1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | //***************************************************************************** |
5 | // DacDbiInterface.h |
6 | // |
7 | |
8 | // |
9 | // Define the interface between the DAC and DBI. |
10 | //***************************************************************************** |
11 | |
12 | #ifndef _DACDBI_INTERFACE_H_ |
13 | #define _DACDBI_INTERFACE_H_ |
14 | |
15 | #include <metahost.h> |
16 | |
17 | // The DAC/DBI interface can use structures and LSPTR declarations from the |
18 | // existing V2 interfaces |
19 | #include "dbgipcevents.h" |
20 | |
21 | //----------------------------------------------------------------------------- |
22 | // Deallocation function for memory allocated with the global IAllocator object. |
23 | // |
24 | // Arguments: |
25 | // p - pointer to delete. Allocated with IAllocator::Alloc |
26 | // |
27 | // Notes: |
28 | // This should invoke the dtor and then call IAllocator::Free. |
29 | // In the DAC implementation, this will call via IAllocator. |
30 | // In the DBI implementation, this can directly call delete (assuming the IAllocator::Free |
31 | // directly called new). |
32 | template<class T> void DeleteDbiMemory(T *p); |
33 | // Need a class to serve as a tag that we can use to overload New/Delete. |
34 | class forDbiWorker {}; |
35 | extern forDbiWorker forDbi; |
36 | extern void * operator new(size_t lenBytes, const forDbiWorker &); |
37 | extern void * operator new[](size_t lenBytes, const forDbiWorker &); |
38 | extern void operator delete(void *p, const forDbiWorker &); |
39 | extern void operator delete[](void *p, const forDbiWorker &); |
40 | |
41 | // The dac exposes a way to walk all GC references in the process. This |
42 | // includes both strong references and weak references. This is done |
43 | // through a referece walk. |
44 | typedef void* * RefWalkHandle; |
45 | |
46 | #include "dacdbistructures.h" |
47 | |
48 | // This is the current format of code:DbiVersion. It needs to be rev'ed when we decide to store something |
49 | // else other than the product version of the DBI in DbiVersion (e.g. a timestamp). See |
50 | // code:CordbProcess::CordbProcess#DBIVersionChecking for more information. |
51 | const DWORD kCurrentDbiVersionFormat = 1; |
52 | |
53 | //----------------------------------------------------------------------------- |
54 | // This is a low-level interface between DAC and DBI. |
55 | // The DAC is the raw DAC-ized code from the EE. |
56 | // DBI is the implementation of ICorDebug on top of that. |
57 | // |
58 | // This interface should be: |
59 | // - Stateless: The DAC component should not have any persistent state. It should not have any resources |
60 | // that it needs to clean up. DBI can store all the state (eg, list of of modules). |
61 | // Using IAllocator/IStringHolder interfaces to allocate data to pass back out is ok because DBI owns |
62 | // the resources, not the DAC layer. |
63 | // - blittable: The types on the interface should be blittable. For example, use TIDs instead of OS Thread handles. |
64 | // Passing pointers to be used as out-parameters is ok. |
65 | // - lightweight: it will inevitably have many methods on it and should be very fluid to use. |
66 | // - very descriptive: heavily call out liabilities on the runtime. For example, don't just have a method like |
67 | // "GetName" where Name is ambiguous. Heavily comment exactly what Name is, when it may fail, if it's 0-length, |
68 | // if it's unique, etc. This serves two purposes: |
69 | // a) it helps ensure the right invariants flow up to the public API level. |
70 | // b) it helps ensure that the debugger is making the right assumptions about the runtime's behavior. |
71 | // |
72 | // #Marshaling: |
73 | // This interface should be marshalable such that the caller (the Right Side) can exist in one |
74 | // process, while the implementation of Dac could be on another machine. |
75 | // - All types need to be marshable. |
76 | // - Use OUT and OPTIONAL as defined in windef.h to guide the marshaler. Here are how types are marshaled: |
77 | // T : value-type, copied on input. |
78 | // T* : will be marshaled as non-null by-ref (copy on input, copy on return), |
79 | // const T*: non-null, copy on input only. |
80 | // OUT T*: non-null copy-on-return only. |
81 | // OPTIONAL T*: by-ref, could be null. |
82 | // - The marshaler has special knowledge of IStringHolder and DacDbiArrayList<T>. |
83 | // - You can write custom marshalers for non-blittable structures defined in DacDbiStructures.h. |
84 | // - There is custom handling for marshalling callbacks. |
85 | // |
86 | // |
87 | // Threading: The interface (and the underlying DataTarget) are free-threaded to leverage |
88 | // concurrency. |
89 | // |
90 | // Allocation: |
91 | // This interface can use IAllocator to allocate objects and hand them back. The allocated objects should be: |
92 | // - closed, serializable object graphs. |
93 | // - should have private fields and public accessors |
94 | // - have dtors that free any allocated the memory via calling DeleteDbiMemory. |
95 | // Objects can be declared in a header and shared between both dbi and dac. |
96 | // Consider using DacDbiArrayList<T> instead of custom allocations. |
97 | |
98 | // Error handling: |
99 | // Any call on the interface may fail. For example, the data-target may not have access to the necessary memory. |
100 | // Methods should throw on error. |
101 | // |
102 | // #Enumeration |
103 | // General rules about Enumerations: |
104 | // - Do not assume that enumerations exposed here are in any particular order. |
105 | // - many enumerations also correspond to Load/Unload events. Since load/unload aren't atomic with publishing |
106 | // in an enumeration, this is a Total Ordering of things: |
107 | // a) object shows up in enumeration |
108 | // b) load event. |
109 | // c) ... steady state ... |
110 | // d) object removed from DacDbi enumeration; |
111 | // Any existing handles we get beyond this are explicitly associated with a Cordb* object; which can be |
112 | // neutered on the unload event by Dbi. |
113 | // e) unload event. |
114 | // - Send after it's reachability from other objects is broken. (Eg, For AppDomain unload |
115 | // means no threads left in that appdomain) |
116 | // - Send before it's deleted (so VMPTR is still valid; not yet recycled). |
117 | // - Send early enough that property access can at least gracefully fail. (eg, |
118 | // Module::GetName should either return the name, or fail) |
119 | // |
120 | // Cordb must neuter any Cordb objects that have any pre-existing handles to the object. |
121 | // After this point, gauranteed that nobody can discover the VMPTR any more: |
122 | // - doesn't show up in enumerations (so can't be discoverered implicitly) |
123 | // - object should not be discoverable by other objects in VM. |
124 | // - any Cordb object that already had it would be neutered by Dbi. |
125 | // - Therefore nothing should even be asking Dac for it. |
126 | // f) object deleted. |
127 | // Think of it like this: The event occurs to let you know that the enumeration has been updated. |
128 | // |
129 | // A robust debugger should not rely on events for correctness. For example, |
130 | // a corrupt debuggee may send: |
131 | // 1) multiple load events. (if target repeats due to an issue) |
132 | // 2) no load event and only an unload event. (if target fails inbetween |
133 | // publish (a) and load (b), and then backout code sends the unload). |
134 | // 3) no unload event. (eg, if target is rudely killed) |
135 | // 4) multiple unload events (if target repeats due to bug) |
136 | // |
137 | // This satisfies the following rules: |
138 | // - once you get the load event, you can find the object via enumeration |
139 | // - once an item is discoverable, it must immediately show up in the enumeration. |
140 | // - once you get the unload event, the object is dead and can't be rediscovered via enumeration. |
141 | // |
142 | // This is an issue even for well-behaved targets. Imagine if a debugger attaches right after |
143 | // an unload event is sent. We don't want the debugger to enumerate and re-discover the |
144 | // unloaded object because now that the unload event is already sent, the debugger won't get |
145 | // any further notification of when the object is deleted in the target. |
146 | // Thus it's valuable for the debugger to have debug-only checks after unload events to assert |
147 | // that the object is no longer discoverable. |
148 | // |
149 | //............................................................................. |
150 | // The purpose of this object is to provide EE funcationality back to |
151 | // the debugger. This represents the entire set of EE functions used |
152 | // by the debugger. |
153 | // |
154 | // We will make this interface larger over time to grow the functionality |
155 | // between the EE and the Debugger. |
156 | // |
157 | // |
158 | //----------------------------------------------------------------------------- |
159 | class IDacDbiInterface |
160 | { |
161 | public: |
162 | class IStringHolder; |
163 | |
164 | // The following tag tells the DD-marshalling tool to start scanning. |
165 | // BEGIN_MARSHAL |
166 | |
167 | //----------------------------------------------------------------------------- |
168 | // Functions to control the behavior of the DacDbi implementation itself. |
169 | //----------------------------------------------------------------------------- |
170 | |
171 | // |
172 | // Check whether the version of the DBI matches the version of the runtime. |
173 | // This is only called when we are remote debugging. On Windows, we should have checked all the |
174 | // versions before we call any API on the IDacDbiInterface. See |
175 | // code:CordbProcess::CordbProcess#DBIVersionChecking for more information on version checks. |
176 | // |
177 | // Return Value: |
178 | // S_OK on success. |
179 | // |
180 | // Notes: |
181 | // THIS MUST BE THE FIRST API ON THE INTERFACE! |
182 | // |
183 | virtual |
184 | HRESULT CheckDbiVersion(const DbiVersion * pVersion) = 0; |
185 | |
186 | // |
187 | // Flush the DAC cache. This should be called when target memory changes. |
188 | // |
189 | // |
190 | // Return Value: |
191 | // S_OK on success. |
192 | // |
193 | // Notes: |
194 | // If this fails, the interface is in an undefined state. |
195 | // This must be called anytime target memory changes, else all other functions |
196 | // (besides Destroy) may yield out-of-date or semantically incorrect results. |
197 | // |
198 | virtual |
199 | HRESULT FlushCache() = 0; |
200 | |
201 | // |
202 | // Control DAC's checking of the target's consistency. Specifically, if this is disabled then |
203 | // ASSERTs in VM code are ignored. The default is disabled, since DAC should do it's best to |
204 | // return results even with a corrupt or unsyncrhonized target. See |
205 | // code:ClrDataAccess::TargetConsistencyAssertsEnabled for more details. |
206 | // |
207 | // When testing with a non-corrupt and properly syncrhonized target, this should be enabled to |
208 | // help catch bugs. |
209 | // |
210 | // Arguments: |
211 | // fEnableAsserts - whether ASSERTs should be raised when consistency checks fail (_DEBUG |
212 | // builds only) |
213 | // |
214 | // Notes: |
215 | // In the future we may want to extend DAC target consistency checks to be retail checks |
216 | // (exceptions) as well. We'll also need a mechanism for disabling them (eg. when an advanced |
217 | // user wants to try to get a result anyway even though the target is inconsistent). In that |
218 | // case we'll want an additional argument here for enabling/disabling the throwing of |
219 | // consistency failures exceptions (this is independent from asserts - there are legitimate |
220 | // scenarios for all 4 combinations). |
221 | // |
222 | virtual |
223 | void DacSetTargetConsistencyChecks(bool fEnableAsserts) = 0; |
224 | |
225 | // |
226 | // Destroy the interface object. The client should call this when it's done |
227 | // with the IDacDbiInterface to free up any resources. |
228 | // |
229 | // Return Value: |
230 | // None. |
231 | // |
232 | // Notes: |
233 | // The client should not call anything else on this interface after Destroy. |
234 | // |
235 | virtual |
236 | void Destroy() = 0; |
237 | |
238 | //----------------------------------------------------------------------------- |
239 | // General purpose target inspection functions |
240 | //----------------------------------------------------------------------------- |
241 | |
242 | // |
243 | // Query if Left-side is started up? |
244 | // |
245 | // |
246 | // Return Value: |
247 | // BOOL whether Left-side is intialized. |
248 | // |
249 | // Notes: |
250 | // If the Left-side is not yet started up, then data in the LS is not yet initialized enough |
251 | // for us to make meaningful queries, but the runtime will fire "Startup Exception" when it is. |
252 | // |
253 | // If the left-side is started up, then data is ready. (Although data may be temporarily inconsistent, |
254 | // see DataSafe). We may still get a Startup Exception in these cases, but it can be ignored. |
255 | // |
256 | virtual |
257 | BOOL IsLeftSideInitialized() = 0; |
258 | |
259 | |
260 | // |
261 | // Get an LS Appdomain via an AppDomain unique ID. |
262 | // Fails if the AD is not found or if the ID is invalid. |
263 | // |
264 | // Arguments: |
265 | // appdomainId - "unique appdomain ID". Must be a valid Id. |
266 | // |
267 | // Return Value: |
268 | // VMPTR_AppDomain for the corresponding AppDomain ID. Else throws. |
269 | // |
270 | // Notes: |
271 | // This query is based off the lifespan of the AppDomain from the VM's perspective. |
272 | // The AppDomainId is most likely obtained from an AppDomain-Created debug events. |
273 | // An AppDomainId is unique for the lifetime of the VM. |
274 | // This is the inverse function of GetAppDomainId(). |
275 | // |
276 | virtual |
277 | VMPTR_AppDomain GetAppDomainFromId(ULONG appdomainId) = 0; |
278 | |
279 | |
280 | // |
281 | // Get the AppDomain ID for an AppDomain. |
282 | // |
283 | // Arguments: |
284 | // vmAppDomain - VM pointer to the AppDomain object of interest |
285 | // |
286 | // Return Value: |
287 | // AppDomain ID for appdomain. Else throws. |
288 | // |
289 | // Notes: |
290 | // An AppDomainId is unique for the lifetime of the VM. It is non-zero. |
291 | // |
292 | virtual |
293 | ULONG GetAppDomainId(VMPTR_AppDomain vmAppDomain) = 0; |
294 | |
295 | // |
296 | // Get the managed AppDomain object for an AppDomain. |
297 | // |
298 | // Arguments: |
299 | // vmAppDomain - VM pointer to the AppDomain object of interest |
300 | // |
301 | // Return Value: |
302 | // objecthandle for the managed app domain object or the Null VMPTR if there is no |
303 | // object created yet |
304 | // |
305 | // Notes: |
306 | // The AppDomain managed object is lazily constructed on the AppDomain the first time |
307 | // it is requested. It may be NULL. |
308 | // |
309 | virtual |
310 | VMPTR_OBJECTHANDLE GetAppDomainObject(VMPTR_AppDomain vmAppDomain) = 0; |
311 | |
312 | // |
313 | // Determine if the specified AppDomain is the default domain |
314 | // |
315 | // Arguments: |
316 | // vmAppDomain - VM pointer to the AppDomain ojbect of interest |
317 | // |
318 | // Return Value: |
319 | // TRUE if this is the default appdomain, else FALSE. |
320 | // |
321 | // Notes: |
322 | // The default domain is the only one which cannot be unloaded and exists for the life |
323 | // of the process. |
324 | // A well behaved target only has 1 default domain. |
325 | // |
326 | virtual |
327 | BOOL IsDefaultDomain(VMPTR_AppDomain vmAppDomain) = 0; |
328 | |
329 | |
330 | virtual |
331 | void GetAssemblyFromDomainAssembly(VMPTR_DomainAssembly vmDomainAssembly, OUT VMPTR_Assembly * vmAssembly) = 0; |
