| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | //***************************************************************************** |
| 5 | // DacDbiInterface.h |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // Define the interface between the DAC and DBI. |
| 10 | //***************************************************************************** |
| 11 | |
| 12 | #ifndef _DACDBI_INTERFACE_H_ |
| 13 | #define _DACDBI_INTERFACE_H_ |
| 14 | |
| 15 | #include <metahost.h> |
| 16 | |
| 17 | // The DAC/DBI interface can use structures and LSPTR declarations from the |
| 18 | // existing V2 interfaces |
| 19 | #include "dbgipcevents.h" |
| 20 | |
| 21 | //----------------------------------------------------------------------------- |
| 22 | // Deallocation function for memory allocated with the global IAllocator object. |
| 23 | // |
| 24 | // Arguments: |
| 25 | // p - pointer to delete. Allocated with IAllocator::Alloc |
| 26 | // |
| 27 | // Notes: |
| 28 | // This should invoke the dtor and then call IAllocator::Free. |
| 29 | // In the DAC implementation, this will call via IAllocator. |
| 30 | // In the DBI implementation, this can directly call delete (assuming the IAllocator::Free |
| 31 | // directly called new). |
| 32 | template<class T> void DeleteDbiMemory(T *p); |
| 33 | // Need a class to serve as a tag that we can use to overload New/Delete. |
| 34 | class forDbiWorker {}; |
| 35 | extern forDbiWorker forDbi; |
| 36 | extern void * operator new(size_t lenBytes, const forDbiWorker &); |
| 37 | extern void * operator new[](size_t lenBytes, const forDbiWorker &); |
| 38 | extern void operator delete(void *p, const forDbiWorker &); |
| 39 | extern void operator delete[](void *p, const forDbiWorker &); |
| 40 | |
| 41 | // The dac exposes a way to walk all GC references in the process. This |
| 42 | // includes both strong references and weak references. This is done |
| 43 | // through a referece walk. |
| 44 | typedef void* * RefWalkHandle; |
| 45 | |
| 46 | #include "dacdbistructures.h" |
| 47 | |
| 48 | // This is the current format of code:DbiVersion. It needs to be rev'ed when we decide to store something |
| 49 | // else other than the product version of the DBI in DbiVersion (e.g. a timestamp). See |
| 50 | // code:CordbProcess::CordbProcess#DBIVersionChecking for more information. |
| 51 | const DWORD kCurrentDbiVersionFormat = 1; |
| 52 | |
| 53 | //----------------------------------------------------------------------------- |
| 54 | // This is a low-level interface between DAC and DBI. |
| 55 | // The DAC is the raw DAC-ized code from the EE. |
| 56 | // DBI is the implementation of ICorDebug on top of that. |
| 57 | // |
| 58 | // This interface should be: |
| 59 | // - Stateless: The DAC component should not have any persistent state. It should not have any resources |
| 60 | // that it needs to clean up. DBI can store all the state (eg, list of of modules). |
| 61 | // Using IAllocator/IStringHolder interfaces to allocate data to pass back out is ok because DBI owns |
| 62 | // the resources, not the DAC layer. |
| 63 | // - blittable: The types on the interface should be blittable. For example, use TIDs instead of OS Thread handles. |
| 64 | // Passing pointers to be used as out-parameters is ok. |
| 65 | // - lightweight: it will inevitably have many methods on it and should be very fluid to use. |
| 66 | // - very descriptive: heavily call out liabilities on the runtime. For example, don't just have a method like |
| 67 | // "GetName" where Name is ambiguous. Heavily comment exactly what Name is, when it may fail, if it's 0-length, |
| 68 | // if it's unique, etc. This serves two purposes: |
| 69 | // a) it helps ensure the right invariants flow up to the public API level. |
| 70 | // b) it helps ensure that the debugger is making the right assumptions about the runtime's behavior. |
| 71 | // |
| 72 | // #Marshaling: |
| 73 | // This interface should be marshalable such that the caller (the Right Side) can exist in one |
| 74 | // process, while the implementation of Dac could be on another machine. |
| 75 | // - All types need to be marshable. |
| 76 | // - Use OUT and OPTIONAL as defined in windef.h to guide the marshaler. Here are how types are marshaled: |
| 77 | // T : value-type, copied on input. |
| 78 | // T* : will be marshaled as non-null by-ref (copy on input, copy on return), |
| 79 | // const T*: non-null, copy on input only. |
| 80 | // OUT T*: non-null copy-on-return only. |
| 81 | // OPTIONAL T*: by-ref, could be null. |
| 82 | // - The marshaler has special knowledge of IStringHolder and DacDbiArrayList<T>. |
| 83 | // - You can write custom marshalers for non-blittable structures defined in DacDbiStructures.h. |
| 84 | // - There is custom handling for marshalling callbacks. |
| 85 | // |
| 86 | // |
| 87 | // Threading: The interface (and the underlying DataTarget) are free-threaded to leverage |
| 88 | // concurrency. |
| 89 | // |
| 90 | // Allocation: |
| 91 | // This interface can use IAllocator to allocate objects and hand them back. The allocated objects should be: |
| 92 | // - closed, serializable object graphs. |
| 93 | // - should have private fields and public accessors |
| 94 | // - have dtors that free any allocated the memory via calling DeleteDbiMemory. |
| 95 | // Objects can be declared in a header and shared between both dbi and dac. |
| 96 | // Consider using DacDbiArrayList<T> instead of custom allocations. |
| 97 | |
| 98 | // Error handling: |
| 99 | // Any call on the interface may fail. For example, the data-target may not have access to the necessary memory. |
| 100 | // Methods should throw on error. |
| 101 | // |
| 102 | // #Enumeration |
| 103 | // General rules about Enumerations: |
| 104 | // - Do not assume that enumerations exposed here are in any particular order. |
| 105 | // - many enumerations also correspond to Load/Unload events. Since load/unload aren't atomic with publishing |
| 106 | // in an enumeration, this is a Total Ordering of things: |
| 107 | // a) object shows up in enumeration |
| 108 | // b) load event. |
| 109 | // c) ... steady state ... |
| 110 | // d) object removed from DacDbi enumeration; |
| 111 | // Any existing handles we get beyond this are explicitly associated with a Cordb* object; which can be |
| 112 | // neutered on the unload event by Dbi. |
| 113 | // e) unload event. |
| 114 | // - Send after it's reachability from other objects is broken. (Eg, For AppDomain unload |
| 115 | // means no threads left in that appdomain) |
| 116 | // - Send before it's deleted (so VMPTR is still valid; not yet recycled). |
| 117 | // - Send early enough that property access can at least gracefully fail. (eg, |
| 118 | // Module::GetName should either return the name, or fail) |
| 119 | // |
| 120 | // Cordb must neuter any Cordb objects that have any pre-existing handles to the object. |
| 121 | // After this point, gauranteed that nobody can discover the VMPTR any more: |
| 122 | // - doesn't show up in enumerations (so can't be discoverered implicitly) |
| 123 | // - object should not be discoverable by other objects in VM. |
| 124 | // - any Cordb object that already had it would be neutered by Dbi. |
| 125 | // - Therefore nothing should even be asking Dac for it. |
| 126 | // f) object deleted. |
| 127 | // Think of it like this: The event occurs to let you know that the enumeration has been updated. |
| 128 | // |
| 129 | // A robust debugger should not rely on events for correctness. For example, |
| 130 | // a corrupt debuggee may send: |
| 131 | // 1) multiple load events. (if target repeats due to an issue) |
| 132 | // 2) no load event and only an unload event. (if target fails inbetween |
| 133 | // publish (a) and load (b), and then backout code sends the unload). |
| 134 | // 3) no unload event. (eg, if target is rudely killed) |
| 135 | // 4) multiple unload events (if target repeats due to bug) |
| 136 | // |
| 137 | // This satisfies the following rules: |
| 138 | // - once you get the load event, you can find the object via enumeration |
| 139 | // - once an item is discoverable, it must immediately show up in the enumeration. |
| 140 | // - once you get the unload event, the object is dead and can't be rediscovered via enumeration. |
| 141 | // |
| 142 | // This is an issue even for well-behaved targets. Imagine if a debugger attaches right after |
| 143 | // an unload event is sent. We don't want the debugger to enumerate and re-discover the |
| 144 | // unloaded object because now that the unload event is already sent, the debugger won't get |
| 145 | // any further notification of when the object is deleted in the target. |
| 146 | // Thus it's valuable for the debugger to have debug-only checks after unload events to assert |
| 147 | // that the object is no longer discoverable. |
| 148 | // |
| 149 | //............................................................................. |
| 150 | // The purpose of this object is to provide EE funcationality back to |
| 151 | // the debugger. This represents the entire set of EE functions used |
| 152 | // by the debugger. |
| 153 | // |
| 154 | // We will make this interface larger over time to grow the functionality |
| 155 | // between the EE and the Debugger. |
| 156 | // |
| 157 | // |
| 158 | //----------------------------------------------------------------------------- |
| 159 | class IDacDbiInterface |
| 160 | { |
| 161 | public: |
| 162 | class IStringHolder; |
| 163 | |
| 164 | // The following tag tells the DD-marshalling tool to start scanning. |
| 165 | // BEGIN_MARSHAL |
| 166 | |
| 167 | //----------------------------------------------------------------------------- |
| 168 | // Functions to control the behavior of the DacDbi implementation itself. |
| 169 | //----------------------------------------------------------------------------- |
| 170 | |
| 171 | // |
| 172 | // Check whether the version of the DBI matches the version of the runtime. |
| 173 | // This is only called when we are remote debugging. On Windows, we should have checked all the |
| 174 | // versions before we call any API on the IDacDbiInterface. See |
| 175 | // code:CordbProcess::CordbProcess#DBIVersionChecking for more information on version checks. |
| 176 | // |
| 177 | // Return Value: |
| 178 | // S_OK on success. |
| 179 | // |
| 180 | // Notes: |
| 181 | // THIS MUST BE THE FIRST API ON THE INTERFACE! |
| 182 | // |
| 183 | virtual |
| 184 | HRESULT CheckDbiVersion(const DbiVersion * pVersion) = 0; |
| 185 | |
| 186 | // |
| 187 | // Flush the DAC cache. This should be called when target memory changes. |
| 188 | // |
| 189 | // |
| 190 | // Return Value: |
| 191 | // S_OK on success. |
| 192 | // |
| 193 | // Notes: |
| 194 | // If this fails, the interface is in an undefined state. |
| 195 | // This must be called anytime target memory changes, else all other functions |
| 196 | // (besides Destroy) may yield out-of-date or semantically incorrect results. |
| 197 | // |
| 198 | virtual |
| 199 | HRESULT FlushCache() = 0; |
| 200 | |
| 201 | // |
| 202 | // Control DAC's checking of the target's consistency. Specifically, if this is disabled then |
| 203 | // ASSERTs in VM code are ignored. The default is disabled, since DAC should do it's best to |
| 204 | // return results even with a corrupt or unsyncrhonized target. See |
| 205 | // code:ClrDataAccess::TargetConsistencyAssertsEnabled for more details. |
| 206 | // |
| 207 | // When testing with a non-corrupt and properly syncrhonized target, this should be enabled to |
| 208 | // help catch bugs. |
| 209 | // |
| 210 | // Arguments: |
| 211 | // fEnableAsserts - whether ASSERTs should be raised when consistency checks fail (_DEBUG |
| 212 | // builds only) |
| 213 | // |
| 214 | // Notes: |
| 215 | // In the future we may want to extend DAC target consistency checks to be retail checks |
| 216 | // (exceptions) as well. We'll also need a mechanism for disabling them (eg. when an advanced |
| 217 | // user wants to try to get a result anyway even though the target is inconsistent). In that |
| 218 | // case we'll want an additional argument here for enabling/disabling the throwing of |
| 219 | // consistency failures exceptions (this is independent from asserts - there are legitimate |
| 220 | // scenarios for all 4 combinations). |
| 221 | // |
| 222 | virtual |
| 223 | void DacSetTargetConsistencyChecks(bool fEnableAsserts) = 0; |
| 224 | |
| 225 | // |
| 226 | // Destroy the interface object. The client should call this when it's done |
| 227 | // with the IDacDbiInterface to free up any resources. |
| 228 | // |
| 229 | // Return Value: |
| 230 | // None. |
| 231 | // |
| 232 | // Notes: |
| 233 | // The client should not call anything else on this interface after Destroy. |
| 234 | // |
| 235 | virtual |
| 236 | void Destroy() = 0; |
| 237 | |
| 238 | //----------------------------------------------------------------------------- |
| 239 | // General purpose target inspection functions |
| 240 | //----------------------------------------------------------------------------- |
| 241 | |
| 242 | // |
| 243 | // Query if Left-side is started up? |
| 244 | // |
| 245 | // |
| 246 | // Return Value: |
| 247 | // BOOL whether Left-side is intialized. |
| 248 | // |
| 249 | // Notes: |
| 250 | // If the Left-side is not yet started up, then data in the LS is not yet initialized enough |
| 251 | // for us to make meaningful queries, but the runtime will fire "Startup Exception" when it is. |
| 252 | // |
| 253 | // If the left-side is started up, then data is ready. (Although data may be temporarily inconsistent, |
| 254 | // see DataSafe). We may still get a Startup Exception in these cases, but it can be ignored. |
| 255 | // |
| 256 | virtual |
| 257 | BOOL IsLeftSideInitialized() = 0; |
| 258 | |
| 259 | |
| 260 | // |
| 261 | // Get an LS Appdomain via an AppDomain unique ID. |
| 262 | // Fails if the AD is not found or if the ID is invalid. |
| 263 | // |
| 264 | // Arguments: |
| 265 | // appdomainId - "unique appdomain ID". Must be a valid Id. |
| 266 | // |
| 267 | // Return Value: |
| 268 | // VMPTR_AppDomain for the corresponding AppDomain ID. Else throws. |
| 269 | // |
| 270 | // Notes: |
| 271 | // This query is based off the lifespan of the AppDomain from the VM's perspective. |
| 272 | // The AppDomainId is most likely obtained from an AppDomain-Created debug events. |
| 273 | // An AppDomainId is unique for the lifetime of the VM. |
| 274 | // This is the inverse function of GetAppDomainId(). |
| 275 | // |
| 276 | virtual |
| 277 | VMPTR_AppDomain GetAppDomainFromId(ULONG appdomainId) = 0; |
| 278 | |
| 279 | |
| 280 | // |
| 281 | // Get the AppDomain ID for an AppDomain. |
| 282 | // |
| 283 | // Arguments: |
| 284 | // vmAppDomain - VM pointer to the AppDomain object of interest |
| 285 | // |
| 286 | // Return Value: |
| 287 | // AppDomain ID for appdomain. Else throws. |
| 288 | // |
| 289 | // Notes: |
| 290 | // An AppDomainId is unique for the lifetime of the VM. It is non-zero. |
| 291 | // |
| 292 | virtual |
| 293 | ULONG GetAppDomainId(VMPTR_AppDomain vmAppDomain) = 0; |
| 294 | |
| 295 | // |
| 296 | // Get the managed AppDomain object for an AppDomain. |
| 297 | // |
| 298 | // Arguments: |
| 299 | // vmAppDomain - VM pointer to the AppDomain object of interest |
| 300 | // |
| 301 | // Return Value: |
| 302 | // objecthandle for the managed app domain object or the Null VMPTR if there is no |
| 303 | // object created yet |
| 304 | // |
| 305 | // Notes: |
| 306 | // The AppDomain managed object is lazily constructed on the AppDomain the first time |
| 307 | // it is requested. It may be NULL. |
| 308 | // |
| 309 | virtual |
| 310 | VMPTR_OBJECTHANDLE GetAppDomainObject(VMPTR_AppDomain vmAppDomain) = 0; |
| 311 | |
| 312 | // |
| 313 | // Determine if the specified AppDomain is the default domain |
| 314 | // |
| 315 | // Arguments: |
| 316 | // vmAppDomain - VM pointer to the AppDomain ojbect of interest |
| 317 | // |
| 318 | // Return Value: |
| 319 | // TRUE if this is the default appdomain, else FALSE. |
| 320 | // |
| 321 | // Notes: |
| 322 | // The default domain is the only one which cannot be unloaded and exists for the life |
| 323 | // of the process. |
| 324 | // A well behaved target only has 1 default domain. |
| 325 | // |
| 326 | virtual |
| 327 | BOOL IsDefaultDomain(VMPTR_AppDomain vmAppDomain) = 0; |
| 328 | |
| 329 | |
| 330 | virtual |
| 331 | void GetAssemblyFromDomainAssembly(VMPTR_DomainAssembly vmDomainAssembly, OUT VMPTR_Assembly * vmAssembly) = 0; |
