926 | } |
927 | else |
928 | { |
929 | StackFrame sfSelf = ExceptionTracker::GetStackFrameForParentCheck(pCF); |
930 | |
931 | // |
932 | // For non-funclets, fpParentOrSelf is the FramePointer of the current frame itself. |
933 | // Don't mess around with this FramePointer. The only thing we can do with it is to pass it back |
934 | // to the ExceptionTracker when we are checking if a particular frame is the parent frame. |
935 | // |
936 | |
937 | pJITFuncData->fpParentOrSelf = FramePointer::MakeFramePointer(sfSelf.SP); |
938 | pJITFuncData->parentNativeOffset = 0; |
939 | } |
940 | #endif // WIN64EXCEPTIONS |
941 | } |
942 | |
943 | // Return the stack parameter size of the given method. |
944 | // Refer to the full comment for the overloaded version. |
945 | ULONG32 DacDbiInterfaceImpl::GetStackParameterSize(EECodeInfo * pCodeInfo) |
946 | { |
947 | return pCodeInfo->GetCodeManager()->GetStackParameterSize(pCodeInfo); |
948 | } |
949 | |
950 | |
951 | //--------------------------------------------------------------------------------------- |
952 | // |
953 | // Adjust the stack pointer in the CONTEXT for the stack parameters. |
954 | // This is a nop on non-x86 platforms. |
955 | // |
956 | // Arguments: |
957 | // pRD - the REGDISPLAY to be adjusted |
958 | // cbStackParameterSize - the number of bytes for the stack parameters |
959 | // fIsActiveFrame - whether the CONTEXT is for an active frame |
960 | // StackAdjustmentDirection - whether we are changing a CONTEXT from the managed convention |
961 | // to the unmanaged convention |
962 | // |
963 | // Notes: |
964 | // Consider this code: |
965 | // |
966 | // push 1 |
967 | // push 2 |
968 | // call Foo |
969 | // -> inc eax |
970 | // |
971 | // Here we are assuming that the return instruction in Foo() pops the stack arguments. |
972 | // |
973 | // Suppose the IP in the CONTEXT is at the arrow. The question is, where should the stack pointer be? |
974 | // |
975 | // 0x0 ret addr for Foo |
976 | // 0x4 2 |
977 | // 0x8 1 |
978 | // 0xc ..... |
979 | // |
980 | // If the CONTEXT is the active frame, i.e. the IP is the active instruction, |
981 | // not the instruction at the return address, then the SP should be at 0xc. |
982 | // However, if the CONTEXT is not active, then the SP can be at either 0x4 or 0xc, depending on |
983 | // the convention used by the stackwalker. The managed stackwalker reports 0xc, but dbghelp reports |
984 | // 0x4. To bridge the gap we have to shim it in the DDI. |
985 | // |
986 | // Currently, we have no way to reliably shim the CONTEXT in all cases. Consider this stack, |
987 | // where U* are native stack frames and M* are managed stack frames: |
988 | // |
989 | // [leaf] |
990 | // U2 |
991 | // U1 |
992 | // ------- (M2U transition) |
993 | // M2 |
994 | // M1 |
995 | // M0 |
996 | // ------- (U2M transition) |
997 | // U0 |
998 | // [root] |
999 | // |
1000 | // There are only two transition cases where we can reliably adjust for the callee stack parameter size: |
1001 | // 1) when the debugger calls SetContext() with the CONTEXT of the first managed stack frame in a |
1002 | // managed stack chain (i.e. SetContext() with M2's CONTEXT) |
1003 | // - the M2U transition is protected by an explicit frame (aka Frame-chain frame) |
1004 | // 2) when the debugger calls GetContext() on the first native stack frame in a native stack chain |
1005 | // (i.e. GetContext() at U0) |
1006 | // - we unwind from M0 to U0, so we know the stack parameter size of M0 |
1007 | // |
1008 | // If we want to do the adjustment in all cases, we need to ask the JIT to store the callee stack |