332 | |
333 | // |
334 | // Determines whether the runtime security system has assigned full-trust to this assembly. |
335 | // |
336 | // Arguments: |
337 | // vmDomainAssembly - VM pointer to the assembly in question. |
338 | // |
339 | // Return Value: |
340 | // Returns trust status for the assembly. |
341 | // Throws on error. |
342 | // |
343 | // Notes: |
344 | // Of course trusted malicious code in the process could always cause this API to lie. However, |
345 | // an assembly loaded without full-trust should have no way of causing this API to return true. |
346 | // |
347 | virtual |
348 | BOOL IsAssemblyFullyTrusted(VMPTR_DomainAssembly vmDomainAssembly) = 0; |
349 | |
350 | |
351 | // |
352 | // Get the full AD friendly name for the given EE AppDomain. |
353 | // |
354 | // Arguments: |
355 | // vmAppDomain - VM pointer to the AppDomain. |
356 | // pStrName - required out parameter where the name will be stored. |
357 | // |
358 | // Return Value: |
359 | // None. On success, sets the string via the holder. Throws on error. |
360 | // This either sets pStrName or Throws. It won't do both. |
361 | // |
362 | // Notes: |
363 | // AD names have an unbounded length. AppDomain friendly names can also change, and |
364 | // so callers should be prepared to listen for name-change events and requery. |
365 | // AD names are specified by the user. |
366 | // |
367 | virtual |
368 | void GetAppDomainFullName( |
369 | VMPTR_AppDomain vmAppDomain, |
370 | IStringHolder * pStrName) = 0; |
371 | |
372 | |
373 | // |
374 | // #ModuleNames |
375 | // |
376 | // Modules / Assemblies have many different naming schemes: |
377 | // |
378 | // 1) Metadata Scope name: All modules have metadata, and each metadata scope has a name assigned |
379 | // by the creator of that scope (eg, the compiler). This usually is similar to the filename, but could |
380 | // be arbitrary. |
381 | // eg: "Foo" |
382 | // |
383 | // 2) FileRecord: the File record entry in the manifest module's metadata (table 0x26) for this module. |
384 | // eg: "Foo" |
385 | // |
386 | // 3) Managed module path: This is path that the image was loaded from. Eg, "c:\foo.dll". For non-file |
387 | // based modules (like in-memory, dynamic), there is no file path. The specific path is determined by |
388 | // fusion / loader policy. |
389 | // eg: "c:\foo.dll" |
390 | // |
391 | // 4) GAC path: If the module is loaded from the GAC, this is the path on disk into the gac cache that |
392 | // the image was pulled from. |
393 | // eg: " |
394 | // |
395 | // 5) Ngen path: If the module was ngenned, this is the path on disk into the ngen cache that the image |
396 | // was pulled from. |
397 | // eg: |
398 | // |
399 | // 6) Fully Qualified Assembly Name: this is an abstract name, which the CLR (fusion / loader) will |
400 | // resolve (to a filename for file-based modules). Managed apps may need to deal in terms of FQN, |
401 | // but the debugging services generally avoid them. |
402 | // eg: "Foo, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089, processorArchitecture=MSIL". |
403 | // |
404 | |
405 | |
406 | // |
407 | // Get the "simple name" of a module. This is a heuristic within the CLR to return a simple, |
408 | // not-well-specified, but meaningful, name for a module. |
409 | // |
410 | // Arguments: |
411 | // vmModule - module to query |
412 | // pStrFileName - string holder to get simple name. |
413 | // |
414 | // Return Value: |
415 | // None, but pStrFilename will be initialized upon return. |
416 | // Throws if there was a problem reading the data with DAC or if there is an OOM exception, |
417 | // in which case no string was stored into pStrFilename. |
418 | // |
419 | // Notes: |
420 | // See code:#ModuleNames for an overview on module names. |
421 | // |
422 | // This is really just using code:Module::GetSimpleName. |
423 | // This gives back a meaningful name, which is generally some combination of the metadata |
424 | // name of the FileRecord name. This is important because it's valid even when a module |
425 | // doesn't have a filename. |
426 | // |
427 | // The simple name does not have any meaning. It is not a filename, does not necessarily have any |
428 | // relationship to the filename, and it's not necesarily the metadata name. |
429 | // Do not use the simple name for anything other than as a pretty string to give the an end user. |
430 | // |
431 | virtual |
432 | void GetModuleSimpleName(VMPTR_Module vmModule, IStringHolder * pStrFilename) = 0; |
433 | |
434 | |
435 | // |
436 | // Get the full path and file name to the assembly's manifest module. |
437 | // |
438 | // Arguments: |
439 | // vmAssembly - VM pointer to the Assembly. |
440 | // pStrFilename - required out parameter where the filename will be stored. |
441 | // |
442 | // Return Value: |
443 | // TRUE on success, in which case the filename was stored into pStrFilename |
444 | // FALSE if the assembly has no filename (eg. for in-memory assemblies), in which |
445 | // case an empty string was stored into pStrFilename. |
446 | // Throws if there was a problem reading the data with DAC, in which case |
447 | // no string was stored into pStrFilename. |
448 | // |
449 | // Notes: |
450 | // See code:#ModuleNames for an overview on module names. |
451 | // |
452 | // Normally this is just the filename from which the dll containing the assembly was |
453 | // loaded. In the case of multi-module assemblies, this is the filename for the |
454 | // manifest module (the one containing the assembly manifest). For in-memory |
455 | // assemblies (eg. those loaded from a Byte[], and those created by Reflection.Emit |
456 | // which will not be saved to disk) there is no filename. In that case this API |
457 | // returns an empty string. |
458 | // |
459 | virtual |
460 | BOOL GetAssemblyPath(VMPTR_Assembly vmAssembly, |
461 | IStringHolder * pStrFilename) = 0; |
462 | |
463 | |
464 | // get a type def resolved across modules |
465 | // Arguments: |
466 | // input: pTypeRefInfo - domain file and type ref from the referencing module |
467 | // output: pTargetRefInfo - domain file and type def from the referenced type (this may |
468 | // come from a module other than the referencing module) |
469 | // Note: throws |
470 | virtual |
471 | void ResolveTypeReference(const TypeRefData * pTypeRefInfo, |
472 | TypeRefData * pTargetRefInfo) = 0; |
473 | // |
474 | // Get the full path and file name to the module (if any). |
475 | // |
476 | // Arguments: |
477 | // vmModule - VM pointer to the module. |
478 | // pStrFilename - required out parameter where the filename will be stored. |
479 | // |
480 | // Return Value: |
481 | // TRUE on success, in which case the filename was stored into pStrFilename |
482 | // FALSE the module has no filename (eg. for in-memory assemblies), in which |
483 | // case an empty string was stored into pStrFilename. |
484 | // Throws an exception if there was a problem reading the data with DAC, in which case |
485 | // no string was stored into pStrFilename. |
486 | // |
487 | // Notes: |
488 | // See code:#ModuleNames for an overview on module names. |
489 | // |
490 | // Normally this is just the filename from which the module was loaded. |
491 | // For in-memory module (eg. those loaded from a Byte[], and those created by Reflection.Emit |
492 | // which will not be saved to disk) there is no filename. In that case this API |
493 | // returns an empty string. Consider GetModuleSimpleName in those cases. |
494 | // |
495 | // We intentionally don't use the function name "GetModuleFileName" here because |
496 | // winbase #defines that token (along with many others) to have an A or W suffix. |
497 | // |
498 | virtual |
499 | BOOL GetModulePath(VMPTR_Module vmModule, |
500 | IStringHolder * pStrFilename) = 0; |
501 | |
502 | |
503 | // |
504 | // Get the full path and file name to the ngen image for the module (if any). |
505 | // |
506 | // Arguments: |
507 | // vmModule - VM pointer to the module. |
508 | // pStrFilename - required out parameter where the filename will be stored. |
509 | // |
510 | // Return Value: |
511 | // TRUE on success, in which case the filename was stored into pStrFilename |
512 | // FALSE the module has no filename (eg. for in-memory assemblies), in which |
513 | // case an empty string was stored into pStrFilename. |
514 | // Throws an exception if there was a problem reading the data with DAC, in which case |
515 | // no string was stored into pStrFilename. |
516 | // |
517 | // Notes: |
518 | // See code:#ModuleNames for an overview on module names. |
519 | // |
520 | virtual |
521 | BOOL GetModuleNGenPath(VMPTR_Module vmModule, |
522 | IStringHolder * pStrFilename) = 0; |
523 | |
524 | |
525 | |
526 | // Get the metadata for the target module |
527 | // |
528 | // Arguments: |
529 | // vmModule - target module to get metadata for. |
530 | // pTargetBuffer - Out parameter to get target-buffer for metadata. Gauranteed to be non-empty on |
531 | // return. This will throw CORDBG_E_MISSING_METADATA hr if the buffer is empty. |
532 | // This does not gaurantee that the buffer is readable. For example, in a minidump, buffer's |
533 | // memory may not be present. |
534 | // |
535 | // Notes: |
536 | // Each module's metadata exists as a raw buffer in the target. This finds that target buffer and |
537 | // returns it. The host can then use OpenScopeOnMemory to create an instance of the metadata in |
538 | // the host process space. |
539 | // |
540 | // For dynamic modules, the CLR will eagerly serialize the metadata at "debuggable" points. This |
541 | // could be after each type is loaded; or after a bulk update. |
542 | // For non-dynamic modules (both in-memory and file-based), the metadata exists in the PEFile's image. |
543 | // |
544 | // Failure cases: |
545 | // This should succeed in normal, live-debugging scenarios. However, common failure paths here would be: |
546 | // |
547 | // 1. Data structures are intact, but Unable to even find the TargetBuffer in the target. In this |
548 | // case Metadata is truly missing. Likely means: |
549 | // - target is in the middle of generating metadata for a large bulk operation. (For example, attach |
550 | // to a TypeLibConverter using Ref.Emit to emit a module for a very large .tlb file). |
551 | // - corrupted target, |
552 | // - or the target had some error(out-of-memory?) generating the metadata. |
553 | // This throws CORDBG_E_MISSING_METADATA. |
554 | // |
555 | // 2. Target buffer is found, but memory it describes is not present. Likely means a minidump |
556 | // scenario with missing memory. Client should use alternative metadata location techniques (such as |
557 | // an ImagePath to locate the original image and then pulling metadata from that file). |
558 | // |
559 | virtual |
560 | void GetMetadata(VMPTR_Module vmModule, OUT TargetBuffer * pTargetBuffer) = 0; |
561 | |
562 | |
563 | // Definitions for possible symbol formats |
564 | // This is equivalent to code:ESymbolFormat in the runtime |
565 | typedef enum |
566 | { |
567 | kSymbolFormatNone, // No symbols available |
568 | kSymbolFormatPDB, // PDB symbol format - use diasymreader.dll |
569 | kSymbolFormatILDB, // ILDB symbol format - use ildbsymlib |
570 | } SymbolFormat; |
571 | |
572 | // |
573 | // Get the in-memory symbol (PDB/ILDB) buffer in the target if present. |
574 | // |
575 | // Arguments: |
576 | // vmModule- module to query for. |
577 | // pTargetBuffer - out parameter to get buffer in target of symbols. If no symbols, pTargetBuffer is empty on return. |
578 | // pSymbolFormat - out parameter to get the format of the symbols. |
579 | // |
580 | // Returns: |
581 | // 1) If there are in-memory symbols for the given module, pTargetBuffer is set to the buffer describing |
582 | // the symbols and pSymbolFormat is set to indicate PDB or ILDB format. This buffer can then be read, |
583 | // converted into an IStream, and passed to ISymUnmanagedBinder::CreateReaderForStream. |
584 | // 2) If the target is valid, but there is no symbols for the module, then pTargetBuffer->IsEmpty() == true |
585 | // and *pSymbolFormat == kSymbolFormatNone. |
586 | // 3) Else, throws exception. |
587 | // |
588 | // |
589 | // Notes: |
590 | // For file-based modules, PDBs are normally on disk and the debugger retreieves them via a symbol |
591 | // path without any help from ICorDebug. |
592 | // However, in some cases, the PDB is stored in-memory and so the debugger needs ICorDebug. Common |
593 | // cases include: |
594 | // - dynamic modules generated with reflection-emit. |
595 | // - in-memory modules loaded by Load(Byte[],Byte[]), which provide the PDB as a byte[]. |
596 | // - hosted modules where the host (such as SQL) store the PDB. |
597 | // |
598 | // In all cases, this can commonly fail. Executable code does not need to have a PDB. |
599 | virtual |
600 | void GetSymbolsBuffer(VMPTR_Module vmModule, OUT TargetBuffer * pTargetBuffer, OUT SymbolFormat * pSymbolFormat) = 0; |
601 | |
602 | // |
603 | // Get properties for a module |
604 | // |
605 | // Arguments: |
606 | // vmModule - vm handle to a module |
607 | // pData - required out parameter which will be filled out with module properties |
608 | // |
609 | // Notes: |
610 | // See definition of DomainFileInfo for more details about what properties |
611 | // this gives back. |
612 | virtual |
613 | void GetModuleData(VMPTR_Module vmModule, OUT ModuleInfo * pData) = 0; |
614 | |
615 | |
616 | // |
617 | // Get properties for a DomainFile |
618 | // |
619 | // Arguments: |
620 | // vmDomainFile - vm handle to a DomainFile |
621 | // pData - required out parameter which will be filled out with module properties |
622 | // |
623 | // Notes: |
624 | // See definition of DomainFileInfo for more details about what properties |
625 | // this gives back. |
626 | virtual |
627 | void GetDomainFileData(VMPTR_DomainFile vmDomainFile, OUT DomainFileInfo * pData) = 0; |
628 | |
629 | virtual |
630 | void GetModuleForDomainFile(VMPTR_DomainFile vmDomainFile, OUT VMPTR_Module * pModule) = 0; |
631 | |
632 | //......................................................................... |
633 | // These methods were the methods that DBI was calling from IXClrData in V2. |
634 | // We imported them over to this V3 interface so that we can sever all ties between DBI and the |
635 | // old IXClrData. |
636 | // |
637 | // The exact semantics of these are whatever their V2 IXClrData counterpart did. |
638 | // We may eventually migrate these to their real V3 replacements. |
639 | //......................................................................... |
640 | |
641 | // "types" of addresses. This is taken exactly from the definition, but renamed to match |
642 | // CLR coding conventions. |
643 | typedef enum |
644 | { |
645 | kAddressUnrecognized, |
646 | kAddressManagedMethod, |
647 | kAddressRuntimeManagedCode, |
648 | kAddressRuntimeUnmanagedCode, |
649 | kAddressGcData, |
650 | kAddressRuntimeManagedStub, |
651 | kAddressRuntimeUnmanagedStub, |
652 | } AddressType; |
653 | |
654 | // |
655 | // Get the "type" of address. |
656 | // |
657 | // Arguments: |
658 | // address - address to query type. |
659 | // |
660 | // Return Value: |
661 | // Type of address. Throws on error. |
662 | // |
663 | // Notes: |
664 | // This is taken exactly from the IXClrData definition. |
665 | // This is provided for V3 compatibility to support Interop-debugging. |
666 | // This should eventually be deprecated. |
667 | // |
668 | virtual |
669 | AddressType GetAddressType(CORDB_ADDRESS address) = 0; |
670 | |
671 | |
672 | // |
673 | // Query if address is a CLR stub. |
674 | // |
675 | // Arguments: |
676 | // address - Target address to query for. |
677 | // |
678 | // |
679 | // Return Value: |