| 332 | |
| 333 | // |
| 334 | // Determines whether the runtime security system has assigned full-trust to this assembly. |
| 335 | // |
| 336 | // Arguments: |
| 337 | // vmDomainAssembly - VM pointer to the assembly in question. |
| 338 | // |
| 339 | // Return Value: |
| 340 | // Returns trust status for the assembly. |
| 341 | // Throws on error. |
| 342 | // |
| 343 | // Notes: |
| 344 | // Of course trusted malicious code in the process could always cause this API to lie. However, |
| 345 | // an assembly loaded without full-trust should have no way of causing this API to return true. |
| 346 | // |
| 347 | virtual |
| 348 | BOOL IsAssemblyFullyTrusted(VMPTR_DomainAssembly vmDomainAssembly) = 0; |
| 349 | |
| 350 | |
| 351 | // |
| 352 | // Get the full AD friendly name for the given EE AppDomain. |
| 353 | // |
| 354 | // Arguments: |
| 355 | // vmAppDomain - VM pointer to the AppDomain. |
| 356 | // pStrName - required out parameter where the name will be stored. |
| 357 | // |
| 358 | // Return Value: |
| 359 | // None. On success, sets the string via the holder. Throws on error. |
| 360 | // This either sets pStrName or Throws. It won't do both. |
| 361 | // |
| 362 | // Notes: |
| 363 | // AD names have an unbounded length. AppDomain friendly names can also change, and |
| 364 | // so callers should be prepared to listen for name-change events and requery. |
| 365 | // AD names are specified by the user. |
| 366 | // |
| 367 | virtual |
| 368 | void GetAppDomainFullName( |
| 369 | VMPTR_AppDomain vmAppDomain, |
| 370 | IStringHolder * pStrName) = 0; |
| 371 | |
| 372 | |
| 373 | // |
| 374 | // #ModuleNames |
| 375 | // |
| 376 | // Modules / Assemblies have many different naming schemes: |
| 377 | // |
| 378 | // 1) Metadata Scope name: All modules have metadata, and each metadata scope has a name assigned |
| 379 | // by the creator of that scope (eg, the compiler). This usually is similar to the filename, but could |
| 380 | // be arbitrary. |
| 381 | // eg: "Foo" |
| 382 | // |
| 383 | // 2) FileRecord: the File record entry in the manifest module's metadata (table 0x26) for this module. |
| 384 | // eg: "Foo" |
| 385 | // |
| 386 | // 3) Managed module path: This is path that the image was loaded from. Eg, "c:\foo.dll". For non-file |
| 387 | // based modules (like in-memory, dynamic), there is no file path. The specific path is determined by |
| 388 | // fusion / loader policy. |
| 389 | // eg: "c:\foo.dll" |
| 390 | // |
| 391 | // 4) GAC path: If the module is loaded from the GAC, this is the path on disk into the gac cache that |
| 392 | // the image was pulled from. |
| 393 | // eg: " |
| 394 | // |
| 395 | // 5) Ngen path: If the module was ngenned, this is the path on disk into the ngen cache that the image |
| 396 | // was pulled from. |
| 397 | // eg: |
| 398 | // |
| 399 | // 6) Fully Qualified Assembly Name: this is an abstract name, which the CLR (fusion / loader) will |
| 400 | // resolve (to a filename for file-based modules). Managed apps may need to deal in terms of FQN, |
| 401 | // but the debugging services generally avoid them. |
| 402 | // eg: "Foo, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089, processorArchitecture=MSIL". |
| 403 | // |
| 404 | |
| 405 | |
| 406 | // |
| 407 | // Get the "simple name" of a module. This is a heuristic within the CLR to return a simple, |
| 408 | // not-well-specified, but meaningful, name for a module. |
| 409 | // |
| 410 | // Arguments: |
| 411 | // vmModule - module to query |
| 412 | // pStrFileName - string holder to get simple name. |
| 413 | // |
| 414 | // Return Value: |
| 415 | // None, but pStrFilename will be initialized upon return. |
| 416 | // Throws if there was a problem reading the data with DAC or if there is an OOM exception, |
| 417 | // in which case no string was stored into pStrFilename. |
| 418 | // |
| 419 | // Notes: |
| 420 | // See code:#ModuleNames for an overview on module names. |
| 421 | // |
| 422 | // This is really just using code:Module::GetSimpleName. |
| 423 | // This gives back a meaningful name, which is generally some combination of the metadata |
| 424 | // name of the FileRecord name. This is important because it's valid even when a module |
| 425 | // doesn't have a filename. |
| 426 | // |
| 427 | // The simple name does not have any meaning. It is not a filename, does not necessarily have any |
| 428 | // relationship to the filename, and it's not necesarily the metadata name. |
| 429 | // Do not use the simple name for anything other than as a pretty string to give the an end user. |
| 430 | // |
| 431 | virtual |
| 432 | void GetModuleSimpleName(VMPTR_Module vmModule, IStringHolder * pStrFilename) = 0; |
| 433 | |
| 434 | |
| 435 | // |
| 436 | // Get the full path and file name to the assembly's manifest module. |
| 437 | // |
| 438 | // Arguments: |
| 439 | // vmAssembly - VM pointer to the Assembly. |
| 440 | // pStrFilename - required out parameter where the filename will be stored. |
| 441 | // |
| 442 | // Return Value: |
| 443 | // TRUE on success, in which case the filename was stored into pStrFilename |
| 444 | // FALSE if the assembly has no filename (eg. for in-memory assemblies), in which |
| 445 | // case an empty string was stored into pStrFilename. |
| 446 | // Throws if there was a problem reading the data with DAC, in which case |
| 447 | // no string was stored into pStrFilename. |
| 448 | // |
| 449 | // Notes: |
| 450 | // See code:#ModuleNames for an overview on module names. |
| 451 | // |
| 452 | // Normally this is just the filename from which the dll containing the assembly was |
| 453 | // loaded. In the case of multi-module assemblies, this is the filename for the |
| 454 | // manifest module (the one containing the assembly manifest). For in-memory |
| 455 | // assemblies (eg. those loaded from a Byte[], and those created by Reflection.Emit |
| 456 | // which will not be saved to disk) there is no filename. In that case this API |
| 457 | // returns an empty string. |
| 458 | // |
| 459 | virtual |
| 460 | BOOL GetAssemblyPath(VMPTR_Assembly vmAssembly, |
| 461 | IStringHolder * pStrFilename) = 0; |
| 462 | |
| 463 | |
| 464 | // get a type def resolved across modules |
| 465 | // Arguments: |
| 466 | // input: pTypeRefInfo - domain file and type ref from the referencing module |
| 467 | // output: pTargetRefInfo - domain file and type def from the referenced type (this may |
| 468 | // come from a module other than the referencing module) |
| 469 | // Note: throws |
| 470 | virtual |
| 471 | void ResolveTypeReference(const TypeRefData * pTypeRefInfo, |
| 472 | TypeRefData * pTargetRefInfo) = 0; |
| 473 | // |
| 474 | // Get the full path and file name to the module (if any). |
| 475 | // |
| 476 | // Arguments: |
| 477 | // vmModule - VM pointer to the module. |
| 478 | // pStrFilename - required out parameter where the filename will be stored. |
| 479 | // |
| 480 | // Return Value: |
| 481 | // TRUE on success, in which case the filename was stored into pStrFilename |
| 482 | // FALSE the module has no filename (eg. for in-memory assemblies), in which |
| 483 | // case an empty string was stored into pStrFilename. |
| 484 | // Throws an exception if there was a problem reading the data with DAC, in which case |
| 485 | // no string was stored into pStrFilename. |
| 486 | // |
| 487 | // Notes: |
| 488 | // See code:#ModuleNames for an overview on module names. |
| 489 | // |
| 490 | // Normally this is just the filename from which the module was loaded. |
| 491 | // For in-memory module (eg. those loaded from a Byte[], and those created by Reflection.Emit |
| 492 | // which will not be saved to disk) there is no filename. In that case this API |
| 493 | // returns an empty string. Consider GetModuleSimpleName in those cases. |
| 494 | // |
| 495 | // We intentionally don't use the function name "GetModuleFileName" here because |
| 496 | // winbase #defines that token (along with many others) to have an A or W suffix. |
| 497 | // |
| 498 | virtual |
| 499 | BOOL GetModulePath(VMPTR_Module vmModule, |
| 500 | IStringHolder * pStrFilename) = 0; |
| 501 | |
| 502 | |
| 503 | // |
| 504 | // Get the full path and file name to the ngen image for the module (if any). |
| 505 | // |
| 506 | // Arguments: |
| 507 | // vmModule - VM pointer to the module. |
| 508 | // pStrFilename - required out parameter where the filename will be stored. |
| 509 | // |
| 510 | // Return Value: |
| 511 | // TRUE on success, in which case the filename was stored into pStrFilename |
| 512 | // FALSE the module has no filename (eg. for in-memory assemblies), in which |
| 513 | // case an empty string was stored into pStrFilename. |
| 514 | // Throws an exception if there was a problem reading the data with DAC, in which case |
| 515 | // no string was stored into pStrFilename. |
| 516 | // |
| 517 | // Notes: |
| 518 | // See code:#ModuleNames for an overview on module names. |
| 519 | // |
| 520 | virtual |
| 521 | BOOL GetModuleNGenPath(VMPTR_Module vmModule, |
| 522 | IStringHolder * pStrFilename) = 0; |
| 523 | |
| 524 | |
| 525 | |
| 526 | // Get the metadata for the target module |
| 527 | // |
| 528 | // Arguments: |
| 529 | // vmModule - target module to get metadata for. |
| 530 | // pTargetBuffer - Out parameter to get target-buffer for metadata. Gauranteed to be non-empty on |
| 531 | // return. This will throw CORDBG_E_MISSING_METADATA hr if the buffer is empty. |
| 532 | // This does not gaurantee that the buffer is readable. For example, in a minidump, buffer's |
| 533 | // memory may not be present. |
| 534 | // |
| 535 | // Notes: |
| 536 | // Each module's metadata exists as a raw buffer in the target. This finds that target buffer and |
| 537 | // returns it. The host can then use OpenScopeOnMemory to create an instance of the metadata in |
| 538 | // the host process space. |
| 539 | // |
| 540 | // For dynamic modules, the CLR will eagerly serialize the metadata at "debuggable" points. This |
| 541 | // could be after each type is loaded; or after a bulk update. |
| 542 | // For non-dynamic modules (both in-memory and file-based), the metadata exists in the PEFile's image. |
| 543 | // |
| 544 | // Failure cases: |
| 545 | // This should succeed in normal, live-debugging scenarios. However, common failure paths here would be: |
| 546 | // |
| 547 | // 1. Data structures are intact, but Unable to even find the TargetBuffer in the target. In this |
| 548 | // case Metadata is truly missing. Likely means: |
| 549 | // - target is in the middle of generating metadata for a large bulk operation. (For example, attach |
| 550 | // to a TypeLibConverter using Ref.Emit to emit a module for a very large .tlb file). |
| 551 | // - corrupted target, |
| 552 | // - or the target had some error(out-of-memory?) generating the metadata. |
| 553 | // This throws CORDBG_E_MISSING_METADATA. |
| 554 | // |
| 555 | // 2. Target buffer is found, but memory it describes is not present. Likely means a minidump |
| 556 | // scenario with missing memory. Client should use alternative metadata location techniques (such as |
| 557 | // an ImagePath to locate the original image and then pulling metadata from that file). |
| 558 | // |
| 559 | virtual |
| 560 | void GetMetadata(VMPTR_Module vmModule, OUT TargetBuffer * pTargetBuffer) = 0; |
| 561 | |
| 562 | |
| 563 | // Definitions for possible symbol formats |
| 564 | // This is equivalent to code:ESymbolFormat in the runtime |
| 565 | typedef enum |
| 566 | { |
| 567 | kSymbolFormatNone, // No symbols available |
| 568 | kSymbolFormatPDB, // PDB symbol format - use diasymreader.dll |
| 569 | kSymbolFormatILDB, // ILDB symbol format - use ildbsymlib |
| 570 | } SymbolFormat; |
| 571 | |
| 572 | // |
| 573 | // Get the in-memory symbol (PDB/ILDB) buffer in the target if present. |
| 574 | // |
| 575 | // Arguments: |
| 576 | // vmModule- module to query for. |
| 577 | // pTargetBuffer - out parameter to get buffer in target of symbols. If no symbols, pTargetBuffer is empty on return. |
| 578 | // pSymbolFormat - out parameter to get the format of the symbols. |
| 579 | // |
| 580 | // Returns: |
| 581 | // 1) If there are in-memory symbols for the given module, pTargetBuffer is set to the buffer describing |
| 582 | // the symbols and pSymbolFormat is set to indicate PDB or ILDB format. This buffer can then be read, |
| 583 | // converted into an IStream, and passed to ISymUnmanagedBinder::CreateReaderForStream. |
| 584 | // 2) If the target is valid, but there is no symbols for the module, then pTargetBuffer->IsEmpty() == true |
| 585 | // and *pSymbolFormat == kSymbolFormatNone. |
| 586 | // 3) Else, throws exception. |
| 587 | // |
| 588 | // |
| 589 | // Notes: |
| 590 | // For file-based modules, PDBs are normally on disk and the debugger retreieves them via a symbol |
| 591 | // path without any help from ICorDebug. |
| 592 | // However, in some cases, the PDB is stored in-memory and so the debugger needs ICorDebug. Common |
| 593 | // cases include: |
| 594 | // - dynamic modules generated with reflection-emit. |
| 595 | // - in-memory modules loaded by Load(Byte[],Byte[]), which provide the PDB as a byte[]. |
| 596 | // - hosted modules where the host (such as SQL) store the PDB. |
| 597 | // |
| 598 | // In all cases, this can commonly fail. Executable code does not need to have a PDB. |
| 599 | virtual |
| 600 | void GetSymbolsBuffer(VMPTR_Module vmModule, OUT TargetBuffer * pTargetBuffer, OUT SymbolFormat * pSymbolFormat) = 0; |
| 601 | |
| 602 | // |
| 603 | // Get properties for a module |
| 604 | // |
| 605 | // Arguments: |
| 606 | // vmModule - vm handle to a module |
| 607 | // pData - required out parameter which will be filled out with module properties |
| 608 | // |
| 609 | // Notes: |
| 610 | // See definition of DomainFileInfo for more details about what properties |
| 611 | // this gives back. |
| 612 | virtual |
| 613 | void GetModuleData(VMPTR_Module vmModule, OUT ModuleInfo * pData) = 0; |
| 614 | |
| 615 | |
| 616 | // |
| 617 | // Get properties for a DomainFile |
| 618 | // |
| 619 | // Arguments: |
| 620 | // vmDomainFile - vm handle to a DomainFile |
| 621 | // pData - required out parameter which will be filled out with module properties |
| 622 | // |
| 623 | // Notes: |
| 624 | // See definition of DomainFileInfo for more details about what properties |
| 625 | // this gives back. |
| 626 | virtual |
| 627 | void GetDomainFileData(VMPTR_DomainFile vmDomainFile, OUT DomainFileInfo * pData) = 0; |
| 628 | |
| 629 | virtual |
| 630 | void GetModuleForDomainFile(VMPTR_DomainFile vmDomainFile, OUT VMPTR_Module * pModule) = 0; |
| 631 | |
| 632 | //......................................................................... |
| 633 | // These methods were the methods that DBI was calling from IXClrData in V2. |
| 634 | // We imported them over to this V3 interface so that we can sever all ties between DBI and the |
| 635 | // old IXClrData. |
| 636 | // |
| 637 | // The exact semantics of these are whatever their V2 IXClrData counterpart did. |
| 638 | // We may eventually migrate these to their real V3 replacements. |
| 639 | //......................................................................... |
| 640 | |
| 641 | // "types" of addresses. This is taken exactly from the definition, but renamed to match |
| 642 | // CLR coding conventions. |
| 643 | typedef enum |
| 644 | { |
| 645 | kAddressUnrecognized, |
| 646 | kAddressManagedMethod, |
| 647 | kAddressRuntimeManagedCode, |
| 648 | kAddressRuntimeUnmanagedCode, |
| 649 | kAddressGcData, |
| 650 | kAddressRuntimeManagedStub, |
| 651 | kAddressRuntimeUnmanagedStub, |
| 652 | } AddressType; |
| 653 | |
| 654 | // |
| 655 | // Get the "type" of address. |
| 656 | // |
| 657 | // Arguments: |
| 658 | // address - address to query type. |
| 659 | // |
| 660 | // Return Value: |
| 661 | // Type of address. Throws on error. |
| 662 | // |
| 663 | // Notes: |
| 664 | // This is taken exactly from the IXClrData definition. |
| 665 | // This is provided for V3 compatibility to support Interop-debugging. |
| 666 | // This should eventually be deprecated. |
| 667 | // |
| 668 | virtual |
| 669 | AddressType GetAddressType(CORDB_ADDRESS address) = 0; |
| 670 | |
| 671 | |
| 672 | // |
| 673 | // Query if address is a CLR stub. |
| 674 | // |
| 675 | // Arguments: |
| 676 | // address - Target address to query for. |
| 677 | // |
| 678 | // |
| 679 | // Return Value: |
| 680 | // true if the address is a CLR stub. |
| 681 | // |