1009 | // parameter size in either the unwind info. |
1010 | // |
1011 | |
1012 | void DacDbiInterfaceImpl::AdjustRegDisplayForStackParameter(REGDISPLAY * pRD, |
1013 | DWORD cbStackParameterSize, |
1014 | BOOL fIsActiveFrame, |
1015 | StackAdjustmentDirection direction) |
1016 | { |
1017 | #if defined(_TARGET_X86_) |
1018 | // If the CONTEXT is active then no adjustment is needed. |
1019 | if (!fIsActiveFrame) |
1020 | { |
1021 | UINT_PTR sp = GetRegdisplaySP(pRD); |
1022 | if (direction == kFromManagedToUnmanaged) |
1023 | { |
1024 | // The CONTEXT comes from the managed world. |
1025 | sp -= cbStackParameterSize; |
1026 | } |
1027 | else |
1028 | { |
1029 | _ASSERTE(!"Currently, we should not hit this case.\n" ); |
1030 | |
1031 | // The CONTEXT comes from the unmanaged world. |
1032 | sp += cbStackParameterSize; |
1033 | } |
1034 | SetRegdisplaySP(pRD, reinterpret_cast<LPVOID>(sp)); |
1035 | } |
1036 | #endif // _TARGET_X86_ |
1037 | } |
1038 | |
1039 | //--------------------------------------------------------------------------------------- |
1040 | // |
1041 | // Given an explicit frame, return its frame type in terms of CorDebugInternalFrameType. |
1042 | // |
1043 | // Arguments: |
1044 | // pFrame - the explicit frame in question |
1045 | // |
1046 | // Return Value: |
1047 | // Return the CorDebugInternalFrameType of the explicit frame |
1048 | // |
1049 | // Notes: |
1050 | // I wish this function were simpler, but it's not. The logic in this function is adopted |
1051 | // from the logic in the old in-proc debugger stackwalker. |
1052 | // |
1053 | |
1054 | CorDebugInternalFrameType DacDbiInterfaceImpl::GetInternalFrameType(Frame * pFrame) |
1055 | { |
1056 | CorDebugInternalFrameType resultType = STUBFRAME_NONE; |
1057 | |
1058 | Frame::ETransitionType tt = pFrame->GetTransitionType(); |
1059 | Frame::Interception it = pFrame->GetInterception(); |
1060 | int ft = pFrame->GetFrameType(); |
1061 | |
1062 | switch (tt) |
1063 | { |
1064 | case Frame::TT_NONE: |
1065 | if (it == Frame::INTERCEPTION_CLASS_INIT) |
1066 | { |
1067 | resultType = STUBFRAME_CLASS_INIT; |
1068 | } |
1069 | else if (it == Frame::INTERCEPTION_EXCEPTION) |
1070 | { |
1071 | resultType = STUBFRAME_EXCEPTION; |
1072 | } |
1073 | else if (it == Frame::INTERCEPTION_SECURITY) |
1074 | { |
1075 | resultType = STUBFRAME_SECURITY; |
1076 | } |
1077 | else if (it == Frame::INTERCEPTION_PRESTUB) |
1078 | { |
1079 | resultType = STUBFRAME_JIT_COMPILATION; |
1080 | } |
1081 | else |
1082 | { |
1083 | if (ft == Frame::TYPE_FUNC_EVAL) |
1084 | { |
1085 | resultType = STUBFRAME_FUNC_EVAL; |
1086 | } |
1087 | else if (ft == Frame::TYPE_EXIT) |
1088 | { |
1089 | if ((pFrame->GetVTablePtr() != InlinedCallFrame::GetMethodFrameVPtr()) || |
1090 | InlinedCallFrame::FrameHasActiveCall(pFrame)) |
1091 | { |
1092 | resultType = STUBFRAME_M2U; |
1093 | } |
1094 | } |
1095 | } |
1096 | break; |
1097 | |
1098 | case Frame::TT_M2U: |
1099 | // Refer to the comment in DebuggerWalkStackProc() for StubDispatchFrame. |
1100 | if (pFrame->GetVTablePtr() != StubDispatchFrame::GetMethodFrameVPtr()) |
1101 | { |
1102 | if (it == Frame::INTERCEPTION_SECURITY) |
1103 | { |
1104 | resultType = STUBFRAME_SECURITY; |
1105 | } |
1106 | else |
1107 | { |
1108 | resultType = STUBFRAME_M2U; |
1109 | } |
1110 | } |
1111 | break; |
1112 | |
1113 | case Frame::TT_U2M: |
1114 | resultType = STUBFRAME_U2M; |
1115 | break; |
1116 | |
1117 | case Frame::TT_AppDomain: |
1118 | resultType = STUBFRAME_APPDOMAIN_TRANSITION; |
1119 | break; |
1120 | |
1121 | case Frame::TT_InternalCall: |
1122 | if (it == Frame::INTERCEPTION_EXCEPTION) |
1123 | { |