680 | // true if the address is a CLR stub. |
681 | // |
682 | // Notes: |
683 | // This is used to implement ICorDebugProcess::IsTransitionStub |
684 | // This yields true if the address is claimed by a CLR stub manager, or if the IP is in mscorwks. |
685 | // Conceptually, This should eventually be merged with GetAddressType(). |
686 | // |
687 | virtual |
688 | BOOL IsTransitionStub(CORDB_ADDRESS address) = 0; |
689 | |
690 | //......................................................................... |
691 | // Get the values of the JIT Optimization and EnC flags. |
692 | // |
693 | // Arguments: |
694 | // vmDomainFile - (input) VM DomainFile (module) for which we are retrieving flags |
695 | // pfAllowJITOpts - (mandatory output) true iff this is not compiled for debug, |
696 | // i.e., without optimization |
697 | // pfEnableEnc - (mandatory output) true iff this module has EnC enabled |
698 | // |
699 | // Return Value: |
700 | // Returns on success. Throws on failure. |
701 | // |
702 | // Notes: |
703 | // This is used to implement both ICorDebugModule2::GetJitCompilerFlags and |
704 | // ICorDebugCode2::GetCompilerFlags. |
705 | //......................................................................... |
706 | |
707 | virtual |
708 | void GetCompilerFlags( |
709 | VMPTR_DomainFile vmDomainFile, |
710 | OUT BOOL * pfAllowJITOpts, |
711 | OUT BOOL * pfEnableEnC) = 0; |
712 | |
713 | //......................................................................... |
714 | // Set the values of the JIT optimization and EnC flags. |
715 | // |
716 | // Arguments: |
717 | // vmDomainFile - (input) VM DomainFile (module) for which we are retrieving flags |
718 | // pfAllowJITOpts - (input) true iff this should not be compiled for debug, |
719 | // i.e., without optimization |
720 | // pfEnableEnc - (input) true iff this module should have EnC enabled. If this is |
721 | // false, no change is made to the EnC flags. In other words, once EnC is enabled, |
722 | // there is no way to disable it. |
723 | // |
724 | // Return Value: |
725 | // S_OK on success and all bits were set. |
726 | // CORDBG_S_NOT_ALL_BITS_SET - if not all bits are set. Must use GetCompileFlags to |
727 | // determine which bits were set. |
728 | // CORDBG_E_CANT_CHANGE_JIT_SETTING_FOR_ZAP_MODULE - if module is ngenned. |
729 | // Throw on other errors. |
730 | // |
731 | // Notes: |
732 | // Caller can only use this at module-load before any methods are jitted. |
733 | // This may be called multiple times. |
734 | // This is used to implement both ICorDebugModule2::SetJitCompilerFlags and |
735 | // ICorDebugModule::EnableJITDebugging. |
736 | //......................................................................... |
737 | |
738 | virtual |
739 | HRESULT SetCompilerFlags(VMPTR_DomainFile vmDomainFile, |
740 | BOOL fAllowJitOpts, |
741 | BOOL fEnableEnC) = 0; |
742 | |
743 | // |
744 | // Enumerate all AppDomains in the process. |
745 | // |
746 | // Arguments: |
747 | // fpCallback - callback to invoke on each appdomain |
748 | // pUserData - user data to supply for each callback. |
749 | // |
750 | // Return Value: |
751 | // Returns on success. Throws on error. |
752 | // |
753 | // Notes: |
754 | // Enumerates all appdomains in the process, including the Default-domain. |
755 | // Appdomains must show up in this list before the AD Load event is sent, and before |
756 | // that appdomain is discoverable from the debugger. |
757 | // See enumeration rules for details. |
758 | // |
759 | typedef void (*FP_APPDOMAIN_ENUMERATION_CALLBACK)(VMPTR_AppDomain vmAppDomain, CALLBACK_DATA pUserData); |
760 | virtual |
761 | void EnumerateAppDomains(FP_APPDOMAIN_ENUMERATION_CALLBACK fpCallback, |
762 | CALLBACK_DATA pUserData) = 0; |
763 | |
764 | |
765 | // |
766 | // Eunmerate all Assemblies in an appdomain. Enumerations is in load-order |
767 | // |
768 | // Arguments: |
769 | // vmAppDomain - domain in which to enumerate |
770 | // fpCallback - address to query type. |
771 | // pUserData - required out parameter for type of address. |
772 | // |
773 | // Return Value: |
774 | // Returns on success. Throws on error. |
775 | // |
776 | // Notes: |
777 | // Enumerates all executable assemblies (both shared and unshared) within an appdomain. |
778 | // This does not include inspection-only assemblies because those are just data and |
779 | // not executable (eg, they'll never show up on the stack and you can't set a breakpoint in them). |
780 | // This enumeration needs to be consistent with load/unload events. |
781 | // See enumeration rules for details. |
782 | // |
783 | // The order of the enumeration is the order the assemblies where loaded. |
784 | // Ultimately, the debugger needs to be able to tell the user the load |
785 | // order of assemblies (it can do this with native dlls). Since |
786 | // managed assembliees don't 1:1 correspond to native dlls, debuggers |
787 | // need this information from the runtime. |
788 | // |
789 | |
790 | typedef void (*FP_ASSEMBLY_ENUMERATION_CALLBACK)(VMPTR_DomainAssembly vmDomainAssembly, CALLBACK_DATA pUserData); |
791 | virtual |
792 | void EnumerateAssembliesInAppDomain(VMPTR_AppDomain vmAppDomain, |
793 | FP_ASSEMBLY_ENUMERATION_CALLBACK fpCallback, |
794 | CALLBACK_DATA pUserData) = 0; |
795 | |
796 | |
797 | |
798 | // |
799 | // Callback function for EnumerateModulesInAssembly |
800 | // |
801 | // This can throw on error. |
802 | // |
803 | // Arguments: |
804 | // vmModule - new module from the enumeration |
805 | // pUserData - user data passed to EnumerateModulesInAssembly |
806 | typedef void (*FP_MODULE_ENUMERATION_CALLBACK)(VMPTR_DomainFile vmModule, CALLBACK_DATA pUserData); |
807 | |
808 | // |
809 | // Enumerates all the code Modules in an assembly. |
810 | // |
811 | // Arguments: |
812 | // vmAssembly - assembly to enumerate within |
813 | // fpCallback - callback function to invoke on each module |
814 | // pUserData - arbitrary data passed to the callback |
815 | // |
816 | // Notes: |
817 | // This only enumerates "code" modules (ie, modules that have executable code in them). That |
818 | // includes normal file-based, ngenned, in-memory, and even dynamic modules. |
819 | // That excludes: |
820 | // - Resource modules (which have no code or metadata) |
821 | // - Inspection-only modules. These are viewed as pure data from the debugger's perspective. |
822 | // |
823 | virtual |
824 | void EnumerateModulesInAssembly( |
825 | VMPTR_DomainAssembly vmAssembly, |
826 | FP_MODULE_ENUMERATION_CALLBACK fpCallback, |
827 | CALLBACK_DATA pUserData) = 0; |
828 | |
829 | |
830 | |
831 | // |
832 | // When stopped at an event, request a synchronization. |
833 | // |
834 | // |
835 | // Return Value: |
836 | // Returns on success. Throws on error. |
837 | // |
838 | // Notes: |
839 | // Call this when an event is dispatched (eg, LoadModule) to request the runtime |
840 | // synchronize. This does a cooperative sync with the LS. This is not an async break |
841 | // and can not be called at arbitrary points. |
842 | // This primitive lets the LS always take the V3 codepath and defer decision making to the RS. |
843 | // The V2 behavior is to call this after every event (Since that's what V2 did). |
844 | // The V3 behavior is to never call this. |
845 | // |
846 | // If this is called, the LS will sync and we will get a SyncComplete. |
847 | // |
848 | // This is also like a precursor to "AsyncBreakAllOtherThreads" |
849 | // |
850 | virtual |
851 | void RequestSyncAtEvent() = 0; |
852 | |
853 | // Sets a flag inside LS.Debugger that indicates that |
854 | // 1. all "first chance exception" events should not be sent to the debugger |
855 | // 2. "exception handler found" events for exceptions never crossing JMC frames should not be sent to the debugger |
856 | // |
857 | // Arguments: |
858 | // sendExceptionsOutsideOfJMC - new value for the flag Debugger::m_sendExceptionsOutsideOfJMC. |
859 | // |
860 | // Return Value: |
861 | // Returns error code, never throws. |
862 | // |
863 | // Note: This call is used by ICorDebugProcess8.EnableExceptionCallbacksOutsideOfMyCode. |
864 | virtual |
865 | HRESULT SetSendExceptionsOutsideOfJMC(BOOL sendExceptionsOutsideOfJMC) = 0; |
866 | |
867 | // |
868 | // Notify the debuggee that a debugger atach is pending. |
869 | // |
870 | // Arguments: |
871 | // None |
872 | // |
873 | // Return Value: |
874 | // Returns on success. Throws on error. |
875 | // |
876 | // Notes: |
877 | // Attaching means that CORDebuggerPendingAttach() will now return true. |
878 | // This doesn't do anything else (eg, no fake events). |
879 | // |
880 | // @dbgtodo- still an open Feature-Crew decision how this is exposed publicly. |
881 | virtual |
882 | void MarkDebuggerAttachPending() = 0; |
883 | |
884 | // |
885 | // Notify the debuggee that a debugger is attached / detached. |
886 | // |
887 | // Arguments: |
888 | // fAttached - true if we're attaching, false if we're detaching. |
889 | // |
890 | // Return Value: |
891 | // Returns on success. Throws on error. |
892 | // |
893 | // Notes: |
894 | // Attaching means that CorDebuggerAttached() will now return true. |
895 | // This doesn't do anything else (eg, no fake events). |
896 | // This lets the V3 codepaths invade the LS to subscribe to events. |
897 | // |
898 | // @dbgtodo- still an open Feature-Crew decision how this is exposed publicly. |
899 | virtual |
900 | void MarkDebuggerAttached(BOOL fAttached) = 0; |
901 | |
902 | |
903 | |
904 | // |
905 | // Hijack a thread. This will effectively do a native func-eval of the thread to set the IP |
906 | // to a hijack stub and push the parameters. |
907 | // |
908 | // Arguments: |
909 | // dwThreadId - OS thread to hijack. This must be consistent with pRecord and pOriginalContext |
910 | // pRecord - optional pointer to Exception record. Required if this is hijacked at an exception. |
911 | // NULL if this is hijacked at a managed IP. |
912 | // pOriginalContext - optional pointer to buffer to receive the context that the thread is hijacked from. |
913 | // The caller can use this to either restore the hijack or walk the hijack. |
914 | // cbSizeContext - size in bytes of buffer pointed to by pContext |
915 | // reason - reason code for the hijack. The hijack stub can then delegate to the proper hijack. |
916 | // pUserData - arbitrary data passed through to hijack. This is reason-depedendent. |
917 | // pRemoteContextAddr - If non-NULL this receives the remote address where the CONTEXT was written in the |
918 | // in the debuggee. |
919 | // |
920 | // Assumptions: |
921 | // Caller must guarantee this is safe. |
922 | // This is intended to be used at a thread that either just had an exception or is at a managed IP. |
923 | // If this is hijacked at an exception, client must cancel the exception (gh / DBG_CONTINUE) |
924 | // so that the OS exception processing doesn't interfere with the hijack. |
925 | // |
926 | // Notes: |
927 | // Hijack is hard, so we want 1 hijack stub that handles all our hijacking needs. |
928 | // This lets us share: |
929 | // - assembly stubs (which are very platform specific) |
930 | // - hijacking / restoration mechanics, |
931 | // - making the hijack walkable via the stackwalker. |
932 | // |
933 | // Hijacking can be used to implement: func-eval, FE abort, Synchronizing, |
934 | // dispatching Unhandled Exception notifications. |
935 | // |
936 | // Nesting: Since Hijacking passes the key state off to the hijacked thread, (such as original |
937 | // context to be used with restoring the hijack), the raw hijacking nests just like function |
938 | // calls. However, the client may need to keep additional state to handle nesting. For example, |
939 | // nested hijacks will require the client to track multiple CONTEXT*. |
940 | // |
941 | // If the thread is in jitted code, then the hijack needs to cooperate with the in-process |
942 | // stackwalker that the GC uses. It must be in cooperative mode, and push a Frame on the |
943 | // frame chain to protect the managed frames it hijacked from before it goes to preemptive mode. |
944 | |
945 | virtual |
946 | void Hijack( |
947 | VMPTR_Thread vmThread, |
948 | ULONG32 dwThreadId, |
949 | const EXCEPTION_RECORD * pRecord, |
950 | T_CONTEXT * pOriginalContext, |
951 | ULONG32 cbSizeContext, |
952 | EHijackReason::EHijackReason reason, |
953 | void * pUserData, |
954 | CORDB_ADDRESS * pRemoteContextAddr) = 0; |
955 | |
956 | |
957 | // |
958 | // Callback function for connection enumeration. |
959 | // |
960 | // Arguments: |
961 | // id - the connection ID. |
962 | // pName - the name of the connection. |
963 | // pUserData - user data supplied to EnumerateConnections |
964 | typedef void (*FP_CONNECTION_CALLBACK)(DWORD id, LPCWSTR pName, CALLBACK_DATA pUserData); |
965 | |
966 | // |
967 | // Enumerate all the Connections in the process. |
968 | // |
969 | // Arguments: |
970 | // fpCallback - callback to invoke for each connection |
971 | // pUserData - random user data to pass to callback. |
972 | // |
973 | // Notes: |
974 | // This enumerates all the connections. The host notifies the debugger of Connections |
975 | // via the ICLRDebugManager interface. |
976 | // ICorDebug has no interest in connections. It's merely the transport between the host and the debugger. |
977 | // Ideally, that transport would be more general. |
978 | // |
979 | // V2 Attach would provide faked up CreateConnection, ChangeConnection events on attach. |
980 | // This enumeration ability allows V3 to emulate that behavior. |
981 | // |
982 | |
983 | // |
984 | // Enumerate all threads in the target. |
985 | // |
986 | // Arguments: |
987 | // fpCallback - callback function to invoke on each thread. |
988 | // pUserData - arbitrary user data supplied to each callback. |
989 | // |
990 | // Notes: |
991 | // This enumerates the ThreadStore in the target, which is all the Thread* objects. |
992 | // This includes threads that have entered the runtime. This may include threads |
993 | // even before that thread has executed IL and after that thread no longer has managed |
994 | // code on its stack. |
995 | |
996 | // Callback invoked for each thread. |
997 | typedef void (*FP_THREAD_ENUMERATION_CALLBACK)(VMPTR_Thread vmThread, CALLBACK_DATA pUserData); |
998 | |
999 | virtual |
1000 | void EnumerateThreads(FP_THREAD_ENUMERATION_CALLBACK fpCallback, CALLBACK_DATA pUserData) = 0; |
1001 | |
1002 | |
1003 | // Check if the thread is dead |
1004 | // |
1005 | // Arguments: |
1006 | // vmThread - valid thread to check if it's dead. |
1007 | // |
1008 | // Returns: true if the thread is "dead", which means it can never call managed code again. |
1009 | // |
1010 | // Notes: |
1011 | // #IsThreadMarkedDead |
1012 | // Threads shutdown states are: |
1013 | // 1) Thread is running managed code normally. Thread eventually exits all managed code and |
1014 | // gets to a point where it will never call managed code again. |
1015 | // 2) Thread is marked as dead. |
1016 | // - For threads created outside of the runtime (such as a native thread that wanders into |
1017 | // managed code), this mark can happen in DllMain(ThreadDetach) |
1018 | // - For threads created by the runtime (eg, System.Threading.Thread.Start), this may be done |
1019 | // at the top of the threads stack after it calls the user's Thread-Proc. |
1020 | // 3) MAYBE Native thread exits at this point (or it may not). This would be the common case |
1021 | // for threads created outside the runtime. |
1022 | // 4) Thread exit event is sent. |
1023 | // - For threads created by the runtime, this may be sent at the top of the thread's |
1024 | // stack (or even when we know that the thread will never execute managed code again) |
1025 | // - For threads created outside the runtime, this is more difficult. A thread can |
1026 | // call into managed code and then return, and then call back into managed code at a |