| 682 | // Notes: |
| 683 | // This is used to implement ICorDebugProcess::IsTransitionStub |
| 684 | // This yields true if the address is claimed by a CLR stub manager, or if the IP is in mscorwks. |
| 685 | // Conceptually, This should eventually be merged with GetAddressType(). |
| 686 | // |
| 687 | virtual |
| 688 | BOOL IsTransitionStub(CORDB_ADDRESS address) = 0; |
| 689 | |
| 690 | //......................................................................... |
| 691 | // Get the values of the JIT Optimization and EnC flags. |
| 692 | // |
| 693 | // Arguments: |
| 694 | // vmDomainFile - (input) VM DomainFile (module) for which we are retrieving flags |
| 695 | // pfAllowJITOpts - (mandatory output) true iff this is not compiled for debug, |
| 696 | // i.e., without optimization |
| 697 | // pfEnableEnc - (mandatory output) true iff this module has EnC enabled |
| 698 | // |
| 699 | // Return Value: |
| 700 | // Returns on success. Throws on failure. |
| 701 | // |
| 702 | // Notes: |
| 703 | // This is used to implement both ICorDebugModule2::GetJitCompilerFlags and |
| 704 | // ICorDebugCode2::GetCompilerFlags. |
| 705 | //......................................................................... |
| 706 | |
| 707 | virtual |
| 708 | void GetCompilerFlags( |
| 709 | VMPTR_DomainFile vmDomainFile, |
| 710 | OUT BOOL * pfAllowJITOpts, |
| 711 | OUT BOOL * pfEnableEnC) = 0; |
| 712 | |
| 713 | //......................................................................... |
| 714 | // Set the values of the JIT optimization and EnC flags. |
| 715 | // |
| 716 | // Arguments: |
| 717 | // vmDomainFile - (input) VM DomainFile (module) for which we are retrieving flags |
| 718 | // pfAllowJITOpts - (input) true iff this should not be compiled for debug, |
| 719 | // i.e., without optimization |
| 720 | // pfEnableEnc - (input) true iff this module should have EnC enabled. If this is |
| 721 | // false, no change is made to the EnC flags. In other words, once EnC is enabled, |
| 722 | // there is no way to disable it. |
| 723 | // |
| 724 | // Return Value: |
| 725 | // S_OK on success and all bits were set. |
| 726 | // CORDBG_S_NOT_ALL_BITS_SET - if not all bits are set. Must use GetCompileFlags to |
| 727 | // determine which bits were set. |
| 728 | // CORDBG_E_CANT_CHANGE_JIT_SETTING_FOR_ZAP_MODULE - if module is ngenned. |
| 729 | // Throw on other errors. |
| 730 | // |
| 731 | // Notes: |
| 732 | // Caller can only use this at module-load before any methods are jitted. |
| 733 | // This may be called multiple times. |
| 734 | // This is used to implement both ICorDebugModule2::SetJitCompilerFlags and |
| 735 | // ICorDebugModule::EnableJITDebugging. |
| 736 | //......................................................................... |
| 737 | |
| 738 | virtual |
| 739 | HRESULT SetCompilerFlags(VMPTR_DomainFile vmDomainFile, |
| 740 | BOOL fAllowJitOpts, |
| 741 | BOOL fEnableEnC) = 0; |
| 742 | |
| 743 | // |
| 744 | // Enumerate all AppDomains in the process. |
| 745 | // |
| 746 | // Arguments: |
| 747 | // fpCallback - callback to invoke on each appdomain |
| 748 | // pUserData - user data to supply for each callback. |
| 749 | // |
| 750 | // Return Value: |
| 751 | // Returns on success. Throws on error. |
| 752 | // |
| 753 | // Notes: |
| 754 | // Enumerates all appdomains in the process, including the Default-domain. |
| 755 | // Appdomains must show up in this list before the AD Load event is sent, and before |
| 756 | // that appdomain is discoverable from the debugger. |
| 757 | // See enumeration rules for details. |
| 758 | // |
| 759 | typedef void (*FP_APPDOMAIN_ENUMERATION_CALLBACK)(VMPTR_AppDomain vmAppDomain, CALLBACK_DATA pUserData); |
| 760 | virtual |
| 761 | void EnumerateAppDomains(FP_APPDOMAIN_ENUMERATION_CALLBACK fpCallback, |
| 762 | CALLBACK_DATA pUserData) = 0; |
| 763 | |
| 764 | |
| 765 | // |
| 766 | // Eunmerate all Assemblies in an appdomain. Enumerations is in load-order |
| 767 | // |
| 768 | // Arguments: |
| 769 | // vmAppDomain - domain in which to enumerate |
| 770 | // fpCallback - address to query type. |
| 771 | // pUserData - required out parameter for type of address. |
| 772 | // |
| 773 | // Return Value: |
| 774 | // Returns on success. Throws on error. |
| 775 | // |
| 776 | // Notes: |
| 777 | // Enumerates all executable assemblies (both shared and unshared) within an appdomain. |
| 778 | // This does not include inspection-only assemblies because those are just data and |
| 779 | // not executable (eg, they'll never show up on the stack and you can't set a breakpoint in them). |
| 780 | // This enumeration needs to be consistent with load/unload events. |
| 781 | // See enumeration rules for details. |
| 782 | // |
| 783 | // The order of the enumeration is the order the assemblies where loaded. |
| 784 | // Ultimately, the debugger needs to be able to tell the user the load |
| 785 | // order of assemblies (it can do this with native dlls). Since |
| 786 | // managed assembliees don't 1:1 correspond to native dlls, debuggers |
| 787 | // need this information from the runtime. |
| 788 | // |
| 789 | |
| 790 | typedef void (*FP_ASSEMBLY_ENUMERATION_CALLBACK)(VMPTR_DomainAssembly vmDomainAssembly, CALLBACK_DATA pUserData); |
| 791 | virtual |
| 792 | void EnumerateAssembliesInAppDomain(VMPTR_AppDomain vmAppDomain, |
| 793 | FP_ASSEMBLY_ENUMERATION_CALLBACK fpCallback, |
| 794 | CALLBACK_DATA pUserData) = 0; |
| 795 | |
| 796 | |
| 797 | |
| 798 | // |
| 799 | // Callback function for EnumerateModulesInAssembly |
| 800 | // |
| 801 | // This can throw on error. |
| 802 | // |
| 803 | // Arguments: |
| 804 | // vmModule - new module from the enumeration |
| 805 | // pUserData - user data passed to EnumerateModulesInAssembly |
| 806 | typedef void (*FP_MODULE_ENUMERATION_CALLBACK)(VMPTR_DomainFile vmModule, CALLBACK_DATA pUserData); |
| 807 | |
| 808 | // |
| 809 | // Enumerates all the code Modules in an assembly. |
| 810 | // |
| 811 | // Arguments: |
| 812 | // vmAssembly - assembly to enumerate within |
| 813 | // fpCallback - callback function to invoke on each module |
| 814 | // pUserData - arbitrary data passed to the callback |
| 815 | // |
| 816 | // Notes: |
| 817 | // This only enumerates "code" modules (ie, modules that have executable code in them). That |
| 818 | // includes normal file-based, ngenned, in-memory, and even dynamic modules. |
| 819 | // That excludes: |
| 820 | // - Resource modules (which have no code or metadata) |
| 821 | // - Inspection-only modules. These are viewed as pure data from the debugger's perspective. |
| 822 | // |
| 823 | virtual |
| 824 | void EnumerateModulesInAssembly( |
| 825 | VMPTR_DomainAssembly vmAssembly, |
| 826 | FP_MODULE_ENUMERATION_CALLBACK fpCallback, |
| 827 | CALLBACK_DATA pUserData) = 0; |
| 828 | |
| 829 | |
| 830 | |
| 831 | // |
| 832 | // When stopped at an event, request a synchronization. |
| 833 | // |
| 834 | // |
| 835 | // Return Value: |
| 836 | // Returns on success. Throws on error. |
| 837 | // |
| 838 | // Notes: |
| 839 | // Call this when an event is dispatched (eg, LoadModule) to request the runtime |
| 840 | // synchronize. This does a cooperative sync with the LS. This is not an async break |
| 841 | // and can not be called at arbitrary points. |
| 842 | // This primitive lets the LS always take the V3 codepath and defer decision making to the RS. |
| 843 | // The V2 behavior is to call this after every event (Since that's what V2 did). |
| 844 | // The V3 behavior is to never call this. |
| 845 | // |
| 846 | // If this is called, the LS will sync and we will get a SyncComplete. |
| 847 | // |
| 848 | // This is also like a precursor to "AsyncBreakAllOtherThreads" |
| 849 | // |
| 850 | virtual |
| 851 | void RequestSyncAtEvent() = 0; |
| 852 | |
| 853 | // Sets a flag inside LS.Debugger that indicates that |
| 854 | // 1. all "first chance exception" events should not be sent to the debugger |
| 855 | // 2. "exception handler found" events for exceptions never crossing JMC frames should not be sent to the debugger |
| 856 | // |
| 857 | // Arguments: |
| 858 | // sendExceptionsOutsideOfJMC - new value for the flag Debugger::m_sendExceptionsOutsideOfJMC. |
| 859 | // |
| 860 | // Return Value: |
| 861 | // Returns error code, never throws. |
| 862 | // |
| 863 | // Note: This call is used by ICorDebugProcess8.EnableExceptionCallbacksOutsideOfMyCode. |
| 864 | virtual |
| 865 | HRESULT SetSendExceptionsOutsideOfJMC(BOOL sendExceptionsOutsideOfJMC) = 0; |
| 866 | |
| 867 | // |
| 868 | // Notify the debuggee that a debugger atach is pending. |
| 869 | // |
| 870 | // Arguments: |
| 871 | // None |
| 872 | // |
| 873 | // Return Value: |
| 874 | // Returns on success. Throws on error. |
| 875 | // |
| 876 | // Notes: |
| 877 | // Attaching means that CORDebuggerPendingAttach() will now return true. |
| 878 | // This doesn't do anything else (eg, no fake events). |
| 879 | // |
| 880 | // @dbgtodo- still an open Feature-Crew decision how this is exposed publicly. |
| 881 | virtual |
| 882 | void MarkDebuggerAttachPending() = 0; |
| 883 | |
| 884 | // |
| 885 | // Notify the debuggee that a debugger is attached / detached. |
| 886 | // |
| 887 | // Arguments: |
| 888 | // fAttached - true if we're attaching, false if we're detaching. |
| 889 | // |
| 890 | // Return Value: |
| 891 | // Returns on success. Throws on error. |
| 892 | // |
| 893 | // Notes: |
| 894 | // Attaching means that CorDebuggerAttached() will now return true. |
| 895 | // This doesn't do anything else (eg, no fake events). |
| 896 | // This lets the V3 codepaths invade the LS to subscribe to events. |
| 897 | // |
| 898 | // @dbgtodo- still an open Feature-Crew decision how this is exposed publicly. |
| 899 | virtual |
| 900 | void MarkDebuggerAttached(BOOL fAttached) = 0; |
| 901 | |
| 902 | |
| 903 | |
| 904 | // |
| 905 | // Hijack a thread. This will effectively do a native func-eval of the thread to set the IP |
| 906 | // to a hijack stub and push the parameters. |
| 907 | // |
| 908 | // Arguments: |
| 909 | // dwThreadId - OS thread to hijack. This must be consistent with pRecord and pOriginalContext |
| 910 | // pRecord - optional pointer to Exception record. Required if this is hijacked at an exception. |
| 911 | // NULL if this is hijacked at a managed IP. |
| 912 | // pOriginalContext - optional pointer to buffer to receive the context that the thread is hijacked from. |
| 913 | // The caller can use this to either restore the hijack or walk the hijack. |
| 914 | // cbSizeContext - size in bytes of buffer pointed to by pContext |
| 915 | // reason - reason code for the hijack. The hijack stub can then delegate to the proper hijack. |
| 916 | // pUserData - arbitrary data passed through to hijack. This is reason-depedendent. |
| 917 | // pRemoteContextAddr - If non-NULL this receives the remote address where the CONTEXT was written in the |
| 918 | // in the debuggee. |
| 919 | // |
| 920 | // Assumptions: |
| 921 | // Caller must guarantee this is safe. |
| 922 | // This is intended to be used at a thread that either just had an exception or is at a managed IP. |
| 923 | // If this is hijacked at an exception, client must cancel the exception (gh / DBG_CONTINUE) |
| 924 | // so that the OS exception processing doesn't interfere with the hijack. |
| 925 | // |
| 926 | // Notes: |
| 927 | // Hijack is hard, so we want 1 hijack stub that handles all our hijacking needs. |
| 928 | // This lets us share: |
| 929 | // - assembly stubs (which are very platform specific) |
| 930 | // - hijacking / restoration mechanics, |
| 931 | // - making the hijack walkable via the stackwalker. |
| 932 | // |
| 933 | // Hijacking can be used to implement: func-eval, FE abort, Synchronizing, |
| 934 | // dispatching Unhandled Exception notifications. |
| 935 | // |
| 936 | // Nesting: Since Hijacking passes the key state off to the hijacked thread, (such as original |
| 937 | // context to be used with restoring the hijack), the raw hijacking nests just like function |
| 938 | // calls. However, the client may need to keep additional state to handle nesting. For example, |
| 939 | // nested hijacks will require the client to track multiple CONTEXT*. |
| 940 | // |
| 941 | // If the thread is in jitted code, then the hijack needs to cooperate with the in-process |
| 942 | // stackwalker that the GC uses. It must be in cooperative mode, and push a Frame on the |
| 943 | // frame chain to protect the managed frames it hijacked from before it goes to preemptive mode. |
| 944 | |
| 945 | virtual |
| 946 | void Hijack( |
| 947 | VMPTR_Thread vmThread, |
| 948 | ULONG32 dwThreadId, |
| 949 | const EXCEPTION_RECORD * pRecord, |
| 950 | T_CONTEXT * pOriginalContext, |
| 951 | ULONG32 cbSizeContext, |
| 952 | EHijackReason::EHijackReason reason, |
| 953 | void * pUserData, |
| 954 | CORDB_ADDRESS * pRemoteContextAddr) = 0; |
| 955 | |
| 956 | |
| 957 | // |
| 958 | // Callback function for connection enumeration. |
| 959 | // |
| 960 | // Arguments: |
| 961 | // id - the connection ID. |
| 962 | // pName - the name of the connection. |
| 963 | // pUserData - user data supplied to EnumerateConnections |
| 964 | typedef void (*FP_CONNECTION_CALLBACK)(DWORD id, LPCWSTR pName, CALLBACK_DATA pUserData); |
| 965 | |
| 966 | // |
| 967 | // Enumerate all the Connections in the process. |
| 968 | // |
| 969 | // Arguments: |
| 970 | // fpCallback - callback to invoke for each connection |
| 971 | // pUserData - random user data to pass to callback. |
| 972 | // |
| 973 | // Notes: |
| 974 | // This enumerates all the connections. The host notifies the debugger of Connections |
| 975 | // via the ICLRDebugManager interface. |
| 976 | // ICorDebug has no interest in connections. It's merely the transport between the host and the debugger. |
| 977 | // Ideally, that transport would be more general. |
| 978 | // |
| 979 | // V2 Attach would provide faked up CreateConnection, ChangeConnection events on attach. |
| 980 | // This enumeration ability allows V3 to emulate that behavior. |
| 981 | // |
| 982 | |
| 983 | // |
| 984 | // Enumerate all threads in the target. |
| 985 | // |
| 986 | // Arguments: |
| 987 | // fpCallback - callback function to invoke on each thread. |
| 988 | // pUserData - arbitrary user data supplied to each callback. |
| 989 | // |
| 990 | // Notes: |
| 991 | // This enumerates the ThreadStore in the target, which is all the Thread* objects. |
| 992 | // This includes threads that have entered the runtime. This may include threads |
| 993 | // even before that thread has executed IL and after that thread no longer has managed |
| 994 | // code on its stack. |
| 995 | |
| 996 | // Callback invoked for each thread. |
| 997 | typedef void (*FP_THREAD_ENUMERATION_CALLBACK)(VMPTR_Thread vmThread, CALLBACK_DATA pUserData); |
| 998 | |
| 999 | virtual |
| 1000 | void EnumerateThreads(FP_THREAD_ENUMERATION_CALLBACK fpCallback, CALLBACK_DATA pUserData) = 0; |
| 1001 | |
| 1002 | |
| 1003 | // Check if the thread is dead |
| 1004 | // |
| 1005 | // Arguments: |
| 1006 | // vmThread - valid thread to check if it's dead. |
| 1007 | // |
| 1008 | // Returns: true if the thread is "dead", which means it can never call managed code again. |
| 1009 | // |
| 1010 | // Notes: |
| 1011 | // #IsThreadMarkedDead |
| 1012 | // Threads shutdown states are: |
| 1013 | // 1) Thread is running managed code normally. Thread eventually exits all managed code and |
| 1014 | // gets to a point where it will never call managed code again. |
| 1015 | // 2) Thread is marked as dead. |
| 1016 | // - For threads created outside of the runtime (such as a native thread that wanders into |
| 1017 | // managed code), this mark can happen in DllMain(ThreadDetach) |
| 1018 | // - For threads created by the runtime (eg, System.Threading.Thread.Start), this may be done |
| 1019 | // at the top of the threads stack after it calls the user's Thread-Proc. |
| 1020 | // 3) MAYBE Native thread exits at this point (or it may not). This would be the common case |
| 1021 | // for threads created outside the runtime. |
| 1022 | // 4) Thread exit event is sent. |
| 1023 | // - For threads created by the runtime, this may be sent at the top of the thread's |
| 1024 | // stack (or even when we know that the thread will never execute managed code again) |
| 1025 | // - For threads created outside the runtime, this is more difficult. A thread can |
| 1026 | // call into managed code and then return, and then call back into managed code at a |