1124 | resultType = STUBFRAME_EXCEPTION; |
1125 | } |
1126 | else |
1127 | { |
1128 | resultType = STUBFRAME_INTERNALCALL; |
1129 | } |
1130 | break; |
1131 | |
1132 | default: |
1133 | UNREACHABLE(); |
1134 | break; |
1135 | } |
1136 | |
1137 | return resultType; |
1138 | } |
1139 | |
1140 | //--------------------------------------------------------------------------------------- |
1141 | // |
1142 | // This is just a simpler helper function to convert a REGDISPLAY to a CONTEXT. |
1143 | // |
1144 | // Arguments: |
1145 | // pRegDisp - the REGDISPLAY to be converted |
1146 | // pContext - the buffer for storing the converted CONTEXT |
1147 | // |
1148 | |
1149 | void DacDbiInterfaceImpl::UpdateContextFromRegDisp(REGDISPLAY * pRegDisp, |
1150 | T_CONTEXT * pContext) |
1151 | { |
1152 | #if defined(_TARGET_X86_) && !defined(WIN64EXCEPTIONS) |
1153 | // Do a partial copy first. |
1154 | pContext->ContextFlags = (CONTEXT_INTEGER | CONTEXT_CONTROL); |
1155 | |
1156 | pContext->Edi = *pRegDisp->GetEdiLocation(); |
1157 | pContext->Esi = *pRegDisp->GetEsiLocation(); |
1158 | pContext->Ebx = *pRegDisp->GetEbxLocation(); |
1159 | pContext->Ebp = *pRegDisp->GetEbpLocation(); |
1160 | pContext->Eax = *pRegDisp->GetEaxLocation(); |
1161 | pContext->Ecx = *pRegDisp->GetEcxLocation(); |
1162 | pContext->Edx = *pRegDisp->GetEdxLocation(); |
1163 | pContext->Esp = pRegDisp->SP; |
1164 | pContext->Eip = pRegDisp->ControlPC; |
1165 | |
1166 | // If we still have the pointer to the leaf CONTEXT, and the leaf CONTEXT is the same as the CONTEXT for |
1167 | // the current frame (i.e. the stackwalker is at the leaf frame), then we do a full copy. |
1168 | if ((pRegDisp->pContext != NULL) && |
1169 | (CompareControlRegisters(const_cast<const DT_CONTEXT *>(reinterpret_cast<DT_CONTEXT *>(pContext)), |
1170 | const_cast<const DT_CONTEXT *>(reinterpret_cast<DT_CONTEXT *>(pRegDisp->pContext))))) |
1171 | { |
1172 | *pContext = *pRegDisp->pContext; |
1173 | } |
1174 | #else // _TARGET_X86_ && !WIN64EXCEPTIONS |
1175 | *pContext = *pRegDisp->pCurrentContext; |
1176 | #endif // !_TARGET_X86_ || WIN64EXCEPTIONS |
1177 | } |
1178 | |
1179 | //--------------------------------------------------------------------------------------- |
1180 | // |
1181 | // Given the REGDISPLAY of a stack frame for one of the redirect functions, retrieve the original CONTEXT |
1182 | // before the thread redirection. |
1183 | // |
1184 | // Arguments: |
1185 | // pRD - the REGDISPLAY of the stack frame in question |
1186 | // |
1187 | // Return Value: |
1188 | // Return the original CONTEXT before the thread got redirected. |
1189 | // |
1190 | // Assumptions: |
1191 | // The caller has checked that the REGDISPLAY is indeed for one of the redirect functions. |
1192 | // |
1193 | |
1194 | PTR_CONTEXT DacDbiInterfaceImpl::RetrieveHijackedContext(REGDISPLAY * pRD) |
1195 | { |
1196 | CORDB_ADDRESS ContextPointerAddr = NULL; |
1197 | |
1198 | TADDR controlPC = PCODEToPINSTR(GetControlPC(pRD)); |
1199 | |
1200 | // Check which thread redirection mechanism is used. |
1201 | if (g_pDebugger->m_rgHijackFunction[Debugger::kUnhandledException].IsInRange(controlPC)) |
1202 | { |
1203 | // The thread is redirected because of an unhandled exception. |
1204 | |
1205 | // The CONTEXT pointer is the last thing pushed onto the stack. |
1206 | // So just read the stack slot at ESP. That will be the TADDR to the CONTEXT. |
1207 | ContextPointerAddr = PTR_TO_CORDB_ADDRESS(GetRegdisplaySP(pRD)); |
1208 | |
1209 | // Read the CONTEXT from OOP. |
1210 | return *dac_cast<PTR_PTR_CONTEXT>((TADDR)ContextPointerAddr); |
1211 | } |
1212 | else |
1213 | { |