1027 | // later time (The finalizer does this!). So it's not clear when the native thread |
1028 | // actually exits and will never call managed code again. The only hook we have for |
1029 | // this is DllMain(Thread-Detach). We can mark bits in DllMain, but we can't send |
1030 | // debugger notifications (too dangerous from such a restricted context). |
1031 | // So we may mark the thread as dead, but then sweep later (perhaps on the finalizer |
1032 | // thread), and thus send the Exit events later. |
1033 | // 5) Native thread may exit at this point. This is the common case for threads created by |
1034 | // the runtime. |
1035 | // |
1036 | // The underlying native thread may have exited at eitehr #3 or #5. Because of this |
1037 | // flexibility, we don't want to rely on native thread exit events. |
1038 | // This function checks if a Thread is passed state #2 (marked as dead). The key invariant |
1039 | // is that once a thread is marked as dead: |
1040 | // - it can never call managed code again. |
1041 | // - it should not be discoverable by DacDbi enumerations. |
1042 | // |
1043 | // DBI should prefer relying on IsThreadMarkedDead rather than event notifications (either |
1044 | // managed or native) because tracking events requires that DBI maintain state, which means |
1045 | // that attach + dump cases may break. For example, we want a full dump at the ExitThread |
1046 | // event to have the same view as a live process at the ExitThread event. |
1047 | // |
1048 | // We avoid relying on the native thread exit notifications because: |
1049 | // - that's a specific feature of the Win32 debugging API that may not be available on other platforms. |
1050 | // - the only native events the pipeline gets are Exceptions. |
1051 | // |
1052 | // Whether a thread is dead can be inferred from the ICorDebug API. However, we have this |
1053 | // on DacDbi to ensure that this definition is consistent with the other DacDbi methods, |
1054 | // especially the enumeration and discovery rules. |
1055 | virtual |
1056 | bool IsThreadMarkedDead(VMPTR_Thread vmThread) = 0; |
1057 | |
1058 | |
1059 | // |
1060 | // Return the handle of the specified thread. |
1061 | // |
1062 | // Arguments: |
1063 | // vmThread - the specified thread |
1064 | // |
1065 | // Return Value: |
1066 | // the handle of the specified thread |
1067 | // |
1068 | // @dbgtodo- this should go away in V3. This is useless on a dump. |
1069 | |
1070 | virtual |
1071 | HANDLE GetThreadHandle(VMPTR_Thread vmThread) = 0; |
1072 | |
1073 | // |
1074 | // Return the object handle for the managed Thread object corresponding to the specified thread. |
1075 | // |
1076 | // Arguments: |
1077 | // vmThread - the specified thread |
1078 | // |
1079 | // Return Value: |
1080 | // This function returns the object handle for the managed Thread object corresponding to the |
1081 | // specified thread. The return value may be NULL if a managed Thread object has not been created |
1082 | // for the specified thread yet. |
1083 | // |
1084 | |
1085 | virtual |
1086 | VMPTR_OBJECTHANDLE GetThreadObject(VMPTR_Thread vmThread) = 0; |
1087 | |
1088 | // |
1089 | // Set and reset the TSNC_DebuggerUserSuspend bit on the state of the specified thread |
1090 | // according to the CorDebugThreadState. |
1091 | // |
1092 | // Arguments: |
1093 | // vmThread - the specified thread |
1094 | // debugState - the desired CorDebugThreadState |
1095 | // |
1096 | |
1097 | virtual |
1098 | void SetDebugState(VMPTR_Thread vmThread, |
1099 | CorDebugThreadState debugState) = 0; |
1100 | |
1101 | // |
1102 | // Returns TRUE if this thread has an unhandled exception |
1103 | // |
1104 | // Arguments: |
1105 | // vmThread - the thread to query |
1106 | // |
1107 | // Return Value |
1108 | // TRUE iff this thread has an unhandled exception |
1109 | // |
1110 | virtual |
1111 | BOOL HasUnhandledException(VMPTR_Thread vmThread) = 0; |
1112 | |
1113 | // |
1114 | // Return the user state of the specified thread. Most of the state are derived from |
1115 | // the ThreadState of the specified thread, e.g. TS_Background, TS_Unstarted, etc. |
1116 | // The exception is USER_UNSAFE_POINT, which we need to do a one-frame stackwalk to figure out. |
1117 | // |
1118 | // Arguments: |
1119 | // vmThread - the specified thread |
1120 | // |
1121 | // Return Value: |
1122 | // the user state of the specified thread |
1123 | // |
1124 | |
1125 | virtual |
1126 | CorDebugUserState GetUserState(VMPTR_Thread vmThread) = 0; |
1127 | |
1128 | |
1129 | // |
1130 | // Returns most of the user state of the specified thread, |
1131 | // i.e. flags which can be derived from the ThreadState: |
1132 | // USER_STOP_REQUESTED, USER_SUSPEND_REQUESTED, USER_BACKGROUND, USER_UNSTARTED |
1133 | // USER_STOPPED, USER_WAIT_SLEEP_JOIN, USER_SUSPENDED, USER_THREADPOOL |
1134 | // |
1135 | // Only USER_UNSAFE_POINT is always set to 0, since it takes additional stackwalk. |
1136 | // If you need USER_UNSAFE_POINT, use GetUserState(VMPTR_Thread); |
1137 | // |
1138 | // Arguments: |
1139 | // vmThread - the specified thread |
1140 | // |
1141 | // Return Value: |
1142 | // the user state of the specified thread |
1143 | // |
1144 | virtual |
1145 | CorDebugUserState GetPartialUserState(VMPTR_Thread vmThread) = 0; |
1146 | |
1147 | |
1148 | // |
1149 | // Return the connection ID of the specified thread. |
1150 | // |
1151 | // Arguments: |
1152 | // vmThread - the specified thread |
1153 | // |
1154 | // Return Value: |
1155 | // the connection ID of the specified thread |
1156 | // |
1157 | |
1158 | virtual |
1159 | CONNID GetConnectionID(VMPTR_Thread vmThread) = 0; |
1160 | |
1161 | // |
1162 | // Return the task ID of the specified thread. |
1163 | // |
1164 | // Arguments: |
1165 | // vmThread - the specified thread |
1166 | // |
1167 | // Return Value: |
1168 | // the task ID of the specified thread |
1169 | // |
1170 | |
1171 | virtual |
1172 | TASKID GetTaskID(VMPTR_Thread vmThread) = 0; |
1173 | |
1174 | // |
1175 | // Return the OS thread ID of the specified thread |
1176 | // |
1177 | // Arguments: |
1178 | // vmThread - the specified thread; cannot be NULL |
1179 | // |
1180 | // Return Value: |
1181 | // the OS thread ID of the specified thread. Returns 0 if not scheduled. |
1182 | // |
1183 | |
1184 | virtual |
1185 | DWORD TryGetVolatileOSThreadID(VMPTR_Thread vmThread) = 0; |
1186 | |
1187 | // |
1188 | // Return the unique thread ID of the specified thread. The value used for the thread ID changes |
1189 | // depending on whether the runtime is being hosted. In non-hosted scenarios, a managed thread will |
1190 | // always be associated with the same native thread, and so we can use the OS thread ID as the thread ID |
1191 | // for the managed thread. In hosted scenarios, however, a managed thread may run on multiple native |
1192 | // threads. It may not even have a backing native thread if it's switched out. Therefore, we can't use |
1193 | // the OS thread ID as the thread ID. Instead, we use the internal managed thread ID. |
1194 | // |
1195 | // Arguments: |
1196 | // vmThread - the specified thread; cannot be NULL |
1197 | // |
1198 | // Return Value: |
1199 | // Returns a stable and unique thread ID for the lifetime of the specified managed thread. |
1200 | // |
1201 | |
1202 | virtual |
1203 | DWORD GetUniqueThreadID(VMPTR_Thread vmThread) = 0; |
1204 | |
1205 | // |
1206 | // Return the object handle to the managed Exception object of the current exception |
1207 | // on the specified thread. The return value could be NULL if there is no current exception. |
1208 | // |
1209 | // Arguments: |
1210 | // vmThread - the specified thread |
1211 | // |
1212 | // Return Value: |
1213 | // This function returns the object handle to the managed Exception object of the current exception. |
1214 | // The return value may be NULL if there is no exception being processed, or if the specified thread |
1215 | // is an unmanaged thread which has entered and exited the runtime. |
1216 | // |
1217 | |
1218 | virtual |
1219 | VMPTR_OBJECTHANDLE GetCurrentException(VMPTR_Thread vmThread) = 0; |
1220 | |
1221 | // |
1222 | // Return the object handle to the managed object for a given CCW pointer. |
1223 | // |
1224 | // Arguments: |
1225 | // ccwPtr - the specified ccw pointer |
1226 | // |
1227 | // Return Value: |
1228 | // This function returns the object handle to the managed object for a given CCW pointer. |
1229 | // |
1230 | |
1231 | virtual |
1232 | VMPTR_OBJECTHANDLE GetObjectForCCW(CORDB_ADDRESS ccwPtr) = 0; |
1233 | |
1234 | // |
1235 | // Return the object handle to the managed CustomNotification object of the current notification |
1236 | // on the specified thread. The return value could be NULL if there is no current notification. |
1237 | // |
1238 | // Arguments: |
1239 | // vmThread - the specified thread on which the notification occurred |
1240 | // |
1241 | // Return Value: |
1242 | // This function returns the object handle to the managed CustomNotification object of the current notification. |
1243 | // The return value may be NULL if there is no current notification. |
1244 | // |
1245 | |
1246 | virtual |
1247 | VMPTR_OBJECTHANDLE GetCurrentCustomDebuggerNotification(VMPTR_Thread vmThread) = 0; |
1248 | |
1249 | |
1250 | // |
1251 | // Return the current appdomain the specified thread is in. |
1252 | // |
1253 | // Arguments: |
1254 | // vmThread - the specified thread |
1255 | // |
1256 | // Return Value: |
1257 | // the current appdomain of the specified thread |
1258 | // |
1259 | // Notes: |
1260 | // This function throws if the current appdomain is NULL for whatever reason. |
1261 | // |
1262 | |
1263 | virtual |
1264 | VMPTR_AppDomain GetCurrentAppDomain(VMPTR_Thread vmThread) = 0; |
1265 | |
1266 | |
1267 | // |
1268 | // Resolve an assembly |
1269 | // |
1270 | // Arguments: |
1271 | // vmScope - module containing metadata that the token is scoped to. |
1272 | // tkAssemblyRef - assembly ref token to lookup. |
1273 | // |
1274 | // Returns: |
1275 | // Assembly that the loader/fusion has bound to the given assembly ref. |
1276 | // Returns NULL if the assembly has not yet been loaded (a common case). |
1277 | // Throws on error. |
1278 | // |
1279 | // Notes: |
1280 | // A single module has metadata that specifies references via tokens. The |
1281 | // loader/fusion goes through tremendous and random policy hoops to determine |
1282 | // which specific file actually gets bound to the reference. This policy includes |
1283 | // things like config files, registry settings, and many other knobs. |
1284 | // |
1285 | // The debugger can't duplicate this policy with 100% accuracy, and |
1286 | // so we need DAC to lookup the assembly that was actually loaded. |
1287 | virtual |
1288 | VMPTR_DomainAssembly ResolveAssembly(VMPTR_DomainFile vmScope, mdToken tkAssemblyRef) = 0; |
1289 | |
1290 | //----------------------------------------------------------------------------- |
1291 | // Interface for initializing the native/IL sequence points and native var info |
1292 | // for a function. |
1293 | // Arguments: |
1294 | // input: |
1295 | // vmMethodDesc MethodDesc of the function |
1296 | // startAddr starting address of the function--this serves to |
1297 | // differentiate various EnC versions of the function |
1298 | // fCodePitched indicates whether code for the function has been pitched |
1299 | // fJitComplete indicates whether the function has been jitted |
1300 | // output: |
1301 | // pNativeVarData space for the native code offset information for locals |
1302 | // pSequencePoints space for the IL/native sequence points |
1303 | // Return value: |
1304 | // none, but may throw an exception |
1305 | // Assumptions: |
1306 | // vmMethodDesc, pNativeVarInfo and pSequencePoints are non-NULL |
1307 | |
1308 | // Notes: |
1309 | //----------------------------------------------------------------------------- |
1310 | |
1311 | virtual |
1312 | void GetNativeCodeSequencePointsAndVarInfo(VMPTR_MethodDesc vmMethodDesc, |
1313 | CORDB_ADDRESS startAddress, |
1314 | BOOL fCodeAvailabe, |
1315 | OUT NativeVarData * pNativeVarData, |
1316 | OUT SequencePoints * pSequencePoints) = 0; |
1317 | |
1318 | // |
1319 | // Return the filter CONTEXT on the LS. Once we move entirely over to the new managed pipeline |
1320 | // built on top of the Win32 debugging API, this won't be necessary. |
1321 | // |
1322 | // Arguments: |
1323 | // vmThread - the specified thread |
1324 | // |
1325 | // Return Value: |
1326 | // the filter CONTEXT of the specified thread |
1327 | // |
1328 | // Notes: |
1329 | // This function should go away when everything is moved OOP and |
1330 | // we don't have a filter CONTEXT on the LS anymore. |
1331 | // |
1332 | |
1333 | virtual |
1334 | VMPTR_CONTEXT GetManagedStoppedContext(VMPTR_Thread vmThread) = 0; |
1335 | |
1336 | typedef enum |
1337 | { |
1338 | kInvalid, |
1339 | kManagedStackFrame, |
1340 | kExplicitFrame, |
1341 | kNativeStackFrame, |
1342 | kNativeRuntimeUnwindableStackFrame, |
1343 | kAtEndOfStack, |
1344 | } FrameType; |
1345 | |
1346 | // The stackwalker functions allocate persistent state within DDImpl. Clients can hold onto |
1347 | // this via an opaque StackWalkHandle. |
1348 | typedef void* * StackWalkHandle; |
1349 | |
1350 | // |
1351 | // Create a stackwalker on the specified thread and return a handle to it. |
1352 | // Initially, the stackwalker is at the filter CONTEXT if there is one. |
1353 | // Otherwise it is at the leaf CONTEXT. It DOES NOT fast forward to the first frame of interest. |
1354 | // |
1355 | // Arguments: |
1356 | // vmThread - the specified thread |
1357 | // pInternalContextBuffer - a CONTEXT buffer for the stackwalker to work with |
1358 | // ppSFIHandle - out parameter; return a handle to the stackwalker |
1359 | // |
1360 | // Notes: |
1361 | // Call DeleteStackWalk() to delete the stackwalk buffer. |
1362 | // This is a special case that violates the 'no state' tenant. |
1363 | // |
1364 | |
1365 | virtual |
1366 | void CreateStackWalk(VMPTR_Thread vmThread, |
1367 | DT_CONTEXT * pInternalContextBuffer, |
1368 | OUT StackWalkHandle * ppSFIHandle) = 0; |
1369 | |
1370 | // Delete the stackwalk object created from CreateStackWalk. |
1371 | virtual |
1372 | void DeleteStackWalk(StackWalkHandle ppSFIHandle) = 0; |
1373 | |
1374 | // |
1375 | // Get the CONTEXT of the current frame where the stackwalker is stopped at. |
1376 | // |
1377 | // Arguments: |
1378 | // pSFIHandle - the handle to the stackwalker |
1379 | // pContext - OUT: the CONTEXT to be filled out. The context control flags are ignored. |
1380 | // |
1381 | |
1382 | virtual |
1383 | void GetStackWalkCurrentContext(StackWalkHandle pSFIHandle, |
1384 | DT_CONTEXT * pContext) = 0; |
1385 | |
1386 | // |
1387 | // Set the stackwalker to the given CONTEXT. The CorDebugSetContextFlag indicates whether |
1388 | // the CONTEXT is "active", meaning that the IP is point at the current instruction, |
1389 | // not the return address of some function call. |
1390 | // |
1391 | // Arguments: |
1392 | // vmThread - the current thread |
1393 | // pSFIHandle - the handle to the stackwalker |
1394 | // flag - flag to indicate whether the specified CONTEXT is "active" |
1395 | // pContext - the specified CONTEXT. This may make correctional adjustments to the context's IP. |
1396 | // |
1397 | |
1398 | virtual |
1399 | void SetStackWalkCurrentContext(VMPTR_Thread vmThread, |
1400 | StackWalkHandle pSFIHandle, |
1401 | CorDebugSetContextFlag flag, |
1402 | DT_CONTEXT * pContext) = 0; |
1403 | |
1404 | // |
1405 | // Unwind the stackwalker to the next frame. The next frame could be any actual stack frame, |
1406 | // explicit frame, native marker frame, etc. Call GetStackWalkCurrentFrameInfo() to find out |
1407 | // more about the frame. |