| 1027 | // later time (The finalizer does this!). So it's not clear when the native thread |
| 1028 | // actually exits and will never call managed code again. The only hook we have for |
| 1029 | // this is DllMain(Thread-Detach). We can mark bits in DllMain, but we can't send |
| 1030 | // debugger notifications (too dangerous from such a restricted context). |
| 1031 | // So we may mark the thread as dead, but then sweep later (perhaps on the finalizer |
| 1032 | // thread), and thus send the Exit events later. |
| 1033 | // 5) Native thread may exit at this point. This is the common case for threads created by |
| 1034 | // the runtime. |
| 1035 | // |
| 1036 | // The underlying native thread may have exited at eitehr #3 or #5. Because of this |
| 1037 | // flexibility, we don't want to rely on native thread exit events. |
| 1038 | // This function checks if a Thread is passed state #2 (marked as dead). The key invariant |
| 1039 | // is that once a thread is marked as dead: |
| 1040 | // - it can never call managed code again. |
| 1041 | // - it should not be discoverable by DacDbi enumerations. |
| 1042 | // |
| 1043 | // DBI should prefer relying on IsThreadMarkedDead rather than event notifications (either |
| 1044 | // managed or native) because tracking events requires that DBI maintain state, which means |
| 1045 | // that attach + dump cases may break. For example, we want a full dump at the ExitThread |
| 1046 | // event to have the same view as a live process at the ExitThread event. |
| 1047 | // |
| 1048 | // We avoid relying on the native thread exit notifications because: |
| 1049 | // - that's a specific feature of the Win32 debugging API that may not be available on other platforms. |
| 1050 | // - the only native events the pipeline gets are Exceptions. |
| 1051 | // |
| 1052 | // Whether a thread is dead can be inferred from the ICorDebug API. However, we have this |
| 1053 | // on DacDbi to ensure that this definition is consistent with the other DacDbi methods, |
| 1054 | // especially the enumeration and discovery rules. |
| 1055 | virtual |
| 1056 | bool IsThreadMarkedDead(VMPTR_Thread vmThread) = 0; |
| 1057 | |
| 1058 | |
| 1059 | // |
| 1060 | // Return the handle of the specified thread. |
| 1061 | // |
| 1062 | // Arguments: |
| 1063 | // vmThread - the specified thread |
| 1064 | // |
| 1065 | // Return Value: |
| 1066 | // the handle of the specified thread |
| 1067 | // |
| 1068 | // @dbgtodo- this should go away in V3. This is useless on a dump. |
| 1069 | |
| 1070 | virtual |
| 1071 | HANDLE GetThreadHandle(VMPTR_Thread vmThread) = 0; |
| 1072 | |
| 1073 | // |
| 1074 | // Return the object handle for the managed Thread object corresponding to the specified thread. |
| 1075 | // |
| 1076 | // Arguments: |
| 1077 | // vmThread - the specified thread |
| 1078 | // |
| 1079 | // Return Value: |
| 1080 | // This function returns the object handle for the managed Thread object corresponding to the |
| 1081 | // specified thread. The return value may be NULL if a managed Thread object has not been created |
| 1082 | // for the specified thread yet. |
| 1083 | // |
| 1084 | |
| 1085 | virtual |
| 1086 | VMPTR_OBJECTHANDLE GetThreadObject(VMPTR_Thread vmThread) = 0; |
| 1087 | |
| 1088 | // |
| 1089 | // Set and reset the TSNC_DebuggerUserSuspend bit on the state of the specified thread |
| 1090 | // according to the CorDebugThreadState. |
| 1091 | // |
| 1092 | // Arguments: |
| 1093 | // vmThread - the specified thread |
| 1094 | // debugState - the desired CorDebugThreadState |
| 1095 | // |
| 1096 | |
| 1097 | virtual |
| 1098 | void SetDebugState(VMPTR_Thread vmThread, |
| 1099 | CorDebugThreadState debugState) = 0; |
| 1100 | |
| 1101 | // |
| 1102 | // Returns TRUE if this thread has an unhandled exception |
| 1103 | // |
| 1104 | // Arguments: |
| 1105 | // vmThread - the thread to query |
| 1106 | // |
| 1107 | // Return Value |
| 1108 | // TRUE iff this thread has an unhandled exception |
| 1109 | // |
| 1110 | virtual |
| 1111 | BOOL HasUnhandledException(VMPTR_Thread vmThread) = 0; |
| 1112 | |
| 1113 | // |
| 1114 | // Return the user state of the specified thread. Most of the state are derived from |
| 1115 | // the ThreadState of the specified thread, e.g. TS_Background, TS_Unstarted, etc. |
| 1116 | // The exception is USER_UNSAFE_POINT, which we need to do a one-frame stackwalk to figure out. |
| 1117 | // |
| 1118 | // Arguments: |
| 1119 | // vmThread - the specified thread |
| 1120 | // |
| 1121 | // Return Value: |
| 1122 | // the user state of the specified thread |
| 1123 | // |
| 1124 | |
| 1125 | virtual |
| 1126 | CorDebugUserState GetUserState(VMPTR_Thread vmThread) = 0; |
| 1127 | |
| 1128 | |
| 1129 | // |
| 1130 | // Returns most of the user state of the specified thread, |
| 1131 | // i.e. flags which can be derived from the ThreadState: |
| 1132 | // USER_STOP_REQUESTED, USER_SUSPEND_REQUESTED, USER_BACKGROUND, USER_UNSTARTED |
| 1133 | // USER_STOPPED, USER_WAIT_SLEEP_JOIN, USER_SUSPENDED, USER_THREADPOOL |
| 1134 | // |
| 1135 | // Only USER_UNSAFE_POINT is always set to 0, since it takes additional stackwalk. |
| 1136 | // If you need USER_UNSAFE_POINT, use GetUserState(VMPTR_Thread); |
| 1137 | // |
| 1138 | // Arguments: |
| 1139 | // vmThread - the specified thread |
| 1140 | // |
| 1141 | // Return Value: |
| 1142 | // the user state of the specified thread |
| 1143 | // |
| 1144 | virtual |
| 1145 | CorDebugUserState GetPartialUserState(VMPTR_Thread vmThread) = 0; |
| 1146 | |
| 1147 | |
| 1148 | // |
| 1149 | // Return the connection ID of the specified thread. |
| 1150 | // |
| 1151 | // Arguments: |
| 1152 | // vmThread - the specified thread |
| 1153 | // |
| 1154 | // Return Value: |
| 1155 | // the connection ID of the specified thread |
| 1156 | // |
| 1157 | |
| 1158 | virtual |
| 1159 | CONNID GetConnectionID(VMPTR_Thread vmThread) = 0; |
| 1160 | |
| 1161 | // |
| 1162 | // Return the task ID of the specified thread. |
| 1163 | // |
| 1164 | // Arguments: |
| 1165 | // vmThread - the specified thread |
| 1166 | // |
| 1167 | // Return Value: |
| 1168 | // the task ID of the specified thread |
| 1169 | // |
| 1170 | |
| 1171 | virtual |
| 1172 | TASKID GetTaskID(VMPTR_Thread vmThread) = 0; |
| 1173 | |
| 1174 | // |
| 1175 | // Return the OS thread ID of the specified thread |
| 1176 | // |
| 1177 | // Arguments: |
| 1178 | // vmThread - the specified thread; cannot be NULL |
| 1179 | // |
| 1180 | // Return Value: |
| 1181 | // the OS thread ID of the specified thread. Returns 0 if not scheduled. |
| 1182 | // |
| 1183 | |
| 1184 | virtual |
| 1185 | DWORD TryGetVolatileOSThreadID(VMPTR_Thread vmThread) = 0; |
| 1186 | |
| 1187 | // |
| 1188 | // Return the unique thread ID of the specified thread. The value used for the thread ID changes |
| 1189 | // depending on whether the runtime is being hosted. In non-hosted scenarios, a managed thread will |
| 1190 | // always be associated with the same native thread, and so we can use the OS thread ID as the thread ID |
| 1191 | // for the managed thread. In hosted scenarios, however, a managed thread may run on multiple native |
| 1192 | // threads. It may not even have a backing native thread if it's switched out. Therefore, we can't use |
| 1193 | // the OS thread ID as the thread ID. Instead, we use the internal managed thread ID. |
| 1194 | // |
| 1195 | // Arguments: |
| 1196 | // vmThread - the specified thread; cannot be NULL |
| 1197 | // |
| 1198 | // Return Value: |
| 1199 | // Returns a stable and unique thread ID for the lifetime of the specified managed thread. |
| 1200 | // |
| 1201 | |
| 1202 | virtual |
| 1203 | DWORD GetUniqueThreadID(VMPTR_Thread vmThread) = 0; |
| 1204 | |
| 1205 | // |
| 1206 | // Return the object handle to the managed Exception object of the current exception |
| 1207 | // on the specified thread. The return value could be NULL if there is no current exception. |
| 1208 | // |
| 1209 | // Arguments: |
| 1210 | // vmThread - the specified thread |
| 1211 | // |
| 1212 | // Return Value: |
| 1213 | // This function returns the object handle to the managed Exception object of the current exception. |
| 1214 | // The return value may be NULL if there is no exception being processed, or if the specified thread |
| 1215 | // is an unmanaged thread which has entered and exited the runtime. |
| 1216 | // |
| 1217 | |
| 1218 | virtual |
| 1219 | VMPTR_OBJECTHANDLE GetCurrentException(VMPTR_Thread vmThread) = 0; |
| 1220 | |
| 1221 | // |
| 1222 | // Return the object handle to the managed object for a given CCW pointer. |
| 1223 | // |
| 1224 | // Arguments: |
| 1225 | // ccwPtr - the specified ccw pointer |
| 1226 | // |
| 1227 | // Return Value: |
| 1228 | // This function returns the object handle to the managed object for a given CCW pointer. |
| 1229 | // |
| 1230 | |
| 1231 | virtual |
| 1232 | VMPTR_OBJECTHANDLE GetObjectForCCW(CORDB_ADDRESS ccwPtr) = 0; |
| 1233 | |
| 1234 | // |
| 1235 | // Return the object handle to the managed CustomNotification object of the current notification |
| 1236 | // on the specified thread. The return value could be NULL if there is no current notification. |
| 1237 | // |
| 1238 | // Arguments: |
| 1239 | // vmThread - the specified thread on which the notification occurred |
| 1240 | // |
| 1241 | // Return Value: |
| 1242 | // This function returns the object handle to the managed CustomNotification object of the current notification. |
| 1243 | // The return value may be NULL if there is no current notification. |
| 1244 | // |
| 1245 | |
| 1246 | virtual |
| 1247 | VMPTR_OBJECTHANDLE GetCurrentCustomDebuggerNotification(VMPTR_Thread vmThread) = 0; |
| 1248 | |
| 1249 | |
| 1250 | // |
| 1251 | // Return the current appdomain the specified thread is in. |
| 1252 | // |
| 1253 | // Arguments: |
| 1254 | // vmThread - the specified thread |
| 1255 | // |
| 1256 | // Return Value: |
| 1257 | // the current appdomain of the specified thread |
| 1258 | // |
| 1259 | // Notes: |
| 1260 | // This function throws if the current appdomain is NULL for whatever reason. |
| 1261 | // |
| 1262 | |
| 1263 | virtual |
| 1264 | VMPTR_AppDomain GetCurrentAppDomain(VMPTR_Thread vmThread) = 0; |
| 1265 | |
| 1266 | |
| 1267 | // |
| 1268 | // Resolve an assembly |
| 1269 | // |
| 1270 | // Arguments: |
| 1271 | // vmScope - module containing metadata that the token is scoped to. |
| 1272 | // tkAssemblyRef - assembly ref token to lookup. |
| 1273 | // |
| 1274 | // Returns: |
| 1275 | // Assembly that the loader/fusion has bound to the given assembly ref. |
| 1276 | // Returns NULL if the assembly has not yet been loaded (a common case). |
| 1277 | // Throws on error. |
| 1278 | // |
| 1279 | // Notes: |
| 1280 | // A single module has metadata that specifies references via tokens. The |
| 1281 | // loader/fusion goes through tremendous and random policy hoops to determine |
| 1282 | // which specific file actually gets bound to the reference. This policy includes |
| 1283 | // things like config files, registry settings, and many other knobs. |
| 1284 | // |
| 1285 | // The debugger can't duplicate this policy with 100% accuracy, and |
| 1286 | // so we need DAC to lookup the assembly that was actually loaded. |
| 1287 | virtual |
| 1288 | VMPTR_DomainAssembly ResolveAssembly(VMPTR_DomainFile vmScope, mdToken tkAssemblyRef) = 0; |
| 1289 | |
| 1290 | //----------------------------------------------------------------------------- |
| 1291 | // Interface for initializing the native/IL sequence points and native var info |
| 1292 | // for a function. |
| 1293 | // Arguments: |
| 1294 | // input: |
| 1295 | // vmMethodDesc MethodDesc of the function |
| 1296 | // startAddr starting address of the function--this serves to |
| 1297 | // differentiate various EnC versions of the function |
| 1298 | // fCodePitched indicates whether code for the function has been pitched |
| 1299 | // fJitComplete indicates whether the function has been jitted |
| 1300 | // output: |
| 1301 | // pNativeVarData space for the native code offset information for locals |
| 1302 | // pSequencePoints space for the IL/native sequence points |
| 1303 | // Return value: |
| 1304 | // none, but may throw an exception |
| 1305 | // Assumptions: |
| 1306 | // vmMethodDesc, pNativeVarInfo and pSequencePoints are non-NULL |
| 1307 | |
| 1308 | // Notes: |
| 1309 | //----------------------------------------------------------------------------- |
| 1310 | |
| 1311 | virtual |
| 1312 | void GetNativeCodeSequencePointsAndVarInfo(VMPTR_MethodDesc vmMethodDesc, |
| 1313 | CORDB_ADDRESS startAddress, |
| 1314 | BOOL fCodeAvailabe, |
| 1315 | OUT NativeVarData * pNativeVarData, |
| 1316 | OUT SequencePoints * pSequencePoints) = 0; |
| 1317 | |
| 1318 | // |
| 1319 | // Return the filter CONTEXT on the LS. Once we move entirely over to the new managed pipeline |
| 1320 | // built on top of the Win32 debugging API, this won't be necessary. |
| 1321 | // |
| 1322 | // Arguments: |
| 1323 | // vmThread - the specified thread |
| 1324 | // |
| 1325 | // Return Value: |
| 1326 | // the filter CONTEXT of the specified thread |
| 1327 | // |
| 1328 | // Notes: |
| 1329 | // This function should go away when everything is moved OOP and |
| 1330 | // we don't have a filter CONTEXT on the LS anymore. |
| 1331 | // |
| 1332 | |
| 1333 | virtual |
| 1334 | VMPTR_CONTEXT GetManagedStoppedContext(VMPTR_Thread vmThread) = 0; |
| 1335 | |
| 1336 | typedef enum |
| 1337 | { |
| 1338 | kInvalid, |
| 1339 | kManagedStackFrame, |
| 1340 | kExplicitFrame, |
| 1341 | kNativeStackFrame, |
| 1342 | kNativeRuntimeUnwindableStackFrame, |
| 1343 | kAtEndOfStack, |
| 1344 | } FrameType; |
| 1345 | |
| 1346 | // The stackwalker functions allocate persistent state within DDImpl. Clients can hold onto |
| 1347 | // this via an opaque StackWalkHandle. |
| 1348 | typedef void* * StackWalkHandle; |
| 1349 | |
| 1350 | // |
| 1351 | // Create a stackwalker on the specified thread and return a handle to it. |
| 1352 | // Initially, the stackwalker is at the filter CONTEXT if there is one. |
| 1353 | // Otherwise it is at the leaf CONTEXT. It DOES NOT fast forward to the first frame of interest. |
| 1354 | // |
| 1355 | // Arguments: |
| 1356 | // vmThread - the specified thread |
| 1357 | // pInternalContextBuffer - a CONTEXT buffer for the stackwalker to work with |
| 1358 | // ppSFIHandle - out parameter; return a handle to the stackwalker |
| 1359 | // |
| 1360 | // Notes: |
| 1361 | // Call DeleteStackWalk() to delete the stackwalk buffer. |
| 1362 | // This is a special case that violates the 'no state' tenant. |
| 1363 | // |
| 1364 | |
| 1365 | virtual |
| 1366 | void CreateStackWalk(VMPTR_Thread vmThread, |
| 1367 | DT_CONTEXT * pInternalContextBuffer, |
| 1368 | OUT StackWalkHandle * ppSFIHandle) = 0; |
| 1369 | |
| 1370 | // Delete the stackwalk object created from CreateStackWalk. |
| 1371 | virtual |
| 1372 | void DeleteStackWalk(StackWalkHandle ppSFIHandle) = 0; |
| 1373 | |
| 1374 | // |
| 1375 | // Get the CONTEXT of the current frame where the stackwalker is stopped at. |
| 1376 | // |
| 1377 | // Arguments: |
| 1378 | // pSFIHandle - the handle to the stackwalker |
| 1379 | // pContext - OUT: the CONTEXT to be filled out. The context control flags are ignored. |
| 1380 | // |
| 1381 | |
| 1382 | virtual |
| 1383 | void GetStackWalkCurrentContext(StackWalkHandle pSFIHandle, |
| 1384 | DT_CONTEXT * pContext) = 0; |
| 1385 | |
| 1386 | // |
| 1387 | // Set the stackwalker to the given CONTEXT. The CorDebugSetContextFlag indicates whether |
| 1388 | // the CONTEXT is "active", meaning that the IP is point at the current instruction, |
| 1389 | // not the return address of some function call. |
| 1390 | // |
| 1391 | // Arguments: |
| 1392 | // vmThread - the current thread |
| 1393 | // pSFIHandle - the handle to the stackwalker |
| 1394 | // flag - flag to indicate whether the specified CONTEXT is "active" |
| 1395 | // pContext - the specified CONTEXT. This may make correctional adjustments to the context's IP. |
| 1396 | // |
| 1397 | |
| 1398 | virtual |
| 1399 | void SetStackWalkCurrentContext(VMPTR_Thread vmThread, |
| 1400 | StackWalkHandle pSFIHandle, |
| 1401 | CorDebugSetContextFlag flag, |
| 1402 | DT_CONTEXT * pContext) = 0; |
| 1403 | |
| 1404 | // |
| 1405 | // Unwind the stackwalker to the next frame. The next frame could be any actual stack frame, |
| 1406 | // explicit frame, native marker frame, etc. Call GetStackWalkCurrentFrameInfo() to find out |
| 1407 | // more about the frame. |