1214 | // The thread is redirected by the EE via code:Thread::RedirectThreadAtHandledJITCase. |
1215 | |
1216 | // Convert the REGDISPLAY to a CONTEXT; |
1217 | T_CONTEXT * pContext = NULL; |
1218 | |
1219 | #if defined(_TARGET_X86_) |
1220 | T_CONTEXT ctx; |
1221 | pContext = &ctx; |
1222 | UpdateContextFromRegDisp(pRD, pContext); |
1223 | #else |
1224 | pContext = pRD->pCurrentContext; |
1225 | #endif |
1226 | |
1227 | // Retrieve the original CONTEXT. |
1228 | return GetCONTEXTFromRedirectedStubStackFrame(pContext); |
1229 | } |
1230 | } |
1231 | |
1232 | //--------------------------------------------------------------------------------------- |
1233 | // |
1234 | // Unwind special native stack frame which the runtime knows how to unwind. |
1235 | // |
1236 | // Arguments: |
1237 | // pIter - the StackFrameIterator we are currently using to walk the stack |
1238 | // |
1239 | // Return Value: |
1240 | // Return TRUE if there are more frames to walk, i.e. if we are NOT at the end of the stack. |
1241 | // |
1242 | // Assumptions: |
1243 | // pIter is currently stopped at a special stub which the runtime knows how to unwind. |
1244 | // |
1245 | // Notes: |
1246 | // * Refer to code:DacDbiInterfaceImpl::IsRuntimeUnwindableStub to see how we determine whether a control |
1247 | // PC is in a runtime-unwindable stub |
1248 | // |
1249 | |
1250 | BOOL DacDbiInterfaceImpl::UnwindRuntimeStackFrame(StackFrameIterator * pIter) |
1251 | { |
1252 | _ASSERTE(IsRuntimeUnwindableStub(GetControlPC(pIter->m_crawl.GetRegisterSet()))); |
1253 | |
1254 | T_CONTEXT * pContext = NULL; |
1255 | REGDISPLAY * pRD = pIter->m_crawl.GetRegisterSet(); |
1256 | |
1257 | // |
1258 | // Retrieve the CONTEXT to unwind to and unwind the REGDISPLAY. |
1259 | // |
1260 | pContext = RetrieveHijackedContext(pRD); |
1261 | |
1262 | FillRegDisplay(pRD, pContext); |
1263 | |
1264 | // Update the StackFrameIterator. |
1265 | BOOL fSuccess = pIter->ResetRegDisp(pRD, true); |
1266 | if (!fSuccess) |
1267 | { |
1268 | // ResetRegDisp() may fail for the same reason Init() may fail, i.e. |
1269 | // because the stackwalker tries to unwind one frame ahead of time, |
1270 | // or because the stackwalker needs to filter out some frames based on the stackwalk flags. |
1271 | ThrowHR(E_FAIL); |
1272 | } |
1273 | |
1274 | // Currently we only unwind the hijack function, which will never be the last stack frame. |
1275 | // So return TRUE to indicate that this is not the end of stack. |
1276 | return TRUE; |
1277 | } |
1278 | |
1279 | //--------------------------------------------------------------------------------------- |
1280 | // |
1281 | // To aid in doing the stack walk, the shim needs to know if either TS_SyncSuspended or |
1282 | // TS_Hijacked is set on a given thread. This DAC helper provides that access. |
1283 | // |
1284 | // Arguments: |
1285 | // vmThread - Thread on which to check the TS_SyncSuspended & TS_Hijacked states |
1286 | // |
1287 | // Return Value: |
1288 | // Return true iff TS_SyncSuspended or TS_Hijacked is set on the specified thread. |
1289 | // |
1290 | |
1291 | bool DacDbiInterfaceImpl::IsThreadSuspendedOrHijacked(VMPTR_Thread vmThread) |
1292 | { |
1293 | DD_ENTER_MAY_THROW; |
1294 | |
1295 | Thread * pThread = vmThread.GetDacPtr(); |
1296 | Thread::ThreadState ts = pThread->GetSnapshotState(); |
1297 | if ((ts & Thread::TS_SyncSuspended) != 0) |
1298 | { |
1299 | return true; |
1300 | } |
1301 | |
1302 | #ifdef FEATURE_HIJACK |
1303 | if ((ts & Thread::TS_Hijacked) != 0) |
1304 | { |
1305 | return true; |
1306 | } |
1307 | #endif |
1308 | |
1309 | return false; |
1310 | } |
1311 | |