1408 | // |
1409 | // Arguments: |
1410 | // pSFIHandle - the handle to the stackwalker |
1411 | // |
1412 | // Return Value: |
1413 | // Return TRUE if we successfully unwind to the next frame. |
1414 | // Return FALSE if there is no more frames to walk. |
1415 | // Throw on error. |
1416 | // |
1417 | |
1418 | virtual |
1419 | BOOL UnwindStackWalkFrame(StackWalkHandle pSFIHandle) = 0; |
1420 | |
1421 | // |
1422 | // Check whether the specified CONTEXT is valid. The only check we perform right now is whether the |
1423 | // SP in the specified CONTEXT is in the stack range of the thread. |
1424 | // |
1425 | // Arguments: |
1426 | // vmThread - the specified thread |
1427 | // pContext - the CONTEXT to be checked |
1428 | // |
1429 | // Return Value: |
1430 | // Return S_OK if the CONTEXT passes our checks. |
1431 | // Returns CORDBG_E_NON_MATCHING_CONTEXT if the SP in the specified CONTEXT doesn't fall in the stack |
1432 | // range of the thread. |
1433 | // Throws on error. |
1434 | // |
1435 | |
1436 | virtual |
1437 | HRESULT CheckContext(VMPTR_Thread vmThread, |
1438 | const DT_CONTEXT * pContext) = 0; |
1439 | |
1440 | // |
1441 | // Fill in the DebuggerIPCE_STRData structure with information about the current frame |
1442 | // where the stackwalker is stopped at. |
1443 | // |
1444 | // Arguments: |
1445 | // pSFIHandle - the handle to the stackwalker |
1446 | // pFrameData - the DebuggerIPCE_STRData to be filled out; |
1447 | // it can be NULL if you just want to know the frame type |
1448 | // |
1449 | // Return Value: |
1450 | // Return the type of the current frame |
1451 | // |
1452 | |
1453 | virtual |
1454 | FrameType GetStackWalkCurrentFrameInfo(StackWalkHandle pSFIHandle, |
1455 | OPTIONAL DebuggerIPCE_STRData * pFrameData) = 0; |
1456 | |
1457 | // |
1458 | // Return the number of internal frames on the specified thread. |
1459 | // |
1460 | // Arguments: |
1461 | // vmThread - the thread whose internal frames are being retrieved |
1462 | // |
1463 | // Return Value: |
1464 | // Return the number of internal frames. |
1465 | // |
1466 | // Notes: |
1467 | // Explicit frames are "marker objects" the runtime pushes on the stack to mark special places, e.g. |
1468 | // appdomain transition, managed-to- unmanaged transition, etc. Internal frames are only a subset of |
1469 | // explicit frames. Explicit frames which are not interesting to the debugger are not exposed (e.g. |
1470 | // GCFrame). Internal frames are interesting to the debugger if they have a CorDebugInternalFrameType |
1471 | // other than STUBFRAME_NONE. |
1472 | // |
1473 | // The user should call this function before code:IDacDbiInterface::EnumerateInternalFrames to figure |
1474 | // out how many interesting internal frames there are. |
1475 | // |
1476 | |
1477 | virtual |
1478 | ULONG32 GetCountOfInternalFrames(VMPTR_Thread vmThread) = 0; |
1479 | |
1480 | // |
1481 | // Enumerate the internal frames on the specified thread and invoke the provided callback on each of |
1482 | // them. Information about the internal frame is stored in the DebuggerIPCE_STRData. |
1483 | // |
1484 | // Arguments: |
1485 | // vmThread - the thread to be walked fpCallback - callback function invoked on each internal frame |
1486 | // pUserData - user-specified custom data |
1487 | // |
1488 | // Notes: |
1489 | // The user can call code:IDacDbiInterface::GetCountOfInternalFrames to figure out how many internal |
1490 | // frames are on the thread before calling this function. Also, refer to the comment of that function |
1491 | // to find out more about internal frames. |
1492 | // |
1493 | |
1494 | typedef void (*FP_INTERNAL_FRAME_ENUMERATION_CALLBACK)(const DebuggerIPCE_STRData * pFrameData, CALLBACK_DATA pUserData); |
1495 | |
1496 | virtual |
1497 | void EnumerateInternalFrames(VMPTR_Thread vmThread, |
1498 | FP_INTERNAL_FRAME_ENUMERATION_CALLBACK fpCallback, |
1499 | CALLBACK_DATA pUserData) = 0; |
1500 | |
1501 | // |
1502 | // Given the FramePointer of the parent frame and the FramePointer of the current frame, |
1503 | // check if the current frame is the parent frame. fpParent should have been returned |
1504 | // previously by the DacDbiInterface via GetStackWalkCurrentFrameInfo(). |
1505 | // |
1506 | // Arguments: |
1507 | // fpToCheck - the FramePointer of the current frame |
1508 | // fpParent - the FramePointer of the parent frame; should have been returned earlier by the DDI |
1509 | // |
1510 | // Return Value: |
1511 | // Return TRUE if the current frame is indeed the parent frame |
1512 | // |
1513 | // Note: |
1514 | // Because of the complexity involved in checking for the parent frame, we should always |
1515 | // ask the ExceptionTracker to do it. |
1516 | // |
1517 | |
1518 | virtual |
1519 | BOOL IsMatchingParentFrame(FramePointer fpToCheck, FramePointer fpParent) = 0; |
1520 | |
1521 | // |
1522 | // Return the stack parameter size of a given method. This is necessary on x86 for unwinding. |
1523 | // |
1524 | // Arguments: |
1525 | // controlPC - any address in the specified method; you can use the current PC of the stack frame |
1526 | // |
1527 | // Return Value: |
1528 | // Return the size of the stack parameters of the given method. |
1529 | // Return 0 for vararg methods. |
1530 | // |
1531 | // Assumptions: |
1532 | // The callee stack parameter size is constant throughout a method. |
1533 | // |
1534 | |
1535 | virtual |
1536 | ULONG32 GetStackParameterSize(CORDB_ADDRESS controlPC) = 0; |
1537 | |
1538 | // |
1539 | // Return the FramePointer of the current frame where the stackwalker is stopped at. |
1540 | // |
1541 | // Arguments: |
1542 | // pSFIHandle - the handle to the stackwalker |
1543 | // |
1544 | // Return Value: |
1545 | // the FramePointer of the current frame |
1546 | // |
1547 | // Notes: |
1548 | // The FramePointer of a stack frame is: |
1549 | // the stack address of the return address on x86, |
1550 | // the current SP on AMD64, |
1551 | // |
1552 | // On x86, to get the stack address of the return address, we need to unwind one more frame |
1553 | // and use the SP of the caller frame as the FramePointer of the callee frame. This |
1554 | // function does NOT do that. It just returns the SP. The caller needs to handle the |
1555 | // unwinding. |
1556 | // |
1557 | // The FramePointer of an explicit frame is just the stack address of the explicit frame. |
1558 | // |
1559 | |
1560 | virtual |
1561 | FramePointer GetFramePointer(StackWalkHandle pSFIHandle) = 0; |
1562 | |
1563 | // |
1564 | // Check whether the specified CONTEXT is the CONTEXT of the leaf frame. This function doesn't care |
1565 | // whether the leaf frame is native or managed. |
1566 | // |
1567 | // Arguments: |
1568 | // vmThread - the specified thread |
1569 | // pContext - the CONTEXT to check |
1570 | // |
1571 | // Return Value: |
1572 | // Return TRUE if the specified CONTEXT is the leaf CONTEXT. |
1573 | // |
1574 | // Notes: |
1575 | // Currently we check the specified CONTEXT against the filter CONTEXT first. |
1576 | // This will be deprecated in V3. |
1577 | // |
1578 | |
1579 | virtual |
1580 | BOOL IsLeafFrame(VMPTR_Thread vmThread, |
1581 | const DT_CONTEXT * pContext) = 0; |
1582 | |
1583 | // Get the context for a particular thread of the target process. |
1584 | // Arguments: |
1585 | // input: vmThread - the thread for which the context is required |
1586 | // output: pContextBuffer - the address of the CONTEXT to be initialized. |
1587 | // The memory for this belongs to the caller. It must not be NULL. |
1588 | // Note: throws |
1589 | virtual |
1590 | void GetContext(VMPTR_Thread vmThread, DT_CONTEXT * pContextBuffer) = 0; |
1591 | |
1592 | // |
1593 | // This is a simple helper function to convert a CONTEXT to a DebuggerREGDISPLAY. We need to do this |
1594 | // inside DDI because the RS has no notion of REGDISPLAY. |
1595 | // |
1596 | // Arguments: |
1597 | // pInContext - the CONTEXT to be converted |
1598 | // pOutDRD - the converted DebuggerREGDISPLAY |
1599 | // fActive - Indicate whether the CONTEXT is active or not. An active CONTEXT means that the |
1600 | // IP is the next instruction to be executed, not the return address of a function call. |
1601 | // The opposite of an active CONTEXT is an unwind CONTEXT, which is obtained from |
1602 | // unwinding. |
1603 | // |
1604 | |
1605 | virtual |
1606 | void ConvertContextToDebuggerRegDisplay(const DT_CONTEXT * pInContext, |
1607 | DebuggerREGDISPLAY * pOutDRD, |
1608 | BOOL fActive) = 0; |
1609 | |
1610 | typedef enum |
1611 | { |
1612 | kNone, |
1613 | kILStub, |
1614 | kLCGMethod, |
1615 | } DynamicMethodType; |
1616 | |
1617 | // |
1618 | // Check whether the specified method is an IL stub or an LCG method. This answer determines if we |
1619 | // need to expose the method in a V2-style stackwalk. |
1620 | // |
1621 | // Arguments: |
1622 | // vmMethodDesc - the method to be checked |
1623 | // |
1624 | // Return Value: |
1625 | // Return kNone if the method is neither an IL stub or an LCG method. |
1626 | // Return kILStub if the method is an IL stub. |
1627 | // Return kLCGMethod if the method is an LCG method. |
1628 | // |
1629 | |
1630 | virtual |
1631 | DynamicMethodType IsILStubOrLCGMethod(VMPTR_MethodDesc vmMethodDesc) = 0; |
1632 | |
1633 | // |
1634 | // Return a TargetBuffer for the raw vararg signature. |
1635 | // Also return the address of the first argument in the vararg signature. |
1636 | // |
1637 | // Arguments: |
1638 | // VASigCookieAddr - the target address of the VASigCookie pointer (double indirection) |
1639 | // pArgBase - out parameter; return the target address of the first word of the arguments |
1640 | // |
1641 | // Return Value: |
1642 | // Return a TargetBuffer for the raw vararg signature. |
1643 | // |
1644 | // Notes: |
1645 | // We can't take a VMPTR here because VASigCookieAddr does not come from the DDI. Instead, |
1646 | // we use the native variable information to figure out which stack slot contains the |
1647 | // VASigCookie pointer. So a remote address is all we have got. |
1648 | // |
1649 | // Ideally we should be able to return just a SigParser, but doing so has a not-so-trivial problem. |
1650 | // The memory used for the signature pointed to by the SigParser cannot be allocated in the DAC cache, |
1651 | // since it'll be used by mscordbi. We don't have a clean way to allocate memory in mscordbi without |
1652 | // breaking the Signature abstraction. |
1653 | // |
1654 | // The other option would be to create a new sub-type like "SignatureCopy" which allocates and frees |
1655 | // its own backing memory. Currently we don't want to share heaps between mscordacwks.dll and |
1656 | // mscordbi.dll, and so we would have to jump through some hoops to allocate with an allocator |
1657 | // in mscordbi.dll. |
1658 | // |
1659 | |
1660 | virtual |
1661 | TargetBuffer GetVarArgSig(CORDB_ADDRESS VASigCookieAddr, |
1662 | OUT CORDB_ADDRESS * pArgBase) = 0; |
1663 | |
1664 | // |
1665 | // Indicates if the specified type requires 8-byte alignment. |
1666 | // |
1667 | // Arguments: |
1668 | // thExact - the exact TypeHandle of the type to query |
1669 | // |
1670 | // Return Value: |
1671 | // TRUE if the type requires 8-byte alignment. |
1672 | // |
1673 | |
1674 | virtual |
1675 | BOOL RequiresAlign8(VMPTR_TypeHandle thExact) = 0; |
1676 | |
1677 | // |
1678 | // Resolve the raw generics token to the real generics type token. The resolution is based on the |
1679 | // given index. See Notes below. |
1680 | // |
1681 | // Arguments: |
1682 | // dwExactGenericArgsTokenIndex - the variable index of the generics type token |
1683 | // rawToken - the raw token to be resolved |
1684 | // |
1685 | // Return Value: |
1686 | // Return the actual generics type token. |
1687 | // |
1688 | // Notes: |
1689 | // DDI tells the RS which variable stores the generics type token, but DDI doesn't retrieve the value |
1690 | // of the variable itself. Instead, the RS retrieves the value of the variable. However, |
1691 | // in some cases, the variable value is not the generics type token. In this case, we need to |
1692 | // "resolve" the variable value to the generics type token. The RS should call this API to do that. |
1693 | // |
1694 | // If the index is 0, then the generics type token is the MethodTable of the "this" object. |
1695 | // rawToken will be the address of the "this" object. |
1696 | // |
1697 | // If the index is TYPECTXT_ILNUM, the generics type token is a secret argument. |
1698 | // It could be a MethodDesc or a MethodTable, and in this case no resolution is actually necessary. |
1699 | // rawToken will be the actual secret argument, and this API really is just a nop. |
1700 | // |
1701 | // However, we don't want the RS to know all this logic. |
1702 | // |
1703 | |
1704 | virtual |
1705 | GENERICS_TYPE_TOKEN ResolveExactGenericArgsToken(DWORD dwExactGenericArgsTokenIndex, |
1706 | GENERICS_TYPE_TOKEN rawToken) = 0; |
1707 | |
1708 | //----------------------------------------------------------------------------- |
1709 | // Functions to get information about code objects |
1710 | //----------------------------------------------------------------------------- |
1711 | |
1712 | // GetILCodeAndSig returns the function's ILCode and SigToken given |
1713 | // a module and a token. The info will come from a MethodDesc, if |
1714 | // one exists or from metadata. |
1715 | // |
1716 | // Arguments: |
1717 | // Input: |
1718 | // vmDomainFile - module containing metadata for the method |
1719 | // functionToken - metadata token for the function |
1720 | // Output (required): |
1721 | // codeInfo - start address and size of the IL |
1722 | // pLocalSigToken - signature token for the method |
1723 | virtual |
1724 | void GetILCodeAndSig(VMPTR_DomainFile vmDomainFile, |
1725 | mdToken functionToken, |
1726 | OUT TargetBuffer * pCodeInfo, |
1727 | OUT mdToken * pLocalSigToken) = 0; |
1728 | |
1729 | // Gets information about a native code blob: |
1730 | // it's method desc, whether it's an instantiated generic, its EnC version number |
1731 | // and hot and cold region information. |
1732 | // Arguments: |
1733 | // Input: |
1734 | // vmDomainFile - module containing metadata for the method |
1735 | // functionToken - token for the function for which we need code info |
1736 | // Output (required): |
1737 | // pCodeInfo - data structure describing the native code regions. |
1738 | // Notes: If the function is unjitted, the method desc will be NULL and the |
1739 | // output parameter will be invalid. In general, if the native start address |
1740 | // is unavailable for any reason, the output parameter will also be |
1741 | // invalid (i.e., pCodeInfo->IsValid is false). |
1742 | |
1743 | virtual |
1744 | void GetNativeCodeInfo(VMPTR_DomainFile vmDomainFile, |
1745 | mdToken functionToken, |
1746 | OUT NativeCodeFunctionData * pCodeInfo) = 0; |
1747 | |
1748 | // Gets information about a native code blob: |
1749 | // it's method desc, whether it's an instantiated generic, its EnC version number |
1750 | // and hot and cold region information. |
1751 | // This is similar to function above, just works from a different starting point |
1752 | // Also this version can get info for any particular EnC version instance |
1753 | // because they all have different start addresses whereas the above version gets |
1754 | // the most recent one |
1755 | // Arguments: |
1756 | // Input: |
1757 | // hotCodeStartAddr - the beginning of the code hot code region |
1758 | // Output (required): |
1759 | // pCodeInfo - data structure describing the native code regions. |
1760 | |
1761 | virtual |
1762 | void GetNativeCodeInfoForAddr(VMPTR_MethodDesc vmMethodDesc, |
1763 | CORDB_ADDRESS hotCodeStartAddr, |
1764 | NativeCodeFunctionData * pCodeInfo) = 0; |
1765 | |
1766 | //----------------------------------------------------------------------------- |