| 1408 | // |
| 1409 | // Arguments: |
| 1410 | // pSFIHandle - the handle to the stackwalker |
| 1411 | // |
| 1412 | // Return Value: |
| 1413 | // Return TRUE if we successfully unwind to the next frame. |
| 1414 | // Return FALSE if there is no more frames to walk. |
| 1415 | // Throw on error. |
| 1416 | // |
| 1417 | |
| 1418 | virtual |
| 1419 | BOOL UnwindStackWalkFrame(StackWalkHandle pSFIHandle) = 0; |
| 1420 | |
| 1421 | // |
| 1422 | // Check whether the specified CONTEXT is valid. The only check we perform right now is whether the |
| 1423 | // SP in the specified CONTEXT is in the stack range of the thread. |
| 1424 | // |
| 1425 | // Arguments: |
| 1426 | // vmThread - the specified thread |
| 1427 | // pContext - the CONTEXT to be checked |
| 1428 | // |
| 1429 | // Return Value: |
| 1430 | // Return S_OK if the CONTEXT passes our checks. |
| 1431 | // Returns CORDBG_E_NON_MATCHING_CONTEXT if the SP in the specified CONTEXT doesn't fall in the stack |
| 1432 | // range of the thread. |
| 1433 | // Throws on error. |
| 1434 | // |
| 1435 | |
| 1436 | virtual |
| 1437 | HRESULT CheckContext(VMPTR_Thread vmThread, |
| 1438 | const DT_CONTEXT * pContext) = 0; |
| 1439 | |
| 1440 | // |
| 1441 | // Fill in the DebuggerIPCE_STRData structure with information about the current frame |
| 1442 | // where the stackwalker is stopped at. |
| 1443 | // |
| 1444 | // Arguments: |
| 1445 | // pSFIHandle - the handle to the stackwalker |
| 1446 | // pFrameData - the DebuggerIPCE_STRData to be filled out; |
| 1447 | // it can be NULL if you just want to know the frame type |
| 1448 | // |
| 1449 | // Return Value: |
| 1450 | // Return the type of the current frame |
| 1451 | // |
| 1452 | |
| 1453 | virtual |
| 1454 | FrameType GetStackWalkCurrentFrameInfo(StackWalkHandle pSFIHandle, |
| 1455 | OPTIONAL DebuggerIPCE_STRData * pFrameData) = 0; |
| 1456 | |
| 1457 | // |
| 1458 | // Return the number of internal frames on the specified thread. |
| 1459 | // |
| 1460 | // Arguments: |
| 1461 | // vmThread - the thread whose internal frames are being retrieved |
| 1462 | // |
| 1463 | // Return Value: |
| 1464 | // Return the number of internal frames. |
| 1465 | // |
| 1466 | // Notes: |
| 1467 | // Explicit frames are "marker objects" the runtime pushes on the stack to mark special places, e.g. |
| 1468 | // appdomain transition, managed-to- unmanaged transition, etc. Internal frames are only a subset of |
| 1469 | // explicit frames. Explicit frames which are not interesting to the debugger are not exposed (e.g. |
| 1470 | // GCFrame). Internal frames are interesting to the debugger if they have a CorDebugInternalFrameType |
| 1471 | // other than STUBFRAME_NONE. |
| 1472 | // |
| 1473 | // The user should call this function before code:IDacDbiInterface::EnumerateInternalFrames to figure |
| 1474 | // out how many interesting internal frames there are. |
| 1475 | // |
| 1476 | |
| 1477 | virtual |
| 1478 | ULONG32 GetCountOfInternalFrames(VMPTR_Thread vmThread) = 0; |
| 1479 | |
| 1480 | // |
| 1481 | // Enumerate the internal frames on the specified thread and invoke the provided callback on each of |
| 1482 | // them. Information about the internal frame is stored in the DebuggerIPCE_STRData. |
| 1483 | // |
| 1484 | // Arguments: |
| 1485 | // vmThread - the thread to be walked fpCallback - callback function invoked on each internal frame |
| 1486 | // pUserData - user-specified custom data |
| 1487 | // |
| 1488 | // Notes: |
| 1489 | // The user can call code:IDacDbiInterface::GetCountOfInternalFrames to figure out how many internal |
| 1490 | // frames are on the thread before calling this function. Also, refer to the comment of that function |
| 1491 | // to find out more about internal frames. |
| 1492 | // |
| 1493 | |
| 1494 | typedef void (*FP_INTERNAL_FRAME_ENUMERATION_CALLBACK)(const DebuggerIPCE_STRData * pFrameData, CALLBACK_DATA pUserData); |
| 1495 | |
| 1496 | virtual |
| 1497 | void EnumerateInternalFrames(VMPTR_Thread vmThread, |
| 1498 | FP_INTERNAL_FRAME_ENUMERATION_CALLBACK fpCallback, |
| 1499 | CALLBACK_DATA pUserData) = 0; |
| 1500 | |
| 1501 | // |
| 1502 | // Given the FramePointer of the parent frame and the FramePointer of the current frame, |
| 1503 | // check if the current frame is the parent frame. fpParent should have been returned |
| 1504 | // previously by the DacDbiInterface via GetStackWalkCurrentFrameInfo(). |
| 1505 | // |
| 1506 | // Arguments: |
| 1507 | // fpToCheck - the FramePointer of the current frame |
| 1508 | // fpParent - the FramePointer of the parent frame; should have been returned earlier by the DDI |
| 1509 | // |
| 1510 | // Return Value: |
| 1511 | // Return TRUE if the current frame is indeed the parent frame |
| 1512 | // |
| 1513 | // Note: |
| 1514 | // Because of the complexity involved in checking for the parent frame, we should always |
| 1515 | // ask the ExceptionTracker to do it. |
| 1516 | // |
| 1517 | |
| 1518 | virtual |
| 1519 | BOOL IsMatchingParentFrame(FramePointer fpToCheck, FramePointer fpParent) = 0; |
| 1520 | |
| 1521 | // |
| 1522 | // Return the stack parameter size of a given method. This is necessary on x86 for unwinding. |
| 1523 | // |
| 1524 | // Arguments: |
| 1525 | // controlPC - any address in the specified method; you can use the current PC of the stack frame |
| 1526 | // |
| 1527 | // Return Value: |
| 1528 | // Return the size of the stack parameters of the given method. |
| 1529 | // Return 0 for vararg methods. |
| 1530 | // |
| 1531 | // Assumptions: |
| 1532 | // The callee stack parameter size is constant throughout a method. |
| 1533 | // |
| 1534 | |
| 1535 | virtual |
| 1536 | ULONG32 GetStackParameterSize(CORDB_ADDRESS controlPC) = 0; |
| 1537 | |
| 1538 | // |
| 1539 | // Return the FramePointer of the current frame where the stackwalker is stopped at. |
| 1540 | // |
| 1541 | // Arguments: |
| 1542 | // pSFIHandle - the handle to the stackwalker |
| 1543 | // |
| 1544 | // Return Value: |
| 1545 | // the FramePointer of the current frame |
| 1546 | // |
| 1547 | // Notes: |
| 1548 | // The FramePointer of a stack frame is: |
| 1549 | // the stack address of the return address on x86, |
| 1550 | // the current SP on AMD64, |
| 1551 | // |
| 1552 | // On x86, to get the stack address of the return address, we need to unwind one more frame |
| 1553 | // and use the SP of the caller frame as the FramePointer of the callee frame. This |
| 1554 | // function does NOT do that. It just returns the SP. The caller needs to handle the |
| 1555 | // unwinding. |
| 1556 | // |
| 1557 | // The FramePointer of an explicit frame is just the stack address of the explicit frame. |
| 1558 | // |
| 1559 | |
| 1560 | virtual |
| 1561 | FramePointer GetFramePointer(StackWalkHandle pSFIHandle) = 0; |
| 1562 | |
| 1563 | // |
| 1564 | // Check whether the specified CONTEXT is the CONTEXT of the leaf frame. This function doesn't care |
| 1565 | // whether the leaf frame is native or managed. |
| 1566 | // |
| 1567 | // Arguments: |
| 1568 | // vmThread - the specified thread |
| 1569 | // pContext - the CONTEXT to check |
| 1570 | // |
| 1571 | // Return Value: |
| 1572 | // Return TRUE if the specified CONTEXT is the leaf CONTEXT. |
| 1573 | // |
| 1574 | // Notes: |
| 1575 | // Currently we check the specified CONTEXT against the filter CONTEXT first. |
| 1576 | // This will be deprecated in V3. |
| 1577 | // |
| 1578 | |
| 1579 | virtual |
| 1580 | BOOL IsLeafFrame(VMPTR_Thread vmThread, |
| 1581 | const DT_CONTEXT * pContext) = 0; |
| 1582 | |
| 1583 | // Get the context for a particular thread of the target process. |
| 1584 | // Arguments: |
| 1585 | // input: vmThread - the thread for which the context is required |
| 1586 | // output: pContextBuffer - the address of the CONTEXT to be initialized. |
| 1587 | // The memory for this belongs to the caller. It must not be NULL. |
| 1588 | // Note: throws |
| 1589 | virtual |
| 1590 | void GetContext(VMPTR_Thread vmThread, DT_CONTEXT * pContextBuffer) = 0; |
| 1591 | |
| 1592 | // |
| 1593 | // This is a simple helper function to convert a CONTEXT to a DebuggerREGDISPLAY. We need to do this |
| 1594 | // inside DDI because the RS has no notion of REGDISPLAY. |
| 1595 | // |
| 1596 | // Arguments: |
| 1597 | // pInContext - the CONTEXT to be converted |
| 1598 | // pOutDRD - the converted DebuggerREGDISPLAY |
| 1599 | // fActive - Indicate whether the CONTEXT is active or not. An active CONTEXT means that the |
| 1600 | // IP is the next instruction to be executed, not the return address of a function call. |
| 1601 | // The opposite of an active CONTEXT is an unwind CONTEXT, which is obtained from |
| 1602 | // unwinding. |
| 1603 | // |
| 1604 | |
| 1605 | virtual |
| 1606 | void ConvertContextToDebuggerRegDisplay(const DT_CONTEXT * pInContext, |
| 1607 | DebuggerREGDISPLAY * pOutDRD, |
| 1608 | BOOL fActive) = 0; |
| 1609 | |
| 1610 | typedef enum |
| 1611 | { |
| 1612 | kNone, |
| 1613 | kILStub, |
| 1614 | kLCGMethod, |
| 1615 | } DynamicMethodType; |
| 1616 | |
| 1617 | // |
| 1618 | // Check whether the specified method is an IL stub or an LCG method. This answer determines if we |
| 1619 | // need to expose the method in a V2-style stackwalk. |
| 1620 | // |
| 1621 | // Arguments: |
| 1622 | // vmMethodDesc - the method to be checked |
| 1623 | // |
| 1624 | // Return Value: |
| 1625 | // Return kNone if the method is neither an IL stub or an LCG method. |
| 1626 | // Return kILStub if the method is an IL stub. |
| 1627 | // Return kLCGMethod if the method is an LCG method. |
| 1628 | // |
| 1629 | |
| 1630 | virtual |
| 1631 | DynamicMethodType IsILStubOrLCGMethod(VMPTR_MethodDesc vmMethodDesc) = 0; |
| 1632 | |
| 1633 | // |
| 1634 | // Return a TargetBuffer for the raw vararg signature. |
| 1635 | // Also return the address of the first argument in the vararg signature. |
| 1636 | // |
| 1637 | // Arguments: |
| 1638 | // VASigCookieAddr - the target address of the VASigCookie pointer (double indirection) |
| 1639 | // pArgBase - out parameter; return the target address of the first word of the arguments |
| 1640 | // |
| 1641 | // Return Value: |
| 1642 | // Return a TargetBuffer for the raw vararg signature. |
| 1643 | // |
| 1644 | // Notes: |
| 1645 | // We can't take a VMPTR here because VASigCookieAddr does not come from the DDI. Instead, |
| 1646 | // we use the native variable information to figure out which stack slot contains the |
| 1647 | // VASigCookie pointer. So a remote address is all we have got. |
| 1648 | // |
| 1649 | // Ideally we should be able to return just a SigParser, but doing so has a not-so-trivial problem. |
| 1650 | // The memory used for the signature pointed to by the SigParser cannot be allocated in the DAC cache, |
| 1651 | // since it'll be used by mscordbi. We don't have a clean way to allocate memory in mscordbi without |
| 1652 | // breaking the Signature abstraction. |
| 1653 | // |
| 1654 | // The other option would be to create a new sub-type like "SignatureCopy" which allocates and frees |
| 1655 | // its own backing memory. Currently we don't want to share heaps between mscordacwks.dll and |
| 1656 | // mscordbi.dll, and so we would have to jump through some hoops to allocate with an allocator |
| 1657 | // in mscordbi.dll. |
| 1658 | // |
| 1659 | |
| 1660 | virtual |
| 1661 | TargetBuffer GetVarArgSig(CORDB_ADDRESS VASigCookieAddr, |
| 1662 | OUT CORDB_ADDRESS * pArgBase) = 0; |
| 1663 | |
| 1664 | // |
| 1665 | // Indicates if the specified type requires 8-byte alignment. |
| 1666 | // |
| 1667 | // Arguments: |
| 1668 | // thExact - the exact TypeHandle of the type to query |
| 1669 | // |
| 1670 | // Return Value: |
| 1671 | // TRUE if the type requires 8-byte alignment. |
| 1672 | // |
| 1673 | |
| 1674 | virtual |
| 1675 | BOOL RequiresAlign8(VMPTR_TypeHandle thExact) = 0; |
| 1676 | |
| 1677 | // |
| 1678 | // Resolve the raw generics token to the real generics type token. The resolution is based on the |
| 1679 | // given index. See Notes below. |
| 1680 | // |
| 1681 | // Arguments: |
| 1682 | // dwExactGenericArgsTokenIndex - the variable index of the generics type token |
| 1683 | // rawToken - the raw token to be resolved |
| 1684 | // |
| 1685 | // Return Value: |
| 1686 | // Return the actual generics type token. |
| 1687 | // |
| 1688 | // Notes: |
| 1689 | // DDI tells the RS which variable stores the generics type token, but DDI doesn't retrieve the value |
| 1690 | // of the variable itself. Instead, the RS retrieves the value of the variable. However, |
| 1691 | // in some cases, the variable value is not the generics type token. In this case, we need to |
| 1692 | // "resolve" the variable value to the generics type token. The RS should call this API to do that. |
| 1693 | // |
| 1694 | // If the index is 0, then the generics type token is the MethodTable of the "this" object. |
| 1695 | // rawToken will be the address of the "this" object. |
| 1696 | // |
| 1697 | // If the index is TYPECTXT_ILNUM, the generics type token is a secret argument. |
| 1698 | // It could be a MethodDesc or a MethodTable, and in this case no resolution is actually necessary. |
| 1699 | // rawToken will be the actual secret argument, and this API really is just a nop. |
| 1700 | // |
| 1701 | // However, we don't want the RS to know all this logic. |
| 1702 | // |
| 1703 | |
| 1704 | virtual |
| 1705 | GENERICS_TYPE_TOKEN ResolveExactGenericArgsToken(DWORD dwExactGenericArgsTokenIndex, |
| 1706 | GENERICS_TYPE_TOKEN rawToken) = 0; |
| 1707 | |
| 1708 | //----------------------------------------------------------------------------- |
| 1709 | // Functions to get information about code objects |
| 1710 | //----------------------------------------------------------------------------- |
| 1711 | |
| 1712 | // GetILCodeAndSig returns the function's ILCode and SigToken given |
| 1713 | // a module and a token. The info will come from a MethodDesc, if |
| 1714 | // one exists or from metadata. |
| 1715 | // |
| 1716 | // Arguments: |
| 1717 | // Input: |
| 1718 | // vmDomainFile - module containing metadata for the method |
| 1719 | // functionToken - metadata token for the function |
| 1720 | // Output (required): |
| 1721 | // codeInfo - start address and size of the IL |
| 1722 | // pLocalSigToken - signature token for the method |
| 1723 | virtual |
| 1724 | void GetILCodeAndSig(VMPTR_DomainFile vmDomainFile, |
| 1725 | mdToken functionToken, |
| 1726 | OUT TargetBuffer * pCodeInfo, |
| 1727 | OUT mdToken * pLocalSigToken) = 0; |
| 1728 | |
| 1729 | // Gets information about a native code blob: |
| 1730 | // it's method desc, whether it's an instantiated generic, its EnC version number |
| 1731 | // and hot and cold region information. |
| 1732 | // Arguments: |
| 1733 | // Input: |
| 1734 | // vmDomainFile - module containing metadata for the method |
| 1735 | // functionToken - token for the function for which we need code info |
| 1736 | // Output (required): |
| 1737 | // pCodeInfo - data structure describing the native code regions. |
| 1738 | // Notes: If the function is unjitted, the method desc will be NULL and the |
| 1739 | // output parameter will be invalid. In general, if the native start address |
| 1740 | // is unavailable for any reason, the output parameter will also be |
| 1741 | // invalid (i.e., pCodeInfo->IsValid is false). |
| 1742 | |
| 1743 | virtual |
| 1744 | void GetNativeCodeInfo(VMPTR_DomainFile vmDomainFile, |
| 1745 | mdToken functionToken, |
| 1746 | OUT NativeCodeFunctionData * pCodeInfo) = 0; |
| 1747 | |
| 1748 | // Gets information about a native code blob: |
| 1749 | // it's method desc, whether it's an instantiated generic, its EnC version number |
| 1750 | // and hot and cold region information. |
| 1751 | // This is similar to function above, just works from a different starting point |
| 1752 | // Also this version can get info for any particular EnC version instance |
| 1753 | // because they all have different start addresses whereas the above version gets |
| 1754 | // the most recent one |
| 1755 | // Arguments: |
| 1756 | // Input: |
| 1757 | // hotCodeStartAddr - the beginning of the code hot code region |
| 1758 | // Output (required): |
| 1759 | // pCodeInfo - data structure describing the native code regions. |
| 1760 | |
| 1761 | virtual |
| 1762 | void GetNativeCodeInfoForAddr(VMPTR_MethodDesc vmMethodDesc, |
| 1763 | CORDB_ADDRESS hotCodeStartAddr, |
| 1764 | NativeCodeFunctionData * pCodeInfo) = 0; |
| 1765 | |
| 1766 | //----------------------------------------------------------------------------- |
| 1767 | // Functions to get information about types |
| 1768 | //----------------------------------------------------------------------------- |
| 1769 | |
| 1770 | // Determine if a type is a ValueType |
| 1771 | // |
| 1772 | // Arguments: |
| 1773 | // input: vmTypeHandle - the type being checked (works even on unrestored types) |
| 1774 | // |
| 1775 | // Return: |
| 1776 | // TRUE iff the type is a ValueType |
| 1777 | |
| 1778 | virtual |
| 1779 | BOOL IsValueType (VMPTR_TypeHandle th) = 0; |
| 1780 | |
| 1781 | // Determine if a type has generic parameters |
| 1782 | // |
| 1783 | // Arguments: |
| 1784 | // input: vmTypeHandle - the type being checked (works even on unrestored types) |
| 1785 | // |
| 1786 | // Return: |
| 1787 | // TRUE iff the type has generic parameters |
| 1788 | |
| 1789 | virtual |
| 1790 | BOOL HasTypeParams (VMPTR_TypeHandle th) = 0; |
| 1791 | |
| 1792 | // Get type information for a class |
| 1793 | // |
| 1794 | // Arguments: |
| 1795 | // input: vmAppDomain - appdomain where we will fetch field data for the type |
| 1796 | // thExact - exact type handle for type |
| 1797 | // output: |
| 1798 | // pData - structure containing information about the class and its |
| 1799 | // fields |
| 1800 | |
| 1801 | virtual |
| 1802 | void GetClassInfo (VMPTR_AppDomain vmAppDomain, |
| 1803 | VMPTR_TypeHandle thExact, |
| 1804 | ClassInfo * pData) = 0; |
| 1805 | |
| 1806 | // get field information and object size for an instantiated generic |
| 1807 | // |
| 1808 | // Arguments: |
| 1809 | // input: vmDomainFile - module containing metadata for the type |
| 1810 | // thExact - exact type handle for type (may be NULL) |
| 1811 | // thApprox - approximate type handle for the type |
| 1812 | // output: |
| 1813 | // pFieldList - array of structures containing information about the fields. Clears any previous |
| 1814 | // contents. Allocated and initialized by this function. |
| 1815 | // pObjectSize - size of the instantiated object |
| 1816 | // |
| 1817 | virtual |
| 1818 | void GetInstantiationFieldInfo (VMPTR_DomainFile vmDomainFile, |
| 1819 | VMPTR_TypeHandle vmThExact, |
| 1820 | VMPTR_TypeHandle vmThApprox, |
| 1821 | OUT DacDbiArrayList<FieldData> * pFieldList, |
| 1822 | OUT SIZE_T * pObjectSize) = 0; |
| 1823 | |
| 1824 | // use a type handle to get the information needed to create the corresponding RS CordbType instance |
| 1825 | // |
| 1826 | // Arguments: |
| 1827 | // input: boxed - indicates what, if anything, is boxed. See code:AreValueTypesBoxed for more |
| 1828 | // specific information |
| 1829 | // vmAppDomain - module containing metadata for the type |
| 1830 | // vmTypeHandle - type handle for the type |
| 1831 | // output: pTypeInfo - holds information needed to build the corresponding CordbType |
| 1832 | // |
| 1833 | virtual |
| 1834 | void TypeHandleToExpandedTypeInfo(AreValueTypesBoxed boxed, |
| 1835 | VMPTR_AppDomain vmAppDomain, |
| 1836 | VMPTR_TypeHandle vmTypeHandle, |
| 1837 | DebuggerIPCE_ExpandedTypeData * pTypeInfo) = 0; |
| 1838 | |
| 1839 | virtual |
| 1840 | void GetObjectExpandedTypeInfo(AreValueTypesBoxed boxed, |
| 1841 | VMPTR_AppDomain vmAppDomain, |
| 1842 | CORDB_ADDRESS addr, |
| 1843 | OUT DebuggerIPCE_ExpandedTypeData * pTypeInfo) = 0; |
| 1844 | |
| 1845 | |
| 1846 | virtual |
| 1847 | void GetObjectExpandedTypeInfoFromID(AreValueTypesBoxed boxed, |
| 1848 | VMPTR_AppDomain vmAppDomain, |
| 1849 | COR_TYPEID id, |
| 1850 | OUT DebuggerIPCE_ExpandedTypeData * pTypeInfo) = 0; |
| 1851 | |
| 1852 | |
| 1853 | // Get type handle for a TypeDef token, if one exists. For generics this returns the open type. |
| 1854 | // Note there is no guarantee the returned handle will be fully restored (in pre-jit scenarios), |
| 1855 | // only that it exists. Later functions that use this type handle should fail if they require |
| 1856 | // information not yet available at the current restoration level |
| 1857 | // |
| 1858 | // Arguments: |
| 1859 | // input: vmModule - the module scope in which to look up the type def |
| 1860 | // metadataToken - the type definition to retrieve |
| 1861 | // |
| 1862 | // Return value: the type handle if it exists or throws CORDBG_E_CLASS_NOT_LOADED if it isn't loaded |
| 1863 | // |
| 1864 | virtual |
| 1865 | VMPTR_TypeHandle GetTypeHandle(VMPTR_Module vmModule, |
| 1866 | mdTypeDef metadataToken) = 0; |
| 1867 | |
| 1868 | // Get the approximate type handle for an instantiated type. This may be identical to the exact type handle, |
| 1869 | // but if we have code sharing for generics, it may differ in that it may have canonical type parameters. |
| 1870 | // This will occur if we have not yet loaded an exact type but we have loaded the canonical form of the |
| 1871 | // type. |
| 1872 | // |
| 1873 | // Arguments: |
| 1874 | // input: pTypeData - information needed to get the type handle, this includes a list of type parameters |
| 1875 | // and the number of entries in the list. Allocated and initialized by the caller. |
| 1876 | // Return value: the approximate type handle |
| 1877 | // |
| 1878 | virtual |
| 1879 | VMPTR_TypeHandle GetApproxTypeHandle(TypeInfoList * pTypeData) = 0; |
| 1880 | |
| 1881 | // Get the exact type handle from type data. |
| 1882 | // Arguments: |
| 1883 | // input: pTypeData - type information for the type. includes information about |
| 1884 | // the top-level type as well as information |
| 1885 | // about the element type for array types, the referent for |
| 1886 | // pointer types, or actual parameters for generic class or |
| 1887 | // valuetypes, as appropriate for the top-level type. |
| 1888 | // pArgInfo - This is preallocated and initialized by the caller and contains two fields: |
| 1889 | // genericArgsCount - number of type parameters (these may be actual type parameters |
| 1890 | // for generics or they may represent the element type or referent |
| 1891 | // type. |
| 1892 | // pGenericArgData - list of type parameters |
| 1893 | // vmTypeHandle - the exact type handle derived from the type information |
| 1894 | // Return Value: an HRESULT indicating the result of the operation |
| 1895 | virtual |
| 1896 | HRESULT GetExactTypeHandle(DebuggerIPCE_ExpandedTypeData * pTypeData, |
| 1897 | ArgInfoList * pArgInfo, |
| 1898 | VMPTR_TypeHandle& vmTypeHandle) = 0; |
| 1899 | |
| 1900 | // |
| 1901 | // Retrieve the generic type params for a given MethodDesc. This function is specifically |
| 1902 | // for stackwalking because it requires the generic type token on the stack. |
| 1903 | // |
| 1904 | // Arguments: |
| 1905 | // vmAppDomain - the appdomain of the MethodDesc |
| 1906 | // vmMethodDesc - the method in question |
| 1907 | // genericsToken - the generic type token in the stack frame owned by the method |
| 1908 | // |
| 1909 | // pcGenericClassTypeParams - out parameter; returns the number of type parameters for the class |
| 1910 | // containing the method in question; must not be NULL |
| 1911 | // pGenericTypeParams - out parameter; returns an array of type parameters and |
| 1912 | // the count of the total number of type parameters; must not be NULL |
| 1913 | // |
| 1914 | // Notes: |
| 1915 | // The memory for the array is allocated by this function on the Dbi heap. |
| 1916 | // The caller is responsible for releasing it. |
| 1917 | // |
| 1918 | |
| 1919 | virtual |
| 1920 | void GetMethodDescParams(VMPTR_AppDomain vmAppDomain, |
| 1921 | VMPTR_MethodDesc vmMethodDesc, |
| 1922 | GENERICS_TYPE_TOKEN genericsToken, |
| 1923 | OUT UINT32 * pcGenericClassTypeParams, |
| 1924 | OUT TypeParamsList * pGenericTypeParams) = 0; |
| 1925 | |
| 1926 | // Get the target field address of a thread local static. |
| 1927 | // Arguments: |
| 1928 | // input: vmField - pointer to the field descriptor for the static field |
| 1929 | // vmRuntimeThread - thread to which the static field belongs. This must |
| 1930 | // NOT be NULL |
| 1931 | // Return Value: The target address of the field if the field is allocated. |
| 1932 | // NULL if the field storage is not yet allocated. |
| 1933 | // |
| 1934 | // Note: |
| 1935 | // Static field storage is lazily allocated, so this may commonly return NULL. |
| 1936 | // This is an inspection only method and can not allocate the static storage. |
| 1937 | // Field storage is constant once allocated, so this value can be cached. |
| 1938 | |
| 1939 | virtual |
| 1940 | CORDB_ADDRESS GetThreadStaticAddress(VMPTR_FieldDesc vmField, |
| 1941 | VMPTR_Thread vmRuntimeThread) = 0; |
| 1942 | |
| 1943 | // Get the target field address of a collectible types static. |
| 1944 | // Arguments: |
| 1945 | // input: vmField - pointer to the field descriptor for the static field |
| 1946 | // vmAppDomain - AppDomain to which the static field belongs. This must |
| 1947 | // NOT be NULL |
| 1948 | // Return Value: The target address of the field if the field is allocated. |
| 1949 | // NULL if the field storage is not yet allocated. |
| 1950 | // |
| 1951 | // Note: |
| 1952 | // Static field storage may not exist yet, so this may commonly return NULL. |
| 1953 | // This is an inspection only method and can not allocate the static storage. |
| 1954 | // Field storage is not constant once allocated so this value can not be cached |
| 1955 | // across a Continue |
| 1956 | |
| 1957 | virtual |
| 1958 | CORDB_ADDRESS GetCollectibleTypeStaticAddress(VMPTR_FieldDesc vmField, |
| 1959 | VMPTR_AppDomain vmAppDomain) = 0; |
| 1960 | |
| 1961 | // Get information about a field added with Edit And Continue. |
| 1962 | // Arguments: |
| 1963 | // intput: pEnCFieldInfo - information about the EnC added field including: |
| 1964 | // object to which it belongs (if this is null the field is static) |
| 1965 | // the field token |
| 1966 | // the class token for the class to which the field was added |
| 1967 | // the offset to the fields |
| 1968 | // the domain file |
| 1969 | // an indication of the type: whether it's a class or value type |
| 1970 | // output: pFieldData - information about the EnC added field |
| 1971 | // pfStatic - flag to indicate whether the field is static |
| 1972 | virtual |
| 1973 | void GetEnCHangingFieldInfo(const EnCHangingFieldInfo * pEnCFieldInfo, |
| 1974 | OUT FieldData * pFieldData, |
| 1975 | OUT BOOL * pfStatic) = 0; |
| 1976 | |
| 1977 | |
| 1978 | // GetTypeHandleParams gets the necessary data for a type handle, i.e. its |
| 1979 | // type parameters, e.g. "String" and "List<int>" from the type handle |
| 1980 | // for "Dict<String,List<int>>", and sends it back to the right side. |
| 1981 | // Arguments: |
| 1982 | // input: vmAppDomain - app domain to which the type belongs |
| 1983 | // vmTypeHandle - type handle for the type |
| 1984 | // output: pParams - list of instances of DebuggerIPCE_ExpandedTypeData, |
| 1985 | // one for each type parameter. These will be used on the |
| 1986 | // RS to build up an instantiation which will allow |
| 1987 | // building an instance of CordbType for the top-level |
| 1988 | // type. The memory for this list is allocated on the dbi |
| 1989 | // heap in this function. |
| 1990 | // This will not fail except for OOM |
| 1991 | |
| 1992 | virtual |
| 1993 | void GetTypeHandleParams(VMPTR_AppDomain vmAppDomain, |
| 1994 | VMPTR_TypeHandle vmTypeHandle, |
| 1995 | OUT TypeParamsList * pParams) = 0; |
| 1996 | |
| 1997 | // GetSimpleType |
| 1998 | // gets the metadata token and domain file corresponding to a simple type |
| 1999 | // Arguments: |
| 2000 | // input: vmAppDomain - Appdomain in which simpleType resides |
| 2001 | // simpleType - CorElementType value corresponding to a simple type |
| 2002 | // output: pMetadataToken - the metadata token corresponding to simpleType, |
| 2003 | // in the scope of vmDomainFile. |
| 2004 | // vmDomainFile - the domainFile for simpleType |
| 2005 | // Notes: |
| 2006 | // This is inspection-only. If the type is not yet loaded, it will throw CORDBG_E_CLASS_NOT_LOADED. |
| 2007 | // It will not try to load a type. |
| 2008 | // If the type has been loaded, vmDomainFile will be non-null unless the target is somehow corrupted. |
| 2009 | // In that case, we will throw CORDBG_E_TARGET_INCONSISTENT. |
| 2010 | |
| 2011 | virtual |
| 2012 | void GetSimpleType(VMPTR_AppDomain vmAppDomain, |
| 2013 | CorElementType simpleType, |
| 2014 | OUT mdTypeDef * pMetadataToken, |
| 2015 | OUT VMPTR_Module * pVmModule, |
| 2016 | OUT VMPTR_DomainFile * pVmDomainFile) = 0; |
| 2017 | |
| 2018 | // for the specified object returns TRUE if the object derives from System.Exception |
| 2019 | virtual |
| 2020 | BOOL IsExceptionObject(VMPTR_Object vmObject) = 0; |
| 2021 | |
| 2022 | // gets the list of raw stack frames for the specified exception object |
| 2023 | virtual |
| 2024 | void GetStackFramesFromException(VMPTR_Object vmObject, DacDbiArrayList<DacExceptionCallStackData>& dacStackFrames) = 0; |
| 2025 | |
| 2026 | // Returns true if the argument is a runtime callable wrapper |
| 2027 | virtual |
| 2028 | BOOL IsRcw(VMPTR_Object vmObject) = 0; |
| 2029 | |
| 2030 | // retrieves the list of COM interfaces implemented by vmObject, as it is known at |
| 2031 | // the time of the call (the list may change as new interface types become available |
| 2032 | // in the runtime) |
| 2033 | virtual |
| 2034 | void GetRcwCachedInterfaceTypes( |
| 2035 | VMPTR_Object vmObject, |
| 2036 | VMPTR_AppDomain vmAppDomain, |
| 2037 | BOOL bIInspectableOnly, |
| 2038 | OUT DacDbiArrayList<DebuggerIPCE_ExpandedTypeData> * pDacInterfaces) = 0; |
| 2039 | |
| 2040 | // retrieves the list of interfaces pointers implemented by vmObject, as it is known at |
| 2041 | // the time of the call (the list may change as new interface types become available |
| 2042 | // in the runtime) |
| 2043 | virtual |
| 2044 | void GetRcwCachedInterfacePointers( |
| 2045 | VMPTR_Object vmObject, |
| 2046 | BOOL bIInspectableOnly, |
| 2047 | OUT DacDbiArrayList<CORDB_ADDRESS> * pDacItfPtrs) = 0; |
| 2048 | |
| 2049 | // retrieves a list of interface types corresponding to the passed in |
| 2050 | // list of IIDs. the interface types are retrieved from an app domain |
| 2051 | // IID / Type cache, that is updated as new types are loaded. will |
| 2052 | // have NULL entries corresponding to unknown IIDs in "iids" |
| 2053 | virtual |
| 2054 | void GetCachedWinRTTypesForIIDs( |
| 2055 | VMPTR_AppDomain vmAppDomain, |
| 2056 | DacDbiArrayList<GUID> & iids, |
| 2057 | OUT DacDbiArrayList<DebuggerIPCE_ExpandedTypeData> * pTypes) = 0; |
| 2058 | |
| 2059 | // retrieves the whole app domain cache of IID / Type mappings. |
| 2060 | virtual |
| 2061 | void GetCachedWinRTTypes( |
| 2062 | VMPTR_AppDomain vmAppDomain, |
| 2063 | OUT DacDbiArrayList<GUID> * piids, |
| 2064 | OUT DacDbiArrayList<DebuggerIPCE_ExpandedTypeData> * pTypes) = 0; |
| 2065 | |
| 2066 | |
| 2067 | // ---------------------------------------------------------------------------- |
| 2068 | // functions to get information about reference/handle referents for ICDValue |
| 2069 | // ---------------------------------------------------------------------------- |
| 2070 | |
| 2071 | // Get object information for a TypedByRef object. Initializes the objRef and typedByRefType fields of |
| 2072 | // pObjectData (type info for the referent). |
| 2073 | // Arguments: |
| 2074 | // input: pTypedByRef - pointer to a TypedByRef struct |
| 2075 | // vmAppDomain - AppDomain for the type of the object referenced |
| 2076 | // output: pObjectData - information about the object referenced by pTypedByRef |
| 2077 | // Note: Throws |
| 2078 | virtual |
| 2079 | void GetTypedByRefInfo(CORDB_ADDRESS pTypedByRef, |
| 2080 | VMPTR_AppDomain vmAppDomain, |
| 2081 | DebuggerIPCE_ObjectData * pObjectData) = 0; |
| 2082 | |
| 2083 | // Get the string length and offset to string base for a string object |
| 2084 | // Arguments: |
| 2085 | // input: objPtr - address of a string object |
| 2086 | // output: pObjectData - fills in the string fields stringInfo.offsetToStringBase and |
| 2087 | // stringInfo.length |
| 2088 | // Note: throws |
| 2089 | virtual |
| 2090 | void GetStringData(CORDB_ADDRESS objectAddress, DebuggerIPCE_ObjectData * pObjectData) = 0; |
| 2091 | |
| 2092 | // Get information for an array type referent of an objRef, including rank, upper and lower bounds, |
| 2093 | // element size and type, and the number of elements. |
| 2094 | // Arguments: |
| 2095 | // input: objectAddress - the address of an array object |
| 2096 | // output: pObjectData - fills in the array-related fields: |