1767 | // Functions to get information about types |
1768 | //----------------------------------------------------------------------------- |
1769 | |
1770 | // Determine if a type is a ValueType |
1771 | // |
1772 | // Arguments: |
1773 | // input: vmTypeHandle - the type being checked (works even on unrestored types) |
1774 | // |
1775 | // Return: |
1776 | // TRUE iff the type is a ValueType |
1777 | |
1778 | virtual |
1779 | BOOL IsValueType (VMPTR_TypeHandle th) = 0; |
1780 | |
1781 | // Determine if a type has generic parameters |
1782 | // |
1783 | // Arguments: |
1784 | // input: vmTypeHandle - the type being checked (works even on unrestored types) |
1785 | // |
1786 | // Return: |
1787 | // TRUE iff the type has generic parameters |
1788 | |
1789 | virtual |
1790 | BOOL HasTypeParams (VMPTR_TypeHandle th) = 0; |
1791 | |
1792 | // Get type information for a class |
1793 | // |
1794 | // Arguments: |
1795 | // input: vmAppDomain - appdomain where we will fetch field data for the type |
1796 | // thExact - exact type handle for type |
1797 | // output: |
1798 | // pData - structure containing information about the class and its |
1799 | // fields |
1800 | |
1801 | virtual |
1802 | void GetClassInfo (VMPTR_AppDomain vmAppDomain, |
1803 | VMPTR_TypeHandle thExact, |
1804 | ClassInfo * pData) = 0; |
1805 | |
1806 | // get field information and object size for an instantiated generic |
1807 | // |
1808 | // Arguments: |
1809 | // input: vmDomainFile - module containing metadata for the type |
1810 | // thExact - exact type handle for type (may be NULL) |
1811 | // thApprox - approximate type handle for the type |
1812 | // output: |
1813 | // pFieldList - array of structures containing information about the fields. Clears any previous |
1814 | // contents. Allocated and initialized by this function. |
1815 | // pObjectSize - size of the instantiated object |
1816 | // |
1817 | virtual |
1818 | void GetInstantiationFieldInfo (VMPTR_DomainFile vmDomainFile, |
1819 | VMPTR_TypeHandle vmThExact, |
1820 | VMPTR_TypeHandle vmThApprox, |
1821 | OUT DacDbiArrayList<FieldData> * pFieldList, |
1822 | OUT SIZE_T * pObjectSize) = 0; |
1823 | |
1824 | // use a type handle to get the information needed to create the corresponding RS CordbType instance |
1825 | // |
1826 | // Arguments: |
1827 | // input: boxed - indicates what, if anything, is boxed. See code:AreValueTypesBoxed for more |
1828 | // specific information |
1829 | // vmAppDomain - module containing metadata for the type |
1830 | // vmTypeHandle - type handle for the type |
1831 | // output: pTypeInfo - holds information needed to build the corresponding CordbType |
1832 | // |
1833 | virtual |
1834 | void TypeHandleToExpandedTypeInfo(AreValueTypesBoxed boxed, |
1835 | VMPTR_AppDomain vmAppDomain, |
1836 | VMPTR_TypeHandle vmTypeHandle, |
1837 | DebuggerIPCE_ExpandedTypeData * pTypeInfo) = 0; |
1838 | |
1839 | virtual |
1840 | void GetObjectExpandedTypeInfo(AreValueTypesBoxed boxed, |
1841 | VMPTR_AppDomain vmAppDomain, |
1842 | CORDB_ADDRESS addr, |
1843 | OUT DebuggerIPCE_ExpandedTypeData * pTypeInfo) = 0; |
1844 | |
1845 | |
1846 | virtual |
1847 | void GetObjectExpandedTypeInfoFromID(AreValueTypesBoxed boxed, |
1848 | VMPTR_AppDomain vmAppDomain, |
1849 | COR_TYPEID id, |
1850 | OUT DebuggerIPCE_ExpandedTypeData * pTypeInfo) = 0; |
1851 | |
1852 | |
1853 | // Get type handle for a TypeDef token, if one exists. For generics this returns the open type. |
1854 | // Note there is no guarantee the returned handle will be fully restored (in pre-jit scenarios), |
1855 | // only that it exists. Later functions that use this type handle should fail if they require |
1856 | // information not yet available at the current restoration level |
1857 | // |
1858 | // Arguments: |
1859 | // input: vmModule - the module scope in which to look up the type def |
1860 | // metadataToken - the type definition to retrieve |
1861 | // |
1862 | // Return value: the type handle if it exists or throws CORDBG_E_CLASS_NOT_LOADED if it isn't loaded |
1863 | // |
1864 | virtual |
1865 | VMPTR_TypeHandle GetTypeHandle(VMPTR_Module vmModule, |
1866 | mdTypeDef metadataToken) = 0; |
1867 | |
1868 | // Get the approximate type handle for an instantiated type. This may be identical to the exact type handle, |
1869 | // but if we have code sharing for generics, it may differ in that it may have canonical type parameters. |
1870 | // This will occur if we have not yet loaded an exact type but we have loaded the canonical form of the |
1871 | // type. |
1872 | // |
1873 | // Arguments: |
1874 | // input: pTypeData - information needed to get the type handle, this includes a list of type parameters |
1875 | // and the number of entries in the list. Allocated and initialized by the caller. |
1876 | // Return value: the approximate type handle |
1877 | // |
1878 | virtual |
1879 | VMPTR_TypeHandle GetApproxTypeHandle(TypeInfoList * pTypeData) = 0; |
1880 | |
1881 | // Get the exact type handle from type data. |
1882 | // Arguments: |
1883 | // input: pTypeData - type information for the type. includes information about |
1884 | // the top-level type as well as information |
1885 | // about the element type for array types, the referent for |
1886 | // pointer types, or actual parameters for generic class or |
1887 | // valuetypes, as appropriate for the top-level type. |
1888 | // pArgInfo - This is preallocated and initialized by the caller and contains two fields: |
1889 | // genericArgsCount - number of type parameters (these may be actual type parameters |
1890 | // for generics or they may represent the element type or referent |
1891 | // type. |
1892 | // pGenericArgData - list of type parameters |
1893 | // vmTypeHandle - the exact type handle derived from the type information |
1894 | // Return Value: an HRESULT indicating the result of the operation |
1895 | virtual |
1896 | HRESULT GetExactTypeHandle(DebuggerIPCE_ExpandedTypeData * pTypeData, |
1897 | ArgInfoList * pArgInfo, |
1898 | VMPTR_TypeHandle& vmTypeHandle) = 0; |
1899 | |
1900 | // |
1901 | // Retrieve the generic type params for a given MethodDesc. This function is specifically |
1902 | // for stackwalking because it requires the generic type token on the stack. |
1903 | // |
1904 | // Arguments: |
1905 | // vmAppDomain - the appdomain of the MethodDesc |
1906 | // vmMethodDesc - the method in question |
1907 | // genericsToken - the generic type token in the stack frame owned by the method |
1908 | // |
1909 | // pcGenericClassTypeParams - out parameter; returns the number of type parameters for the class |
1910 | // containing the method in question; must not be NULL |
1911 | // pGenericTypeParams - out parameter; returns an array of type parameters and |
1912 | // the count of the total number of type parameters; must not be NULL |
1913 | // |
1914 | // Notes: |
1915 | // The memory for the array is allocated by this function on the Dbi heap. |
1916 | // The caller is responsible for releasing it. |
1917 | // |
1918 | |
1919 | virtual |
1920 | void GetMethodDescParams(VMPTR_AppDomain vmAppDomain, |
1921 | VMPTR_MethodDesc vmMethodDesc, |
1922 | GENERICS_TYPE_TOKEN genericsToken, |
1923 | OUT UINT32 * pcGenericClassTypeParams, |
1924 | OUT TypeParamsList * pGenericTypeParams) = 0; |
1925 | |
1926 | // Get the target field address of a thread local static. |
1927 | // Arguments: |
1928 | // input: vmField - pointer to the field descriptor for the static field |
1929 | // vmRuntimeThread - thread to which the static field belongs. This must |
1930 | // NOT be NULL |
1931 | // Return Value: The target address of the field if the field is allocated. |
1932 | // NULL if the field storage is not yet allocated. |
1933 | // |
1934 | // Note: |
1935 | // Static field storage is lazily allocated, so this may commonly return NULL. |
1936 | // This is an inspection only method and can not allocate the static storage. |
1937 | // Field storage is constant once allocated, so this value can be cached. |
1938 | |
1939 | virtual |
1940 | CORDB_ADDRESS GetThreadStaticAddress(VMPTR_FieldDesc vmField, |
1941 | VMPTR_Thread vmRuntimeThread) = 0; |
1942 | |
1943 | // Get the target field address of a collectible types static. |
1944 | // Arguments: |
1945 | // input: vmField - pointer to the field descriptor for the static field |
1946 | // vmAppDomain - AppDomain to which the static field belongs. This must |
1947 | // NOT be NULL |
1948 | // Return Value: The target address of the field if the field is allocated. |
1949 | // NULL if the field storage is not yet allocated. |
1950 | // |
1951 | // Note: |
1952 | // Static field storage may not exist yet, so this may commonly return NULL. |
1953 | // This is an inspection only method and can not allocate the static storage. |
1954 | // Field storage is not constant once allocated so this value can not be cached |
1955 | // across a Continue |
1956 | |
1957 | virtual |
1958 | CORDB_ADDRESS GetCollectibleTypeStaticAddress(VMPTR_FieldDesc vmField, |
1959 | VMPTR_AppDomain vmAppDomain) = 0; |
1960 | |
1961 | // Get information about a field added with Edit And Continue. |
1962 | // Arguments: |
1963 | // intput: pEnCFieldInfo - information about the EnC added field including: |
1964 | // object to which it belongs (if this is null the field is static) |
1965 | // the field token |
1966 | // the class token for the class to which the field was added |
1967 | // the offset to the fields |
1968 | // the domain file |
1969 | // an indication of the type: whether it's a class or value type |
1970 | // output: pFieldData - information about the EnC added field |
1971 | // pfStatic - flag to indicate whether the field is static |
1972 | virtual |
1973 | void GetEnCHangingFieldInfo(const EnCHangingFieldInfo * pEnCFieldInfo, |
1974 | OUT FieldData * pFieldData, |
1975 | OUT BOOL * pfStatic) = 0; |
1976 | |
1977 | |
1978 | // GetTypeHandleParams gets the necessary data for a type handle, i.e. its |
1979 | // type parameters, e.g. "String" and "List<int>" from the type handle |
1980 | // for "Dict<String,List<int>>", and sends it back to the right side. |
1981 | // Arguments: |
1982 | // input: vmAppDomain - app domain to which the type belongs |
1983 | // vmTypeHandle - type handle for the type |
1984 | // output: pParams - list of instances of DebuggerIPCE_ExpandedTypeData, |
1985 | // one for each type parameter. These will be used on the |
1986 | // RS to build up an instantiation which will allow |
1987 | // building an instance of CordbType for the top-level |
1988 | // type. The memory for this list is allocated on the dbi |
1989 | // heap in this function. |
1990 | // This will not fail except for OOM |
1991 | |
1992 | virtual |
1993 | void GetTypeHandleParams(VMPTR_AppDomain vmAppDomain, |
1994 | VMPTR_TypeHandle vmTypeHandle, |
1995 | OUT TypeParamsList * pParams) = 0; |
1996 | |
1997 | // GetSimpleType |
1998 | // gets the metadata token and domain file corresponding to a simple type |
1999 | // Arguments: |
2000 | // input: vmAppDomain - Appdomain in which simpleType resides |
2001 | // simpleType - CorElementType value corresponding to a simple type |
2002 | // output: pMetadataToken - the metadata token corresponding to simpleType, |
2003 | // in the scope of vmDomainFile. |
2004 | // vmDomainFile - the domainFile for simpleType |
2005 | // Notes: |
2006 | // This is inspection-only. If the type is not yet loaded, it will throw CORDBG_E_CLASS_NOT_LOADED. |
2007 | // It will not try to load a type. |
2008 | // If the type has been loaded, vmDomainFile will be non-null unless the target is somehow corrupted. |
2009 | // In that case, we will throw CORDBG_E_TARGET_INCONSISTENT. |
2010 | |
2011 | virtual |
2012 | void GetSimpleType(VMPTR_AppDomain vmAppDomain, |
2013 | CorElementType simpleType, |
2014 | OUT mdTypeDef * pMetadataToken, |
2015 | OUT VMPTR_Module * pVmModule, |
2016 | OUT VMPTR_DomainFile * pVmDomainFile) = 0; |
2017 | |
2018 | // for the specified object returns TRUE if the object derives from System.Exception |
2019 | virtual |
2020 | BOOL IsExceptionObject(VMPTR_Object vmObject) = 0; |
2021 | |
2022 | // gets the list of raw stack frames for the specified exception object |
2023 | virtual |
2024 | void GetStackFramesFromException(VMPTR_Object vmObject, DacDbiArrayList<DacExceptionCallStackData>& dacStackFrames) = 0; |
2025 | |
2026 | // Returns true if the argument is a runtime callable wrapper |
2027 | virtual |
2028 | BOOL IsRcw(VMPTR_Object vmObject) = 0; |
2029 | |
2030 | // retrieves the list of COM interfaces implemented by vmObject, as it is known at |
2031 | // the time of the call (the list may change as new interface types become available |
2032 | // in the runtime) |
2033 | virtual |
2034 | void GetRcwCachedInterfaceTypes( |
2035 | VMPTR_Object vmObject, |
2036 | VMPTR_AppDomain vmAppDomain, |
2037 | BOOL bIInspectableOnly, |
2038 | OUT DacDbiArrayList<DebuggerIPCE_ExpandedTypeData> * pDacInterfaces) = 0; |
2039 | |
2040 | // retrieves the list of interfaces pointers implemented by vmObject, as it is known at |
2041 | // the time of the call (the list may change as new interface types become available |
2042 | // in the runtime) |
2043 | virtual |
2044 | void GetRcwCachedInterfacePointers( |
2045 | VMPTR_Object vmObject, |
2046 | BOOL bIInspectableOnly, |
2047 | OUT DacDbiArrayList<CORDB_ADDRESS> * pDacItfPtrs) = 0; |
2048 | |
2049 | // retrieves a list of interface types corresponding to the passed in |
2050 | // list of IIDs. the interface types are retrieved from an app domain |
2051 | // IID / Type cache, that is updated as new types are loaded. will |
2052 | // have NULL entries corresponding to unknown IIDs in "iids" |
2053 | virtual |
2054 | void GetCachedWinRTTypesForIIDs( |
2055 | VMPTR_AppDomain vmAppDomain, |
2056 | DacDbiArrayList<GUID> & iids, |
2057 | OUT DacDbiArrayList<DebuggerIPCE_ExpandedTypeData> * pTypes) = 0; |
2058 | |
2059 | // retrieves the whole app domain cache of IID / Type mappings. |
2060 | virtual |
2061 | void GetCachedWinRTTypes( |
2062 | VMPTR_AppDomain vmAppDomain, |
2063 | OUT DacDbiArrayList<GUID> * piids, |
2064 | OUT DacDbiArrayList<DebuggerIPCE_ExpandedTypeData> * pTypes) = 0; |
2065 | |
2066 | |
2067 | // ---------------------------------------------------------------------------- |
2068 | // functions to get information about reference/handle referents for ICDValue |
2069 | // ---------------------------------------------------------------------------- |
2070 | |
2071 | // Get object information for a TypedByRef object. Initializes the objRef and typedByRefType fields of |
2072 | // pObjectData (type info for the referent). |
2073 | // Arguments: |
2074 | // input: pTypedByRef - pointer to a TypedByRef struct |
2075 | // vmAppDomain - AppDomain for the type of the object referenced |
2076 | // output: pObjectData - information about the object referenced by pTypedByRef |
2077 | // Note: Throws |
2078 | virtual |
2079 | void GetTypedByRefInfo(CORDB_ADDRESS pTypedByRef, |
2080 | VMPTR_AppDomain vmAppDomain, |
2081 | DebuggerIPCE_ObjectData * pObjectData) = 0; |
2082 | |
2083 | // Get the string length and offset to string base for a string object |
2084 | // Arguments: |
2085 | // input: objPtr - address of a string object |
2086 | // output: pObjectData - fills in the string fields stringInfo.offsetToStringBase and |
2087 | // stringInfo.length |
2088 | // Note: throws |
2089 | virtual |
2090 | void GetStringData(CORDB_ADDRESS objectAddress, DebuggerIPCE_ObjectData * pObjectData) = 0; |
2091 | |
2092 | // Get information for an array type referent of an objRef, including rank, upper and lower bounds, |
2093 | // element size and type, and the number of elements. |
2094 | // Arguments: |
2095 | // input: objectAddress - the address of an array object |
2096 | // output: pObjectData - fills in the array-related fields: |