| 2097 | // arrayInfo.offsetToArrayBase, |
| 2098 | // arrayInfo.offsetToLowerBounds, |
| 2099 | // arrayInfo.offsetToUpperBounds, |
| 2100 | // arrayInfo.componentCount, |
| 2101 | // arrayInfo.rank, |
| 2102 | // arrayInfo.elementSize, |
| 2103 | // Note: throws |
| 2104 | virtual |
| 2105 | void GetArrayData(CORDB_ADDRESS objectAddress, DebuggerIPCE_ObjectData * pObjectData) = 0; |
| 2106 | |
| 2107 | // Get information about an object for which we have a reference, including the object size and |
| 2108 | // type information. |
| 2109 | // Arguments: |
| 2110 | // input: objectAddress - address of the object for which we want information |
| 2111 | // type - the basic type of the object (we may find more specific type |
| 2112 | // information for the object) |
| 2113 | // vmAppDomain - the appdomain to which the object belong |
| 2114 | // output: pObjectData - fills in the size and type information fields |
| 2115 | // Note: throws |
| 2116 | virtual |
| 2117 | void GetBasicObjectInfo(CORDB_ADDRESS objectAddress, |
| 2118 | CorElementType type, |
| 2119 | VMPTR_AppDomain vmAppDomain, |
| 2120 | DebuggerIPCE_ObjectData * pObjectData) = 0; |
| 2121 | |
| 2122 | // -------------------------------------------------------------------------------------------- |
| 2123 | #ifdef TEST_DATA_CONSISTENCY |
| 2124 | // Determine whether a crst is held by the left side. When the DAC is executing VM code that takes a |
| 2125 | // lock, we want to know whether the LS already holds that lock. If it does, we will assume the locked |
| 2126 | // data is in an inconsistent state and will throw an exception, rather than relying on this data. This |
| 2127 | // function is part of a self-test that will ensure we are correctly detecting when the LS holds a lock |
| 2128 | // on data the RS is trying to inspect. |
| 2129 | // Argument: |
| 2130 | // input: vmCrst - the lock to test |
| 2131 | // output: none |
| 2132 | // Notes: |
| 2133 | // Throws |
| 2134 | // For this code to run, the environment variable TestDataConsistency must be set to 1. |
| 2135 | virtual |
| 2136 | void TestCrst(VMPTR_Crst vmCrst) = 0; |
| 2137 | |
| 2138 | // Determine whether a crst is held by the left side. When the DAC is executing VM code that takes a |
| 2139 | // lock, we want to know whether the LS already holds that lock. If it does, we will assume the locked |
| 2140 | // data is in an inconsistent state and will throw an exception, rather than relying on this data. This |
| 2141 | // function is part of a self-test that will ensure we are correctly detecting when the LS holds a lock |
| 2142 | // on data the RS is trying to inspect. |
| 2143 | // Argument: |
| 2144 | // input: vmRWLock - the lock to test |
| 2145 | // output: none |
| 2146 | // Notes: |
| 2147 | // Throws |
| 2148 | // For this code to run, the environment variable TestDataConsistency must be set to 1. |
| 2149 | |
| 2150 | virtual |
| 2151 | void TestRWLock(VMPTR_SimpleRWLock vmRWLock) = 0; |
| 2152 | #endif |
| 2153 | // -------------------------------------------------------------------------------------------- |
| 2154 | // Get the address of the Debugger control block on the helper thread. The debugger control block |
| 2155 | // contains information about the status of the debugger, handles to various events and space to hold |
| 2156 | // information sent back and forth between the debugger and the debuggee's helper thread. |
| 2157 | // Arguments: none |
| 2158 | // Return Value: The remote address of the Debugger control block allocated on the helper thread |
| 2159 | // if it has been successfully allocated or NULL otherwise. |
| 2160 | virtual |
| 2161 | CORDB_ADDRESS GetDebuggerControlBlockAddress() = 0; |
| 2162 | |
| 2163 | // Creates a VMPTR of an Object. The Object is found by dereferencing ptr |
| 2164 | // as though it is a target address to an OBJECTREF. This is similar to |
| 2165 | // GetObject with another level of indirection. |
| 2166 | // |
| 2167 | // Arguments: |
| 2168 | // ptr - A target address pointing to an OBJECTREF |
| 2169 | // |
| 2170 | // Return Value: |
| 2171 | // A VMPTR to the Object which ptr points to |
| 2172 | // |
| 2173 | // Notes: |
| 2174 | // The VMPTR this produces can be deconstructed by GetObjectContents. |
| 2175 | // This function will throw if given a NULL or otherwise invalid pointer, |
| 2176 | // but if given a valid address to an invalid pointer, it will produce |
| 2177 | // a VMPTR_Object which points to invalid memory. |
| 2178 | virtual |
| 2179 | VMPTR_Object GetObjectFromRefPtr(CORDB_ADDRESS ptr) = 0; |
| 2180 | |
| 2181 | // Creates a VMPTR of an Object. The Object is assumed to be at the target |
| 2182 | // address supplied by ptr |
| 2183 | // |
| 2184 | // Arguments: |
| 2185 | // ptr - A target address to an Object |
| 2186 | // |
| 2187 | // Return Value: |
| 2188 | // A VMPTR to the Object which was at ptr |
| 2189 | // |
| 2190 | // Notes: |
| 2191 | // The VMPTR this produces can be deconstructed by GetObjectContents. |
| 2192 | // This will produce a VMPTR_Object regardless of whether the pointer is |
| 2193 | // valid or not. |
| 2194 | virtual |
| 2195 | VMPTR_Object GetObject(CORDB_ADDRESS ptr) = 0; |
| 2196 | |
| 2197 | // Sets state in the native binder. |
| 2198 | // |
| 2199 | // Arguments: |
| 2200 | // ePolicy - the NGEN policy to change |
| 2201 | // |
| 2202 | // Return Value: |
| 2203 | // HRESULT indicating if the state was successfully updated |
| 2204 | // |
| 2205 | virtual |
| 2206 | HRESULT EnableNGENPolicy(CorDebugNGENPolicy ePolicy) = 0; |
| 2207 | |
| 2208 | // Sets the NGEN compiler flags. This restricts NGEN to only use images with certain |
| 2209 | // types of pregenerated code. With respect to debugging this is used to specify that |
| 2210 | // the NGEN image must be debuggable aka non-optimized code. Note that these flags |
| 2211 | // are merged with other sources of configuration so it is possible that the final |
| 2212 | // result retrieved from GetDesiredNGENCompilerFlags does not match what was specfied |
| 2213 | // in this call. |
| 2214 | // |
| 2215 | // If an NGEN image of the appropriate type isn't available then one of two things happens: |
| 2216 | // a) the NGEN image isn't loaded and CLR loads the MSIL image instead |
| 2217 | // b) the NGEN image is loaded, but we don't use the pregenerated code it contains |
| 2218 | // and instead use only the MSIL and metadata |
| 2219 | // |
| 2220 | // This function is only legal to call at app startup before any decisions have been |
| 2221 | // made about NGEN image loading. Once we begin loading this configuration is immutable. |
| 2222 | // |
| 2223 | // |
| 2224 | // Arguments: |
| 2225 | // dwFlags - the new NGEN compiler flags that should go into effect |
| 2226 | // |
| 2227 | // Return Value: |
| 2228 | // HRESULT indicating if the state was successfully updated. On error the |
| 2229 | // current flags in effect will not have changed. |
| 2230 | // |
| 2231 | virtual |
| 2232 | HRESULT SetNGENCompilerFlags(DWORD dwFlags) = 0; |
| 2233 | |
| 2234 | // Gets the NGEN compiler flags currently in effect. This accounts for settings that |
| 2235 | // were caused by SetDesiredNGENCompilerFlags as well as other configuration sources. |
| 2236 | // See SetDesiredNGENCompilerFlags for more info |
| 2237 | // |
| 2238 | // Arguments: |
| 2239 | // pdwFlags - the NGEN compiler flags currently in effect |
| 2240 | // |
| 2241 | // Return Value: |
| 2242 | // HRESULT indicating if the state was successfully retrieved. |
| 2243 | // |
| 2244 | virtual |
| 2245 | HRESULT GetNGENCompilerFlags(DWORD *pdwFlags) = 0; |
| 2246 | |
| 2247 | // Create a VMPTR_OBJECTHANDLE from a CORDB_ADDRESS pointing to an object handle |
| 2248 | // |
| 2249 | // Arguments: |
| 2250 | // handle: target address of a GC handle |
| 2251 | // |
| 2252 | // ReturnValue: |
| 2253 | // returns a VMPTR_OBJECTHANDLE with the handle as the m_addr field |
| 2254 | // |
| 2255 | // Notes: |
| 2256 | // This will produce a VMPTR_OBJECTHANDLE regardless of whether handle is |
| 2257 | // valid. |
| 2258 | // Ideally we'd be using only strongly-typed variables on the RS, and then this would be unnecessary |
| 2259 | virtual |
| 2260 | VMPTR_OBJECTHANDLE GetVmObjectHandle(CORDB_ADDRESS handleAddress) = 0; |
| 2261 | |
| 2262 | // Validate that the VMPTR_OBJECTHANDLE refers to a legitimate managed object |
| 2263 | // |
| 2264 | // Arguments: |
| 2265 | // handle: the GC handle to be validated |
| 2266 | // |
| 2267 | // Return value: |
| 2268 | // TRUE if the object appears to be valid (its a heuristic), FALSE if it definately is not valid |
| 2269 | // |
| 2270 | virtual |
| 2271 | BOOL IsVmObjectHandleValid(VMPTR_OBJECTHANDLE vmHandle) = 0; |
| 2272 | |
| 2273 | // indicates if the specified module is a WinRT module |
| 2274 | // |
| 2275 | // Arguments: |
| 2276 | // vmModule: the module to check |
| 2277 | // isWinRT: out parameter indicating state of module |
| 2278 | // |
| 2279 | // Return value: |
| 2280 | // S_OK indicating that the operation succeeded |
| 2281 | // |
| 2282 | virtual |
| 2283 | HRESULT IsWinRTModule(VMPTR_Module vmModule, BOOL& isWinRT) = 0; |
| 2284 | |
| 2285 | // Determines the app domain id for the object refered to by a given VMPTR_OBJECTHANDLE |
| 2286 | // |
| 2287 | // Arguments: |
| 2288 | // handle: the GC handle which refers to the object of interest |
| 2289 | // |
| 2290 | // Return value: |
| 2291 | // The app domain id of the object of interest |
| 2292 | // |
| 2293 | // This may throw if the object handle is corrupt (it doesn't refer to a managed object) |
| 2294 | virtual |
| 2295 | ULONG GetAppDomainIdFromVmObjectHandle(VMPTR_OBJECTHANDLE vmHandle) = 0; |
| 2296 | |
| 2297 | |
| 2298 | // Get the target address from a VMPTR_OBJECTHANDLE, i.e., the handle address |
| 2299 | // Arguments: |
| 2300 | // vmHandle - (input) the VMPTR_OBJECTHANDLE from which we need the target address |
| 2301 | // Return value: the target address from the VMPTR_OBJECTHANDLE |
| 2302 | // |
| 2303 | virtual |
| 2304 | CORDB_ADDRESS GetHandleAddressFromVmHandle(VMPTR_OBJECTHANDLE vmHandle) = 0; |
| 2305 | |
| 2306 | // Given a VMPTR to an Object return the target address |
| 2307 | // |
| 2308 | // Arguments: |
| 2309 | // obj - the Object VMPTR to get the address from |
| 2310 | // |
| 2311 | // Return Value: |
| 2312 | // Return the target address which obj is using |
| 2313 | // |
| 2314 | // Notes: |
| 2315 | // The VMPTR this consumes can be reconstructed using GetObject and |
| 2316 | // providing the address stored in the returned TargetBuffer. This has |
| 2317 | // undefined behavior for invalid VMPTR_Objects. |
| 2318 | |
| 2319 | virtual |
| 2320 | TargetBuffer GetObjectContents(VMPTR_Object obj) = 0; |
| 2321 | |
| 2322 | // The callback used to enumerate blocking objects |
| 2323 | typedef void (*FP_BLOCKINGOBJECT_ENUMERATION_CALLBACK)(DacBlockingObject blockingObject, |
| 2324 | CALLBACK_DATA pUserData); |
| 2325 | |
| 2326 | // |
| 2327 | // Enumerate all monitors blocking a thread |
| 2328 | // |
| 2329 | // Arguments: |
| 2330 | // vmThread - the thread to get monitor data for |
| 2331 | // fpCallback - callback to invoke on the blocking data for each monitor |
| 2332 | // pUserData - user data to supply for each callback. |
| 2333 | // |
| 2334 | // Return Value: |
| 2335 | // Returns on success. Throws on error. |
| 2336 | // |
| 2337 | // |
| 2338 | virtual |
| 2339 | void EnumerateBlockingObjects(VMPTR_Thread vmThread, |
| 2340 | FP_BLOCKINGOBJECT_ENUMERATION_CALLBACK fpCallback, |
| 2341 | CALLBACK_DATA pUserData) = 0; |
| 2342 | |
| 2343 | |
| 2344 | |
| 2345 | // |
| 2346 | // Returns the thread which owns the monitor lock on an object and the acquisition |
| 2347 | // count |
| 2348 | // |
| 2349 | // Arguments: |
| 2350 | // vmObject - The object to check for ownership |
| 2351 | |
| 2352 | // |
| 2353 | // Return Value: |
| 2354 | // Throws on error. Inside the structure we have: |
| 2355 | // pVmThread - the owning or thread or VMPTR_Thread::NullPtr() if unowned |
| 2356 | // pAcquisitionCount - the number of times the lock would need to be released in |
| 2357 | // order for it to be unowned |
| 2358 | // |
| 2359 | virtual |
| 2360 | MonitorLockInfo GetThreadOwningMonitorLock(VMPTR_Object vmObject) = 0; |
| 2361 | |
| 2362 | // |
| 2363 | // Enumerate all threads waiting on the monitor event for an object |
| 2364 | // |
| 2365 | // Arguments: |
| 2366 | // vmObject - the object whose monitor event we are interested in |
| 2367 | // fpCallback - callback to invoke on each thread in the queue |
| 2368 | // pUserData - user data to supply for each callback. |
| 2369 | // |
| 2370 | // Return Value: |
| 2371 | // Returns on success. Throws on error. |
| 2372 | // |
| 2373 | // |
| 2374 | virtual |
| 2375 | void EnumerateMonitorEventWaitList(VMPTR_Object vmObject, |
| 2376 | FP_THREAD_ENUMERATION_CALLBACK fpCallback, |
| 2377 | CALLBACK_DATA pUserData) = 0; |
| 2378 | |
| 2379 | // |
| 2380 | // Returns the managed debugging flags for the process (a combination |
| 2381 | // of the CLR_DEBUGGING_PROCESS_FLAGS flags). This function specifies, |
| 2382 | // beyond whether or not a managed debug event is pending, also if the |
| 2383 | // event (if one exists) is caused by a Debugger.Launch(). This is |
| 2384 | // important b/c Debugger.Launch calls should *NOT* cause the debugger |
| 2385 | // to terminate the process when the attach is canceled. |
| 2386 | virtual |
| 2387 | CLR_DEBUGGING_PROCESS_FLAGS GetAttachStateFlags() = 0; |
| 2388 | |
| 2389 | virtual |
| 2390 | bool GetMetaDataFileInfoFromPEFile(VMPTR_PEFile vmPEFile, |
| 2391 | DWORD & dwTimeStamp, |
| 2392 | DWORD & dwImageSize, |
| 2393 | bool & isNGEN, |
| 2394 | IStringHolder* pStrFilename) = 0; |
| 2395 | |
| 2396 | virtual |
| 2397 | bool GetILImageInfoFromNgenPEFile(VMPTR_PEFile vmPEFile, |
| 2398 | DWORD & dwTimeStamp, |
| 2399 | DWORD & dwSize, |
| 2400 | IStringHolder* pStrFilename) = 0; |
| 2401 | |
| 2402 | |
| 2403 | virtual |
| 2404 | bool IsThreadSuspendedOrHijacked(VMPTR_Thread vmThread) = 0; |
| 2405 | |
| 2406 | |
| 2407 | typedef void* * HeapWalkHandle; |
| 2408 | |
| 2409 | // Returns true if it is safe to walk the heap. If this function returns false, |
| 2410 | // you could still create a heap walk and attempt to walk it, but there's no |
| 2411 | // telling how much of the heap will be available. |
| 2412 | virtual |
| 2413 | bool AreGCStructuresValid() = 0; |
| 2414 | |
| 2415 | // Creates a HeapWalkHandle which can be used to walk the managed heap with the |
| 2416 | // WalkHeap function. Note if this function completes successfully you will need |
| 2417 | // to delete the handle by passing it into DeleteHeapWalk. |
| 2418 | // |
| 2419 | // Arguments: |
| 2420 | // pHandle - the location to store the heap walk handle in |
| 2421 | // |
| 2422 | // Returns: |
| 2423 | // S_OK on success, an error code on failure. |
| 2424 | virtual |
| 2425 | HRESULT CreateHeapWalk(OUT HeapWalkHandle * pHandle) = 0; |
| 2426 | |
| 2427 | |
| 2428 | // Deletes the give HeapWalkHandle. Note you must call this function if |
| 2429 | // CreateHeapWalk returns success. |
| 2430 | virtual |
| 2431 | void DeleteHeapWalk(HeapWalkHandle handle) = 0; |
| 2432 | |
| 2433 | // Walks the heap using the given heap walk handle, enumerating objects |
| 2434 | // on the managed heap. Note that walking the heap requires that the GC |
| 2435 | // data structures be in a valid state, which you can find by calling |
| 2436 | // AreGCStructuresValid. |
| 2437 | // |
| 2438 | // Arguments: |
| 2439 | // handle - a HeapWalkHandle obtained from CreateHeapWalk |
| 2440 | // count - the number of object addresses to obtain; pValues must |
| 2441 | // be at least as large as count |
| 2442 | // objects - the location to stuff the object addresses found during |
| 2443 | // the heap walk; this array should be at least "count" in |
| 2444 | // length; this field must not be null |
| 2445 | // pFetched - a location to store the actual number of values filled |
| 2446 | // into pValues; this field must not be null |
| 2447 | // |
| 2448 | // Returns: |
| 2449 | // S_OK on success, a failure HRESULT otherwise. |
| 2450 | // |
| 2451 | // Note: |
| 2452 | // You should iteratively call WalkHeap requesting more values until |
| 2453 | // *pFetched != count.. This signifies that we have reached the end |
| 2454 | // of the heap walk. |
| 2455 | virtual |
| 2456 | HRESULT WalkHeap(HeapWalkHandle handle, |
| 2457 | ULONG count, |
| 2458 | OUT COR_HEAPOBJECT * objects, |
| 2459 | OUT ULONG * pFetched) = 0; |
| 2460 | |
| 2461 | virtual |
| 2462 | HRESULT GetHeapSegments(OUT DacDbiArrayList<COR_SEGMENT> * pSegments) = 0; |
| 2463 | |
| 2464 | virtual |
| 2465 | bool IsValidObject(CORDB_ADDRESS obj) = 0; |
| 2466 | |
| 2467 | virtual |
| 2468 | bool GetAppDomainForObject(CORDB_ADDRESS obj, OUT VMPTR_AppDomain * pApp, |
| 2469 | OUT VMPTR_Module * pModule, |
| 2470 | OUT VMPTR_DomainFile * pDomainFile) = 0; |
| 2471 | |
| 2472 | |
| 2473 | // Reference Walking. |
| 2474 | |
| 2475 | // Creates a reference walk. |
| 2476 | // Parameters: |
| 2477 | // pHandle - out - the reference walk handle to create |
| 2478 | // walkStacks - in - whether or not to report stack references |
| 2479 | // walkFQ - in - whether or not to report references from the finalizer queue |
| 2480 | // handleWalkMask - in - the types of handles report (see CorGCReferenceType, cordebug.idl) |
| 2481 | // Returns: |
| 2482 | // An HRESULT indicating whether it succeded or failed. |
| 2483 | // Exceptions: |
| 2484 | // Does not throw, but does not catch exceptions either. |
| 2485 | virtual |
| 2486 | HRESULT CreateRefWalk(OUT RefWalkHandle * pHandle, BOOL walkStacks, BOOL walkFQ, UINT32 handleWalkMask) = 0; |
| 2487 | |
| 2488 | // Deletes a reference walk. |
| 2489 | // Parameters: |
| 2490 | // handle - in - the handle of the reference walk to delete |
| 2491 | // Excecptions: |
| 2492 | // Does not throw, but does not catch exceptions either. |
| 2493 | virtual |
| 2494 | void DeleteRefWalk(RefWalkHandle handle) = 0; |
| 2495 | |
| 2496 | // Enumerates GC references in the process based on the parameters passed to CreateRefWalk. |
| 2497 | // Parameters: |
| 2498 | // handle - in - the RefWalkHandle to enumerate |
| 2499 | // count - in - the capacity of "refs" |
| 2500 | // refs - in/out - an array to write the references to |
| 2501 | // pFetched - out - the number of references written |
| 2502 | virtual |
| 2503 | HRESULT WalkRefs(RefWalkHandle handle, ULONG count, OUT DacGcReference * refs, OUT ULONG * pFetched) = 0; |
| 2504 | |
| 2505 | virtual |
| 2506 | HRESULT GetTypeID(CORDB_ADDRESS obj, COR_TYPEID * pType) = 0; |
| 2507 | |
| 2508 | virtual |
| 2509 | HRESULT GetTypeIDForType(VMPTR_TypeHandle vmTypeHandle, COR_TYPEID *pId) = 0; |
| 2510 | |
| 2511 | virtual |
| 2512 | HRESULT GetObjectFields(COR_TYPEID id, ULONG32 celt, OUT COR_FIELD * layout, OUT ULONG32 * pceltFetched) = 0; |
| 2513 | |
| 2514 | virtual |
| 2515 | HRESULT GetTypeLayout(COR_TYPEID id, COR_TYPE_LAYOUT * pLayout) = 0; |
| 2516 | |
| 2517 | virtual |
| 2518 | HRESULT GetArrayLayout(COR_TYPEID id, COR_ARRAY_LAYOUT * pLayout) = 0; |
| 2519 | |
| 2520 | virtual |
| 2521 | void GetGCHeapInformation(OUT COR_HEAPINFO * pHeapInfo) = 0; |
| 2522 | |
| 2523 | // If a PEFile has an RW capable IMDInternalImport, this returns the address of the MDInternalRW |
| 2524 | // object which implements it. |
| 2525 | // |
| 2526 | // |
| 2527 | // Arguments: |
| 2528 | // vmPEFile - target PEFile to get metadata MDInternalRW for. |
| 2529 | // pAddrMDInternalRW - If a PEFile has an RW capable IMDInternalImport, this will be set to the address |
| 2530 | // of the MDInternalRW object which implements it. Otherwise it will be NULL. |
| 2531 | // |
| 2532 | virtual |
| 2533 | HRESULT GetPEFileMDInternalRW(VMPTR_PEFile vmPEFile, OUT TADDR* pAddrMDInternalRW) = 0; |
| 2534 | |
| 2535 | // DEPRECATED - use GetActiveRejitILCodeVersionNode |
| 2536 | // Retrieves the active ReJitInfo for a given module/methodDef, if it exists. |
| 2537 | // Active is defined as after GetReJitParameters returns from the profiler dll and |
| 2538 | // no call to Revert has completed yet. |
| 2539 | // |
| 2540 | // |
| 2541 | // Arguments: |
| 2542 | // vmModule - The module to search in |
| 2543 | // methodTk - The methodDef token indicates the method within the module to check |
| 2544 | // pReJitInfo - [out] The RejitInfo request, if any, that is active on this method. If no request |
| 2545 | // is active this will be pReJitInfo->IsNull() == TRUE. |
| 2546 | // |
| 2547 | // Returns: |
| 2548 | // S_OK regardless of whether a rejit request is active or not, as long as the answer is certain |
| 2549 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2550 | // |
| 2551 | virtual |
| 2552 | HRESULT GetReJitInfo(VMPTR_Module vmModule, mdMethodDef methodTk, OUT VMPTR_ReJitInfo* pReJitInfo) = 0; |
| 2553 | |
| 2554 | // DEPRECATED - use GetNativeCodeVersionNode |
| 2555 | // Retrieves the ReJitInfo for a given MethodDesc/code address, if it exists. |
| 2556 | // |
| 2557 | // |
| 2558 | // Arguments: |
| 2559 | // vmMethod - The method to look for |
| 2560 | // codeStartAddress - The code start address disambiguates between multiple rejitted instances |
| 2561 | // of the method. |
| 2562 | // pReJitInfo - [out] The RejitInfo request that corresponds to this MethodDesc/code address, if it exists. |
| 2563 | // NULL otherwise. |
| 2564 | // |
| 2565 | // Returns: |
| 2566 | // S_OK regardless of whether a rejit request is active or not, as long as the answer is certain |
| 2567 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2568 | // |
| 2569 | virtual |
| 2570 | HRESULT GetReJitInfo(VMPTR_MethodDesc vmMethod, CORDB_ADDRESS codeStartAddress, OUT VMPTR_ReJitInfo* pReJitInfo) = 0; |
| 2571 | |
| 2572 | // DEPRECATED - use GetILCodeVersion |
| 2573 | // Retrieves the SharedReJitInfo for a given ReJitInfo. |
| 2574 | // |
| 2575 | // |
| 2576 | // Arguments: |
| 2577 | // vmReJitInfo - The ReJitInfo to inspect |
| 2578 | // pSharedReJitInfo - [out] The SharedReJitInfo that is pointed to by vmReJitInfo. |
| 2579 | // |
| 2580 | // Returns: |
| 2581 | // S_OK if no error |
| 2582 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2583 | // |
| 2584 | virtual |
| 2585 | HRESULT GetSharedReJitInfo(VMPTR_ReJitInfo vmReJitInfo, VMPTR_SharedReJitInfo* pSharedReJitInfo) = 0; |
| 2586 | |
| 2587 | // DEPRECATED - use GetILCodeVersionData |
| 2588 | // Retrieves useful data from a SharedReJitInfo such as IL code and IL mapping. |
| 2589 | // |
| 2590 | // |
| 2591 | // Arguments: |
| 2592 | // sharedReJitInfo - The SharedReJitInfo to inspect |
| 2593 | // pData - [out] Various properties of the SharedReJitInfo such as IL code and IL mapping. |
| 2594 | // |
| 2595 | // Returns: |
| 2596 | // S_OK if no error |
| 2597 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2598 | // |
| 2599 | virtual |
| 2600 | HRESULT GetSharedReJitInfoData(VMPTR_SharedReJitInfo sharedReJitInfo, DacSharedReJitInfo* pData) = 0; |
| 2601 | |
| 2602 | // Retrieves a bit field indicating which defines were in use when clr was built. This only includes |
| 2603 | // defines that are specified in the Debugger::_Target_Defines enumeration, which is a small subset of |
| 2604 | // all defines. |
| 2605 | // |
| 2606 | // |
| 2607 | // Arguments: |
| 2608 | // pDefines - [out] The set of defines clr.dll was built with. Bit offsets are encoded using the |
| 2609 | // enumeration Debugger::_Target_Defines |
| 2610 | // |
| 2611 | // Returns: |
| 2612 | // S_OK if no error |
| 2613 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2614 | // |
| 2615 | virtual |
| 2616 | HRESULT GetDefinesBitField(ULONG32 *pDefines) = 0; |
| 2617 | |
| 2618 | // Retrieves a version number indicating the shape of the data structures used in the Metadata implementation |
| 2619 | // inside clr.dll. This number changes anytime a datatype layout changes so that they can be correctly |
| 2620 | // deserialized from out of process |
| 2621 | // |
| 2622 | // |
| 2623 | // Arguments: |
| 2624 | // pMDStructuresVersion - [out] The layout version number for metadata data structures. See |
| 2625 | // Debugger::Debugger() in Debug\ee\Debugger.cpp for a description of the options. |
| 2626 | // |
| 2627 | // Returns: |
| 2628 | // S_OK if no error |
| 2629 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2630 | // |
| 2631 | virtual |
| 2632 | HRESULT GetMDStructuresVersion(ULONG32* pMDStructuresVersion) = 0; |
| 2633 | |
| 2634 | // Retrieves the active rejit ILCodeVersionNode for a given module/methodDef, if it exists. |
| 2635 | // Active is defined as after GetReJitParameters returns from the profiler dll and |
| 2636 | // no call to Revert has completed yet. |
| 2637 | // |
| 2638 | // |
| 2639 | // Arguments: |
| 2640 | // vmModule - The module to search in |
| 2641 | // methodTk - The methodDef token indicates the method within the module to check |
| 2642 | // pILCodeVersionNode - [out] The Rejit request, if any, that is active on this method. If no request |
| 2643 | // is active this will be pILCodeVersionNode->IsNull() == TRUE. |
| 2644 | // |
| 2645 | // Returns: |
| 2646 | // S_OK regardless of whether a rejit request is active or not, as long as the answer is certain |
| 2647 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2648 | // |
| 2649 | virtual |
| 2650 | HRESULT GetActiveRejitILCodeVersionNode(VMPTR_Module vmModule, mdMethodDef methodTk, OUT VMPTR_ILCodeVersionNode* pVmILCodeVersionNode) = 0; |
| 2651 | |
| 2652 | // Retrieves the NativeCodeVersionNode for a given MethodDesc/code address, if it exists. |
| 2653 | // NOTE: The initial (default) code generated for a MethodDesc is a valid MethodDesc/code address pair but it won't have a corresponding |
| 2654 | // NativeCodeVersionNode. |
| 2655 | // |
| 2656 | // |
| 2657 | // Arguments: |
| 2658 | // vmMethod - The method to look for |
| 2659 | // codeStartAddress - The code start address disambiguates between multiple jitted instances of the method. |
| 2660 | // pVmNativeCodeVersionNode - [out] The NativeCodeVersionNode request that corresponds to this MethodDesc/code address, if it exists. |
| 2661 | // NULL otherwise. |
| 2662 | // |
| 2663 | // Returns: |
| 2664 | // S_OK regardless of whether a rejit request is active or not, as long as the answer is certain |
| 2665 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2666 | // |
| 2667 | virtual |
| 2668 | HRESULT GetNativeCodeVersionNode(VMPTR_MethodDesc vmMethod, CORDB_ADDRESS codeStartAddress, OUT VMPTR_NativeCodeVersionNode* pVmNativeCodeVersionNode) = 0; |
| 2669 | |
| 2670 | // Retrieves the ILCodeVersionNode for a given NativeCodeVersionNode. |
| 2671 | // This may return a NULL node if the native code belongs to the default IL version for this this method. |
| 2672 | // |
| 2673 | // |
| 2674 | // Arguments: |
| 2675 | // vmNativeCodeVersionNode - The NativeCodeVersionNode to inspect |
| 2676 | // pVmILCodeVersionNode - [out] The ILCodeVersionNode that is pointed to by vmNativeCodeVersionNode, if any. |
| 2677 | // |
| 2678 | // Returns: |
| 2679 | // S_OK if no error |
| 2680 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2681 | // |
| 2682 | virtual |
| 2683 | HRESULT GetILCodeVersionNode(VMPTR_NativeCodeVersionNode vmNativeCodeVersionNode, VMPTR_ILCodeVersionNode* pVmILCodeVersionNode) = 0; |
| 2684 | |
| 2685 | // Retrieves useful data from an ILCodeVersion such as IL code and IL mapping. |
| 2686 | // |
| 2687 | // |
| 2688 | // Arguments: |
| 2689 | // ilCodeVersionNode - The ILCodeVersionNode to inspect |
| 2690 | // pData - [out] Various properties of the ILCodeVersionNode such as IL code and IL mapping. |
| 2691 | // |
| 2692 | // Returns: |
| 2693 | // S_OK if no error |
| 2694 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2695 | // |
| 2696 | virtual |
| 2697 | HRESULT GetILCodeVersionNodeData(VMPTR_ILCodeVersionNode ilCodeVersionNode, DacSharedReJitInfo* pData) = 0; |
| 2698 | |
| 2699 | // Enable or disable the GC notification events. The GC notification events are turned off by default |
| 2700 | // They will be delivered through ICorDebugManagedCallback4 |
| 2701 | // |
| 2702 | // |
| 2703 | // Arguments: |
| 2704 | // fEnable - true to enable the events, false to disable |
| 2705 | // |
| 2706 | // Returns: |
| 2707 | // S_OK if no error |
| 2708 | // error HRESULTs such as CORDBG_READ_VIRTUAL_FAILURE are possible |
| 2709 | // |
| 2710 | virtual |
| 2711 | HRESULT EnableGCNotificationEvents(BOOL fEnable) = 0; |
| 2712 | |
| 2713 | // The following tag tells the DD-marshalling tool to stop scanning. |
| 2714 | // END_MARSHAL |
| 2715 | |
| 2716 | //----------------------------------------------------------------------------- |
| 2717 | // Utility interface used for passing strings out of these APIs. The caller |
| 2718 | // provides an implementation of this that uses whatever memory allocation |
| 2719 | // strategy it desires, and IDacDbiInterface APIs will call AssignCopy in order |
| 2720 | // to pass back the contents of strings. |
| 2721 | // |
| 2722 | // This permits the client and implementation of IDacDbiInterface to be in |
| 2723 | // different DLLs with their own heap allocation mechanism, while avoiding |
| 2724 | // the ugly and verbose 2-call C-style string passing API pattern. |
| 2725 | //----------------------------------------------------------------------------- |
| 2726 | class IStringHolder |
| 2727 | { |
| 2728 | public: |
| 2729 | // |
| 2730 | // Store a copy of of the provided string. |
| 2731 | // |
| 2732 | // Arguments: |
| 2733 | // psz - The null-terminated unicode string to copy. |
| 2734 | // |
| 2735 | // Return Value: |
| 2736 | // S_OK on success, typical HRESULT return values on failure. |
| 2737 | // |
| 2738 | // Notes: |
| 2739 | // The underlying object is responsible for allocating and freeing the |
| 2740 | // memory for this copy. The object must not store the value of psz, |
| 2741 | // it is no longer valid after this call returns. |
| 2742 | // |
| 2743 | virtual |
| 2744 | HRESULT AssignCopy(const WCHAR * psz) = 0; |
| 2745 | }; |
| 2746 | |
| 2747 | |
| 2748 | //----------------------------------------------------------------------------- |
| 2749 | // Interface for allocations |
| 2750 | // This lets DD allocate buffers to pass back to DBI; and thus avoids |
| 2751 | // the common 2-step (query size/allocate/query data) pattern. |
| 2752 | // |
| 2753 | // Note that mscordacwks.dll and clients cannot share the same heap allocator, |
| 2754 | // DAC statically links the CRT to avoid run-time dependencies on non-OS libraries. |
| 2755 | //----------------------------------------------------------------------------- |
| 2756 | class IAllocator |
| 2757 | { |
| 2758 | public: |
| 2759 | // Allocate |
| 2760 | // Expected to throw on error. |
| 2761 | virtual |
| 2762 | void * Alloc(SIZE_T lenBytes) = 0; |
| 2763 | |
| 2764 | // Free. This shouldn't throw. |
| 2765 | virtual |
| 2766 | void Free(void * p) = 0; |
| 2767 | }; |
| 2768 | |
| 2769 | |
| 2770 | //----------------------------------------------------------------------------- |
| 2771 | // Callback interface to provide Metadata lookup. |
| 2772 | //----------------------------------------------------------------------------- |
| 2773 | class IMetaDataLookup |
| 2774 | { |
| 2775 | public: |
| 2776 | // |
| 2777 | // Lookup a metadata importer via PEFile. |
| 2778 | // |
| 2779 | // Returns: |
| 2780 | // A IMDInternalImport used by dac-ized VM code. The object is NOT addref-ed. See lifespan notes below. |
| 2781 | // Returns NULL if no importer is available. |
| 2782 | // Throws on exceptional circumstances (eg, detects the debuggee is corrupted). |
| 2783 | // |
| 2784 | // Notes: |
| 2785 | // IMDInternalImport is a property of PEFile. The DAC-ized code uses it as a weak reference, |
| 2786 | // and so we avoid doing an AddRef() here because that would mean we need to add Release() calls |
| 2787 | // in DAC-only paths. |
| 2788 | // The metadata importers are not DAC-ized, and thus we have a local copy in the host. |
| 2789 | // If it was dac-ized, then DAC would get the importer just like any other field. |
| 2790 | // |
| 2791 | // lifespan of returned object: |
| 2792 | // - DBI owns the metadata importers. |
| 2793 | // - DBI must not free the importer without calling Flush() on DAC first. |
| 2794 | // - DAC will only invoke this when in a DD primitive, which was in turn invoked by DBI. |
| 2795 | // - For performance reasons, we want to allow DAC to cache this between Flush() calls. |
| 2796 | // - If DAC caches the importer, it will only use it when DBI invokes a DD primitive. |
| 2797 | // - the reference count of the returned object is not adjusted. |
| 2798 | // |
| 2799 | virtual |
| 2800 | IMDInternalImport * LookupMetaData(VMPTR_PEFile addressPEFile, bool &isILMetaDataForNGENImage) = 0; |
| 2801 | }; |
| 2802 | |
| 2803 | }; // end IDacDbiInterface |
| 2804 | |
| 2805 | |
| 2806 | #endif // _DACDBI_INTERFACE_H_ |
| 2807 | |