2097 | // arrayInfo.offsetToArrayBase, |
2098 | // arrayInfo.offsetToLowerBounds, |
2099 | // arrayInfo.offsetToUpperBounds, |
2100 | // arrayInfo.componentCount, |
2101 | // arrayInfo.rank, |
2102 | // arrayInfo.elementSize, |
2103 | // Note: throws |
2104 | virtual |
2105 | void GetArrayData(CORDB_ADDRESS objectAddress, DebuggerIPCE_ObjectData * pObjectData) = 0; |
2106 | |
2107 | // Get information about an object for which we have a reference, including the object size and |
2108 | // type information. |
2109 | // Arguments: |
2110 | // input: objectAddress - address of the object for which we want information |
2111 | // type - the basic type of the object (we may find more specific type |
2112 | // information for the object) |
2113 | // vmAppDomain - the appdomain to which the object belong |
2114 | // output: pObjectData - fills in the size and type information fields |
2115 | // Note: throws |
2116 | virtual |
2117 | void GetBasicObjectInfo(CORDB_ADDRESS objectAddress, |
2118 | CorElementType type, |
2119 | VMPTR_AppDomain vmAppDomain, |
2120 | DebuggerIPCE_ObjectData * pObjectData) = 0; |
2121 | |
2122 | // -------------------------------------------------------------------------------------------- |
2123 | #ifdef TEST_DATA_CONSISTENCY |
2124 | // Determine whether a crst is held by the left side. When the DAC is executing VM code that takes a |
2125 | // lock, we want to know whether the LS already holds that lock. If it does, we will assume the locked |
2126 | // data is in an inconsistent state and will throw an exception, rather than relying on this data. This |
2127 | // function is part of a self-test that will ensure we are correctly detecting when the LS holds a lock |
2128 | // on data the RS is trying to inspect. |
2129 | // Argument: |
2130 | // input: vmCrst - the lock to test |
2131 | // output: none |
2132 | // Notes: |
2133 | // Throws |
2134 | // For this code to run, the environment variable TestDataConsistency must be set to 1. |
2135 | virtual |
2136 | void TestCrst(VMPTR_Crst vmCrst) = 0; |
2137 | |
2138 | // Determine whether a crst is held by the left side. When the DAC is executing VM code that takes a |
2139 | // lock, we want to know whether the LS already holds that lock. If it does, we will assume the locked |
2140 | // data is in an inconsistent state and will throw an exception, rather than relying on this data. This |
2141 | // function is part of a self-test that will ensure we are correctly detecting when the LS holds a lock |
2142 | // on data the RS is trying to inspect. |
2143 | // Argument: |
2144 | // input: vmRWLock - the lock to test |
2145 | // output: none |
2146 | // Notes: |
2147 | // Throws |
2148 | // For this code to run, the environment variable TestDataConsistency must be set to 1. |
2149 | |
2150 | virtual |
2151 | void TestRWLock(VMPTR_SimpleRWLock vmRWLock) = 0; |
2152 | #endif |
2153 | // -------------------------------------------------------------------------------------------- |
2154 | // Get the address of the Debugger control block on the helper thread. The debugger control block |
2155 | // contains information about the status of the debugger, handles to various events and space to hold |
2156 | // information sent back and forth between the debugger and the debuggee's helper thread. |
2157 | // Arguments: none |
2158 | // Return Value: The remote address of the Debugger control block allocated on the helper thread |
2159 | // if it has been successfully allocated or NULL otherwise. |
2160 | virtual |
2161 | CORDB_ADDRESS GetDebuggerControlBlockAddress() = 0; |
2162 | |
2163 | // Creates a VMPTR of an Object. The Object is found by dereferencing ptr |
2164 | // as though it is a target address to an OBJECTREF. This is similar to |
2165 | // GetObject with another level of indirection. |
2166 | // |
2167 | // Arguments: |
2168 | // ptr - A target address pointing to an OBJECTREF |
2169 | // |
2170 | // Return Value: |
2171 | // A VMPTR to the Object which ptr points to |
2172 | // |
2173 | // Notes: |
2174 | // The VMPTR this produces can be deconstructed by GetObjectContents. |
2175 | // This function will throw if given a NULL or otherwise invalid pointer, |
2176 | // but if given a valid address to an invalid pointer, it will produce |
2177 | // a VMPTR_Object which points to invalid memory. |
2178 | virtual |
2179 | VMPTR_Object GetObjectFromRefPtr(CORDB_ADDRESS ptr) = 0; |
2180 | |
2181 | // Creates a VMPTR of an Object. The Object is assumed to be at the target |
2182 | // address supplied by ptr |
2183 | // |
2184 | // Arguments: |
2185 | // ptr - A target address to an Object |
2186 | // |
2187 | // Return Value: |
2188 | // A VMPTR to the Object which was at ptr |
2189 | // |
2190 | // Notes: |
2191 | // The VMPTR this produces can be deconstructed by GetObjectContents. |
2192 | // This will produce a VMPTR_Object regardless of whether the pointer is |
2193 | // valid or not. |
2194 | virtual |
2195 | VMPTR_Object GetObject(CORDB_ADDRESS ptr) = 0; |
2196 | |
2197 | // Sets state in the native binder. |
2198 | // |
2199 | // Arguments: |
2200 | // ePolicy - the NGEN policy to change |
2201 | // |
2202 | // Return Value: |
2203 | // HRESULT indicating if the state was successfully updated |
2204 | // |
2205 | virtual |
2206 | HRESULT EnableNGENPolicy(CorDebugNGENPolicy ePolicy) = 0; |
2207 | |
2208 | // Sets the NGEN compiler flags. This restricts NGEN to only use images with certain |
2209 | // types of pregenerated code. With respect to debugging this is used to specify that |
2210 | // the NGEN image must be debuggable aka non-optimized code. Note that these flags |
2211 | // are merged with other sources of configuration so it is possible that the final |
2212 | // result retrieved from GetDesiredNGENCompilerFlags does not match what was specfied |
2213 | // in this call. |
2214 | // |
2215 | // If an NGEN image of the appropriate type isn't available then one of two things happens: |
2216 | // a) the NGEN image isn't loaded and CLR loads the MSIL image instead |
2217 | // b) the NGEN image is loaded, but we don't use the pregenerated code it contains |
2218 | // and instead use only the MSIL and metadata |
2219 | // |
2220 | // This function is only legal to call at app startup before any decisions have been |
2221 | // made about NGEN image loading. Once we begin loading this configuration is immutable. |
2222 | // |
2223 | // |
2224 | // Arguments: |
2225 | // dwFlags - the new NGEN compiler flags that should go into effect |
2226 | // |
2227 | // Return Value: |
2228 | // HRESULT indicating if the state was successfully updated. On error the |
2229 | // current flags in effect will not have changed. |
2230 | // |
2231 | virtual |
2232 | HRESULT SetNGENCompilerFlags(DWORD dwFlags) = 0; |
2233 | |
2234 | // Gets the NGEN compiler flags currently in effect. This accounts for settings that |
2235 | // were caused by SetDesiredNGENCompilerFlags as well as other configuration sources. |
2236 | // See SetDesiredNGENCompilerFlags for more info |
2237 | // |
2238 | // Arguments: |
2239 | // pdwFlags - the NGEN compiler flags currently in effect |
2240 | // |
2241 | // Return Value: |
2242 | // HRESULT indicating if the state was successfully retrieved. |
2243 | // |
2244 | virtual |
2245 | HRESULT GetNGENCompilerFlags(DWORD *pdwFlags) = 0; |
2246 | |
2247 | // Create a VMPTR_OBJECTHANDLE from a CORDB_ADDRESS pointing to an object handle |
2248 | // |
2249 | // Arguments: |
2250 | // handle: target address of a GC handle |
2251 | // |
2252 | // ReturnValue: |
2253 | // returns a VMPTR_OBJECTHANDLE with the handle as the m_addr field |
2254 | // |
2255 | // Notes: |
2256 | // This will produce a VMPTR_OBJECTHANDLE regardless of whether handle is |
2257 | // valid. |
2258 | // Ideally we'd be using only strongly-typed variables on the RS, and then this would be unnecessary |
2259 | virtual |
2260 | VMPTR_OBJECTHANDLE GetVmObjectHandle(CORDB_ADDRESS handleAddress) = 0; |
2261 | |
2262 | // Validate that the VMPTR_OBJECTHANDLE refers to a legitimate managed object |
2263 | // |
2264 | // Arguments: |
2265 | // handle: the GC handle to be validated |
2266 | // |
2267 | // Return value: |
2268 | // TRUE if the object appears to be valid (its a heuristic), FALSE if it definately is not valid |
2269 | // |
2270 | virtual |
2271 | BOOL IsVmObjectHandleValid(VMPTR_OBJECTHANDLE vmHandle) = 0; |
2272 | |
2273 | // indicates if the specified module is a WinRT module |
2274 | // |
2275 | // Arguments: |
2276 | // vmModule: the module to check |
2277 | // isWinRT: out parameter indicating state of module |
2278 | // |
2279 | // Return value: |
2280 | // S_OK indicating that the operation succeeded |
2281 | // |
2282 | virtual |
2283 | HRESULT IsWinRTModule(VMPTR_Module vmModule, BOOL& isWinRT) = 0; |
2284 | |
2285 | // Determines the app domain id for the object refered to by a given VMPTR_OBJECTHANDLE |
2286 | // |
2287 | // Arguments: |
2288 | // handle: the GC handle which refers to the object of interest |
2289 | // |
2290 | // Return value: |
2291 | // The app domain id of the object of interest |
2292 | // |
2293 | // This may throw if the object handle is corrupt (it doesn't refer to a managed object) |
2294 | virtual |
2295 | ULONG GetAppDomainIdFromVmObjectHandle(VMPTR_OBJECTHANDLE vmHandle) = 0; |
2296 | |
2297 | |
2298 | // Get the target address from a VMPTR_OBJECTHANDLE, i.e., the handle address |
2299 | // Arguments: |
2300 | // vmHandle - (input) the VMPTR_OBJECTHANDLE from which we need the target address |
2301 | // Return value: the target address from the VMPTR_OBJECTHANDLE |
2302 | // |
2303 | virtual |
2304 | CORDB_ADDRESS GetHandleAddressFromVmHandle(VMPTR_OBJECTHANDLE vmHandle) = 0; |
2305 | |
2306 | // Given a VMPTR to an Object return the target address |
2307 | // |
2308 | // Arguments: |
2309 | // obj - the Object VMPTR to get the address from |
2310 | // |
2311 | // Return Value: |
2312 | // Return the target address which obj is using |
2313 | // |
2314 | // Notes: |
2315 | // The VMPTR this consumes can be reconstructed using GetObject and |
2316 | // providing the address stored in the returned TargetBuffer. This has |
2317 | // undefined behavior for invalid VMPTR_Objects. |
2318 | |
2319 | virtual |
2320 | TargetBuffer GetObjectContents(VMPTR_Object obj) = 0; |
2321 | |
2322 | // The callback used to enumerate blocking objects |
2323 | typedef void (*FP_BLOCKINGOBJECT_ENUMERATION_CALLBACK)(DacBlockingObject blockingObject, |
2324 | CALLBACK_DATA pUserData); |
2325 | |
2326 | // |
2327 | // Enumerate all monitors blocking a thread |
2328 | // |
2329 | // Arguments: |
2330 | // vmThread - the thread to get monitor data for |
2331 | // fpCallback - callback to invoke on the blocking data for each monitor |
2332 | // pUserData - user data to supply for each callback. |
2333 | // |
2334 | // Return Value: |
2335 | // Returns on success. Throws on error. |
2336 | // |
2337 | // |
2338 | virtual |
2339 | void EnumerateBlockingObjects(VMPTR_Thread vmThread, |
2340 | FP_BLOCKINGOBJECT_ENUMERATION_CALLBACK fpCallback, |
2341 | CALLBACK_DATA pUserData) = 0; |
2342 | |
2343 | |
2344 | |
2345 | // |
2346 | // Returns the thread which owns the monitor lock on an object and the acquisition |
2347 | // count |
2348 | // |
2349 | // Arguments: |
2350 | // vmObject - The object to check for ownership |
2351 | |
2352 | // |
2353 | // Return Value: |
2354 | // Throws on error. Inside the structure we have: |
2355 | // pVmThread - the owning or thread or VMPTR_Thread::NullPtr() if unowned |
2356 | // pAcquisitionCount - the number of times the lock would need to be released in |
2357 | // order for it to be unowned |
2358 | // |
2359 | virtual |
2360 | MonitorLockInfo GetThreadOwningMonitorLock(VMPTR_Object vmObject) = 0; |
2361 | |
2362 | // |
2363 | // Enumerate all threads waiting on the monitor event for an object |
2364 | // |
2365 | // Arguments: |
2366 | // vmObject - the object whose monitor event we are interested in |
2367 | // fpCallback - callback to invoke on each thread in the queue |
2368 | // pUserData - user data to supply for each callback. |
2369 | // |
2370 | // Return Value: |
2371 | // Returns on success. Throws on error. |
2372 | // |
2373 | // |
2374 | virtual |
2375 | void EnumerateMonitorEventWaitList(VMPTR_Object vmObject, |
2376 | FP_THREAD_ENUMERATION_CALLBACK fpCallback, |
2377 | CALLBACK_DATA pUserData) = 0; |
2378 | |
2379 | // |
2380 | // Returns the managed debugging flags for the process (a combination |
2381 | // of the CLR_DEBUGGING_PROCESS_FLAGS flags). This function specifies, |
2382 | // beyond whether or not a managed debug event is pending, also if the |
2383 | // event (if one exists) is caused by a Debugger.Launch(). This is |
2384 | // important b/c Debugger.Launch calls should *NOT* cause the debugger |
2385 | // to terminate the process when the attach is canceled. |
2386 | virtual |
2387 | CLR_DEBUGGING_PROCESS_FLAGS GetAttachStateFlags() = 0; |
2388 | |
2389 | virtual |
2390 | bool GetMetaDataFileInfoFromPEFile(VMPTR_PEFile vmPEFile, |
2391 | DWORD & dwTimeStamp, |
2392 | DWORD & dwImageSize, |
2393 | bool & isNGEN, |
2394 | IStringHolder* pStrFilename) = 0; |
2395 | |
2396 | virtual |
2397 | bool GetILImageInfoFromNgenPEFile(VMPTR_PEFile vmPEFile, |
2398 | DWORD & dwTimeStamp, |
2399 | DWORD & dwSize, |
2400 | IStringHolder* pStrFilename) = 0; |
2401 | |
2402 | |
2403 | virtual |
2404 | bool IsThreadSuspendedOrHijacked(VMPTR_Thread vmThread) = 0; |
2405 | |
2406 | |
2407 | typedef void* * HeapWalkHandle; |
2408 | |
2409 | // Returns true if it is safe to walk the heap. If this function returns false, |
2410 | // you could still create a heap walk and attempt to walk it, but there's no |
2411 | // telling how much of the heap will be available. |
2412 | virtual |
2413 | bool AreGCStructuresValid() = 0; |
2414 | |
2415 | // Creates a HeapWalkHandle which can be used to walk the managed heap with the |
2416 | // WalkHeap function. Note if this function completes successfully you will need |
2417 | // to delete the handle by passing it into DeleteHeapWalk. |
2418 | // |
2419 | // Arguments: |
2420 | // pHandle - the location to store the heap walk handle in |
2421 | // |
2422 | // Returns: |
2423 | // S_OK on success, an error code on failure. |
2424 | virtual |
2425 | HRESULT CreateHeapWalk(OUT HeapWalkHandle * pHandle) = 0; |
2426 | |
2427 | |
2428 | // Deletes the give HeapWalkHandle. Note you must call this function if |
2429 | // CreateHeapWalk returns success. |
2430 | virtual |
2431 | void DeleteHeapWalk(HeapWalkHandle handle) = 0; |
2432 | |
2433 | // Walks the heap using the given heap walk handle, enumerating objects |
2434 | // on the managed heap. Note that walking the heap requires that the GC |
2435 | // data structures be in a valid state, which you can find by calling |
2436 | // AreGCStructuresValid. |
2437 | // |
2438 | // Arguments: |
2439 | // handle - a HeapWalkHandle obtained from CreateHeapWalk |
2440 | // count - the number of object addresses to obtain; pValues must |
2441 | // be at least as large as count |
2442 | // objects - the location to stuff the object addresses found during |
2443 | // the heap walk; this array should be at least "count" in |
2444 | // length; this field must not be null |
2445 | // pFetched - a location to store the actual number of values filled |
2446 | // into pValues; this field must not be null |
2447 | // |
2448 | // Returns: |
2449 | // S_OK on success, a failure HRESULT otherwise. |
2450 | // |
2451 | // Note: |
2452 | // You should iteratively call WalkHeap requesting more values until |
2453 | // *pFetched != count.. This signifies that we have reached the end |
2454 | // of the heap walk. |
2455 | virtual |
2456 | HRESULT WalkHeap(HeapWalkHandle handle, |
2457 | ULONG count, |
2458 | OUT COR_HEAPOBJECT * objects, |
2459 | OUT ULONG * pFetched) = 0; |
2460 | |
2461 | virtual |
2462 | HRESULT GetHeapSegments(OUT DacDbiArrayList<COR_SEGMENT> * pSegments) = 0; |
2463 | |
2464 | virtual |
2465 | bool IsValidObject(CORDB_ADDRESS obj) = 0; |
2466 | |
2467 | virtual |
2468 | bool GetAppDomainForObject(CORDB_ADDRESS obj, OUT VMPTR_AppDomain * pApp, |
2469 | OUT VMPTR_Module * pModule, |
2470 | OUT VMPTR_DomainFile * pDomainFile) = 0; |
2471 | |
2472 | |
2473 | // Reference Walking. |
2474 | |
2475 | // Creates a reference walk. |
2476 | // Parameters: |
2477 | // pHandle - out - the reference walk handle to create |
2478 | // walkStacks - in - whether or not to report stack references |
2479 | // walkFQ - in - whether or not to report references from the finalizer queue |
2480 | // handleWalkMask - in - the types of handles report (see CorGCReferenceType, cordebug.idl) |
2481 | // Returns: |
2482 | // An HRESULT indicating whether it succeded or failed. |
2483 | // Exceptions: |
2484 | // Does not throw, but does not catch exceptions either. |
2485 | virtual |
2486 | HRESULT CreateRefWalk(OUT RefWalkHandle * pHandle, BOOL walkStacks, BOOL walkFQ, UINT32 handleWalkMask) = 0; |
2487 | |
2488 | // Deletes a reference walk. |
2489 | // Parameters: |
2490 | // handle - in - the handle of the reference walk to delete |
2491 | // Excecptions: |
2492 | // Does not throw, but does not catch exceptions either. |
2493 | virtual |
2494 | void DeleteRefWalk(RefWalkHandle handle) = 0; |
2495 | |
2496 | // Enumerates GC references in the process based on the parameters passed to CreateRefWalk. |
2497 | // Parameters: |
2498 | // handle - in - the RefWalkHandle to enumerate |
2499 | // count - in - the capacity of "refs" |
2500 | // refs - in/out - an array to write the references to |
2501 | // pFetched - out - the number of references written |
2502 | virtual |
2503 | HRESULT WalkRefs(RefWalkHandle handle, ULONG count, OUT DacGcReference * refs, OUT ULONG * pFetched) = 0; |
2504 | |
2505 | virtual |
2506 | HRESULT GetTypeID(CORDB_ADDRESS obj, COR_TYPEID * pType) = 0; |
2507 | |
2508 | virtual |
2509 | HRESULT GetTypeIDForType(VMPTR_TypeHandle vmTypeHandle, COR_TYPEID *pId) = 0; |
2510 | |
2511 | virtual |
2512 | HRESULT GetObjectFields(COR_TYPEID id, ULONG32 celt, OUT COR_FIELD * layout, OUT ULONG32 * pceltFetched) = 0; |
2513 | |
2514 | virtual |
2515 | HRESULT GetTypeLayout(COR_TYPEID id, COR_TYPE_LAYOUT * pLayout) = 0; |
2516 | |
2517 | virtual |
2518 | HRESULT GetArrayLayout(COR_TYPEID id, COR_ARRAY_LAYOUT * pLayout) = 0; |
2519 | |
2520 | virtual |
2521 | void GetGCHeapInformation(OUT COR_HEAPINFO * pHeapInfo) = 0; |
2522 | |
2523 | // If a PEFile has an RW capable IMDInternalImport, this returns the address of the MDInternalRW |
2524 | // object which implements it. |
2525 | // |
2526 | // |
2527 | // Arguments: |
2528 | // vmPEFile - target PEFile to get metadata MDInternalRW for. |
2529 | // pAddrMDInternalRW - If a PEFile has an RW capable IMDInternalImport, this will be set to the address |
2530 | // of the MDInternalRW object which implements it. Otherwise it will be NULL. |
2531 | // |
2532 | virtual |
2533 | HRESULT GetPEFileMDInternalRW(VMPTR_PEFile vmPEFile, OUT TADDR* pAddrMDInternalRW) = 0; |
2534 | |
2535 | // DEPRECATED - use GetActiveRejitILCodeVersionNode |
2536 | // Retrieves the active ReJitInfo for a given module/methodDef, if it exists. |
2537 | // Active is defined as after GetReJitParameters returns from the profiler dll and |
2538 | // no call to Revert has completed yet. |
2539 | // |
2540 | // |
2541 | // Arguments: |
2542 | // vmModule - The module to search in |
2543 | // methodTk - The methodDef token indicates the method within the module to check |
2544 | // pReJitInfo - [out] The RejitInfo request, if any, that is active on this method. If no request |
2545 | // is active this will be pReJitInfo->IsNull() == TRUE. |
2546 | // |
2547 | // Returns: |
2548 | // S_OK regardless of whether a rejit request is active or not, as long as the answer is certain |
2549 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2550 | // |
2551 | virtual |
2552 | HRESULT GetReJitInfo(VMPTR_Module vmModule, mdMethodDef methodTk, OUT VMPTR_ReJitInfo* pReJitInfo) = 0; |
2553 | |
2554 | // DEPRECATED - use GetNativeCodeVersionNode |
2555 | // Retrieves the ReJitInfo for a given MethodDesc/code address, if it exists. |
2556 | // |
2557 | // |
2558 | // Arguments: |
2559 | // vmMethod - The method to look for |
2560 | // codeStartAddress - The code start address disambiguates between multiple rejitted instances |
2561 | // of the method. |
2562 | // pReJitInfo - [out] The RejitInfo request that corresponds to this MethodDesc/code address, if it exists. |
2563 | // NULL otherwise. |
2564 | // |
2565 | // Returns: |
2566 | // S_OK regardless of whether a rejit request is active or not, as long as the answer is certain |
2567 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2568 | // |
2569 | virtual |
2570 | HRESULT GetReJitInfo(VMPTR_MethodDesc vmMethod, CORDB_ADDRESS codeStartAddress, OUT VMPTR_ReJitInfo* pReJitInfo) = 0; |
2571 | |
2572 | // DEPRECATED - use GetILCodeVersion |
2573 | // Retrieves the SharedReJitInfo for a given ReJitInfo. |
2574 | // |
2575 | // |
2576 | // Arguments: |
2577 | // vmReJitInfo - The ReJitInfo to inspect |
2578 | // pSharedReJitInfo - [out] The SharedReJitInfo that is pointed to by vmReJitInfo. |
2579 | // |
2580 | // Returns: |
2581 | // S_OK if no error |
2582 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2583 | // |
2584 | virtual |
2585 | HRESULT GetSharedReJitInfo(VMPTR_ReJitInfo vmReJitInfo, VMPTR_SharedReJitInfo* pSharedReJitInfo) = 0; |
2586 | |
2587 | // DEPRECATED - use GetILCodeVersionData |
2588 | // Retrieves useful data from a SharedReJitInfo such as IL code and IL mapping. |
2589 | // |
2590 | // |
2591 | // Arguments: |
2592 | // sharedReJitInfo - The SharedReJitInfo to inspect |
2593 | // pData - [out] Various properties of the SharedReJitInfo such as IL code and IL mapping. |
2594 | // |
2595 | // Returns: |
2596 | // S_OK if no error |
2597 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2598 | // |
2599 | virtual |
2600 | HRESULT GetSharedReJitInfoData(VMPTR_SharedReJitInfo sharedReJitInfo, DacSharedReJitInfo* pData) = 0; |
2601 | |
2602 | // Retrieves a bit field indicating which defines were in use when clr was built. This only includes |
2603 | // defines that are specified in the Debugger::_Target_Defines enumeration, which is a small subset of |
2604 | // all defines. |
2605 | // |
2606 | // |
2607 | // Arguments: |
2608 | // pDefines - [out] The set of defines clr.dll was built with. Bit offsets are encoded using the |
2609 | // enumeration Debugger::_Target_Defines |
2610 | // |
2611 | // Returns: |
2612 | // S_OK if no error |
2613 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2614 | // |
2615 | virtual |
2616 | HRESULT GetDefinesBitField(ULONG32 *pDefines) = 0; |
2617 | |
2618 | // Retrieves a version number indicating the shape of the data structures used in the Metadata implementation |
2619 | // inside clr.dll. This number changes anytime a datatype layout changes so that they can be correctly |
2620 | // deserialized from out of process |
2621 | // |
2622 | // |
2623 | // Arguments: |
2624 | // pMDStructuresVersion - [out] The layout version number for metadata data structures. See |
2625 | // Debugger::Debugger() in Debug\ee\Debugger.cpp for a description of the options. |
2626 | // |
2627 | // Returns: |
2628 | // S_OK if no error |
2629 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2630 | // |
2631 | virtual |
2632 | HRESULT GetMDStructuresVersion(ULONG32* pMDStructuresVersion) = 0; |
2633 | |
2634 | // Retrieves the active rejit ILCodeVersionNode for a given module/methodDef, if it exists. |
2635 | // Active is defined as after GetReJitParameters returns from the profiler dll and |
2636 | // no call to Revert has completed yet. |
2637 | // |
2638 | // |
2639 | // Arguments: |
2640 | // vmModule - The module to search in |
2641 | // methodTk - The methodDef token indicates the method within the module to check |
2642 | // pILCodeVersionNode - [out] The Rejit request, if any, that is active on this method. If no request |
2643 | // is active this will be pILCodeVersionNode->IsNull() == TRUE. |
2644 | // |
2645 | // Returns: |
2646 | // S_OK regardless of whether a rejit request is active or not, as long as the answer is certain |
2647 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2648 | // |
2649 | virtual |
2650 | HRESULT GetActiveRejitILCodeVersionNode(VMPTR_Module vmModule, mdMethodDef methodTk, OUT VMPTR_ILCodeVersionNode* pVmILCodeVersionNode) = 0; |
2651 | |
2652 | // Retrieves the NativeCodeVersionNode for a given MethodDesc/code address, if it exists. |
2653 | // NOTE: The initial (default) code generated for a MethodDesc is a valid MethodDesc/code address pair but it won't have a corresponding |
2654 | // NativeCodeVersionNode. |
2655 | // |
2656 | // |
2657 | // Arguments: |
2658 | // vmMethod - The method to look for |
2659 | // codeStartAddress - The code start address disambiguates between multiple jitted instances of the method. |
2660 | // pVmNativeCodeVersionNode - [out] The NativeCodeVersionNode request that corresponds to this MethodDesc/code address, if it exists. |
2661 | // NULL otherwise. |
2662 | // |
2663 | // Returns: |
2664 | // S_OK regardless of whether a rejit request is active or not, as long as the answer is certain |
2665 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2666 | // |
2667 | virtual |
2668 | HRESULT GetNativeCodeVersionNode(VMPTR_MethodDesc vmMethod, CORDB_ADDRESS codeStartAddress, OUT VMPTR_NativeCodeVersionNode* pVmNativeCodeVersionNode) = 0; |
2669 | |
2670 | // Retrieves the ILCodeVersionNode for a given NativeCodeVersionNode. |
2671 | // This may return a NULL node if the native code belongs to the default IL version for this this method. |
2672 | // |
2673 | // |
2674 | // Arguments: |
2675 | // vmNativeCodeVersionNode - The NativeCodeVersionNode to inspect |
2676 | // pVmILCodeVersionNode - [out] The ILCodeVersionNode that is pointed to by vmNativeCodeVersionNode, if any. |
2677 | // |
2678 | // Returns: |
2679 | // S_OK if no error |
2680 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2681 | // |
2682 | virtual |
2683 | HRESULT GetILCodeVersionNode(VMPTR_NativeCodeVersionNode vmNativeCodeVersionNode, VMPTR_ILCodeVersionNode* pVmILCodeVersionNode) = 0; |
2684 | |
2685 | // Retrieves useful data from an ILCodeVersion such as IL code and IL mapping. |
2686 | // |
2687 | // |
2688 | // Arguments: |
2689 | // ilCodeVersionNode - The ILCodeVersionNode to inspect |
2690 | // pData - [out] Various properties of the ILCodeVersionNode such as IL code and IL mapping. |
2691 | // |
2692 | // Returns: |
2693 | // S_OK if no error |
2694 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2695 | // |
2696 | virtual |
2697 | HRESULT GetILCodeVersionNodeData(VMPTR_ILCodeVersionNode ilCodeVersionNode, DacSharedReJitInfo* pData) = 0; |
2698 | |
2699 | // Enable or disable the GC notification events. The GC notification events are turned off by default |
2700 | // They will be delivered through ICorDebugManagedCallback4 |
2701 | // |
2702 | // |
2703 | // Arguments: |
2704 | // fEnable - true to enable the events, false to disable |
2705 | // |
2706 | // Returns: |
2707 | // S_OK if no error |
2708 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
2709 | // |
2710 | virtual |
2711 | HRESULT EnableGCNotificationEvents(BOOL fEnable) = 0; |
2712 | |
2713 | // The following tag tells the DD-marshalling tool to stop scanning. |
2714 | // END_MARSHAL |
2715 | |
2716 | //----------------------------------------------------------------------------- |
2717 | // Utility interface used for passing strings out of these APIs. The caller |
2718 | // provides an implementation of this that uses whatever memory allocation |
2719 | // strategy it desires, and IDacDbiInterface APIs will call AssignCopy in order |
2720 | // to pass back the contents of strings. |
2721 | // |
2722 | // This permits the client and implementation of IDacDbiInterface to be in |
2723 | // different DLLs with their own heap allocation mechanism, while avoiding |
2724 | // the ugly and verbose 2-call C-style string passing API pattern. |
2725 | //----------------------------------------------------------------------------- |
2726 | class IStringHolder |
2727 | { |
2728 | public: |
2729 | // |
2730 | // Store a copy of of the provided string. |
2731 | // |
2732 | // Arguments: |
2733 | // psz - The null-terminated unicode string to copy. |
2734 | // |
2735 | // Return Value: |
2736 | // S_OK on success, typical HRESULT return values on failure. |
2737 | // |
2738 | // Notes: |
2739 | // The underlying object is responsible for allocating and freeing the |
2740 | // memory for this copy. The object must not store the value of psz, |
2741 | // it is no longer valid after this call returns. |
2742 | // |
2743 | virtual |
2744 | HRESULT AssignCopy(const WCHAR * psz) = 0; |
2745 | }; |
2746 | |
2747 | |
2748 | //----------------------------------------------------------------------------- |
2749 | // Interface for allocations |
2750 | // This lets DD allocate buffers to pass back to DBI; and thus avoids |
2751 | // the common 2-step (query size/allocate/query data) pattern. |
2752 | // |
2753 | // Note that mscordacwks.dll and clients cannot share the same heap allocator, |
2754 | // DAC statically links the CRT to avoid run-time dependencies on non-OS libraries. |
2755 | //----------------------------------------------------------------------------- |
2756 | class IAllocator |
2757 | { |
2758 | public: |
2759 | // Allocate |
2760 | // Expected to throw on error. |
2761 | virtual |
2762 | void * Alloc(SIZE_T lenBytes) = 0; |
2763 | |
2764 | // Free. This shouldn't throw. |
2765 | virtual |
2766 | void Free(void * p) = 0; |
2767 | }; |
2768 | |
2769 | |
2770 | //----------------------------------------------------------------------------- |
2771 | // Callback interface to provide Metadata lookup. |
2772 | //----------------------------------------------------------------------------- |
2773 | class IMetaDataLookup |
2774 | { |
2775 | public: |
2776 | // |
2777 | // Lookup a metadata importer via PEFile. |
2778 | // |
2779 | // Returns: |
2780 | // A IMDInternalImport used by dac-ized VM code. The object is NOT addref-ed. See lifespan notes below. |
2781 | // Returns NULL if no importer is available. |
2782 | // Throws on exceptional circumstances (eg, detects the debuggee is corrupted). |
2783 | // |
2784 | // Notes: |
2785 | // IMDInternalImport is a property of PEFile. The DAC-ized code uses it as a weak reference, |
2786 | // and so we avoid doing an AddRef() here because that would mean we need to add Release() calls |
2787 | // in DAC-only paths. |
2788 | // The metadata importers are not DAC-ized, and thus we have a local copy in the host. |
2789 | // If it was dac-ized, then DAC would get the importer just like any other field. |
2790 | // |
2791 | // lifespan of returned object: |
2792 | // - DBI owns the metadata importers. |
2793 | // - DBI must not free the importer without calling Flush() on DAC first. |
2794 | // - DAC will only invoke this when in a DD primitive, which was in turn invoked by DBI. |
2795 | // - For performance reasons, we want to allow DAC to cache this between Flush() calls. |
2796 | // - If DAC caches the importer, it will only use it when DBI invokes a DD primitive. |
2797 | // - the reference count of the returned object is not adjusted. |
2798 | // |
2799 | virtual |
2800 | IMDInternalImport * LookupMetaData(VMPTR_PEFile addressPEFile, bool &isILMetaDataForNGENImage) = 0; |
2801 | }; |
2802 | |
2803 | }; // end IDacDbiInterface |
2804 | |
2805 | |
2806 | #endif // _DACDBI_INTERFACE_H_ |
2807 | |